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This book presents the recent developments in probabilistic assessment
of systems dependability based on stochastic models from graph
theory, finite state automaton and language theory, to be applied across
static, dynamic and hybrid contexts.

The first part of the book presents the foundations of coherence
property represented by a state graph model to show how the reliability
of a system may be determined. An algorithm with lower complexity
than the classical approach (BDD decomposition for example) is
proposed and extended to apply to non-coherent systems by
introducing the concept of terminal tie-set.

In the second part, the authors introduce the model of finite state
automaton to generally represent systems and replace the concepts of
cut-sets and tie-sets by the concept of event sequences. The model is
enriched progressively to define hybrid stochastic automaton that
allows us to consider all of the problems usually assembled around the
concept of dynamic reliability. Examples of Monte Carlo simulations are
also presented.

This book targets engineering students interested in risk and
dependability assessment and engineers working in aeronautics, space,
energy, transportation and safety fields, as well as individuals with
knowledge in applied mathematics and probability theory, and
professionals in safety management.

Jean-François Aubry is Professor Emeritus at the University of Lorraine,
France.  His research interests include control systems and safety
engineering, dynamic reliability and reliability assessments.

Nicolae Brinzei is Associate Professor at the University of Lorraine,
France.  His research interests include probabilistic models, applied
probability, stochastic modeling and hybrid systems.
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Preface

Systems dependability assessment

Systems dependability assessment! Many excellent books deal with

this subject and describe its evolution from its beginning, at the end of

World War II. We can recall the ability of the first computers that were

occasionally in an operating state. From this time, a lot of robust

methods and tools made the analysis and the assessment of their

failures possible, in order for the potential users of these new

technologies to rely on them. The word “reliability” was born. The safe

development of electronics and then of computing, aerospace and

nuclear technologies became possible. So it is logical to ask the

question of the relevancy of a new book. In fact, it was found that the

simplifying hypotheses commonly used to access the predictive

measures of reliability are sometimes difficult to justify and that they

can produce pessimistic values compared to the feedback experience or

optimistic forecasting of rare dangerous events. This induced a lot of

research in the specialized community, for example in the Automatic

Control Research Center (Centre de Recherche en Automatique de
Nancy – CRAN) of the University of Lorraine, France.

These are some of the works that we will modestly report in this

book. They constituted significant contributions to recent approaches

of predictive dependability due to resorting to concepts developed in

automatic control but not yet turned to account of dependability. We
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can cite, for example, graph theory, finite-state automata, Petri nets,

Bayesian approach and fuzzy sets.

These developments spanned over approximately the last two

decades and gave some original advances in the field, and it is difficult

for us not to make a connection with the Nancy School of Art Nouveau

one century ago. In fact, perhaps we could have called this book

Systems Dependability Assessment; Beyond traditional approaches,

the Nancy School!

Let us enter now into more technical and scientific considerations to

give the clarifications that the title of this book deserves.

Dependability

The CEI 50 (191) standard [IEC 90] defines dependability as the

ability of an entity to assume one or more requested functions in given

conditions. This very general and non-quantitative notion may be

further specified by its generally associated attributes which are

[LAP 95]: hindering or barriers, achievement means, validation means

and measures. Our contribution rightly takes a place within the latter,

and especially in quantitative measures. Nevertheless, it is difficult to

give a single value for this measure as the dependability is actually a

concept including three components [IEC 90]: reliability,

maintainability and availability. These three components, as well as

their measures which are probabilities, are formally defined in the CEI

50 (191) standard. The lifetime (or time before failure) and the repair

time of an entity are considered as random time variables whose

distribution functions define, respectively, the reliability and the

maintainability of the entity. The availability is the probability for the

entity of being in operation at a given time instant, knowing that the

entity could have been alternatively in operation or in repair states. Its

asymptotic value is generally an interesting measure. In the Appendix,

the basic mathematical definitions are recalled.

However, the CEI 50 (191) standard does not consider safety as a

component of dependability. Safety is the ability of an entity to avoid

the appearance of critical or catastrophic events that may affect
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equipment or staff. The measure of the safety may be defined as a

probability; however, it is also important to assess it with regard to the

consequence of the occurrence of these critical or catastrophic events.

This leads to the concept of risk, a risk being evaluated by the

association of the occurrence frequency (or probability) of a dangerous

event and the damage it induces on goods, people and environment. It

is not the main purpose for this book to deal with risk management;

nevertheless, it may be considered that a system may be in a dangerous

state as well as in an availability state, both being sometimes

compatible. As we will see later, it is possible to assess the probability

for a system of being in any subset of its possible states and, for

example, the subset of safe states. We can find in the CEI 61508

[IEC 98] a probabilistic approach of the functional safety that we can

qualify as the reliability of systems responsible for safety loops in

industrial plants. That is why it is difficult not to consider safety as a

fourth element of dependability, especially when it is a matter of

probabilistic assessment. Many authors and agencies prefer the RAMS

acronym for reliability, availability, maintainability and safety instead

of dependability. However, RAMS has a wider extension, covering all

the attributes of dependability and safety: hindering, achievement

means, validation means, and quantitative as well as qualitative

measures.

System

By the term “system”, we mean a set of components interacting

together to perform one or more predefined functions. Components and

system are included in the definitions of “dependability” under the

generic term “entity”; however, their measures are issued from

different approaches. For the components, they are based, for example,

on known probabilistic laws whose parameters are adjusted from

statistical data. For a system, the dependability measure is a prediction

obtained by a dedicated model starting from the knowledge of the

dependability measures of its components.

This definition of system does not evoke the complexity level of the

system. The complexity may be expressed in terms of number of

components, but it must be more particularly understood in terms of
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interactions between them. As we will see, many types of models may

be combined to describe these interactions and the solving method may

be a matter of analytical calculus or simulation process. For large

systems, it is usual to build hierarchical models with several levels of

subentities, etc. It is not our purpose to discuss system engineering and

we will only consider a sole decomposition level with the objective of

finding a relationship model between one dependability measure of a

system and that of its components.

Assessment

In the dependability or RAMS domain, two types of assessment are

predominantly performed: qualitative and quantitative. Qualitative

assessment is generally performed as a preliminary study to identify

and qualify the components, events, interactions and limits of the

system in order to eventually be able to start the quantitative

assessment which must be understood as the set of means, methods

and tools to give a quantitative measure of the systems dependability.

As said previously, this measure is predictive and is based on models.

These models are very large in number and more or less known for a

long time, and it is not our goal to give an exhaustive description.

Jean-François AUBRY

December, 2014



Introduction

In this book, we are interested in the problem of characterizing the

probabilistic indicators of the dependability of a complex system

knowing a priori the dysfunctional characteristics of their components.

These components may be material (machines, hardware, devices,

structures, subsystems, etc.), immaterial (software, strategies, etc.) or

people (designers, operators, repairers, etc.). It is supposed that the

definition, the modeling and the assessment of the dysfunction of these

components are well known as an issue of the application of

probabilities and statistics theories. The reader may refer to so many

books and publications on the subject that it is impossible to mention

them all. We will only cite, for example, the following authors: Meeker

[MEE 98], Modarres [MOD 93] and Cocozza [COC 97].

It may be thought that all, or almost all, has been written on the

dependability of systems and that the electronics, aeronautic, space,

chemical, transportation or nuclear industries practice this activity with

expertise. Nevertheless, the interest developed in the past 20 years by

many research experts on the so-called “dynamic reliability” shows

that this is not exactly the case. A community of specialists is engaged

in reconsidering a lot of simplifying hypotheses requested for the

elaboration of analytical models but leading to the risk of impasses

relative, for example, to insidious conditions, rare event sequences or

complex interactions between functional and dysfunctional behaviors.
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More extensively considering all the problems impacting a

dependability assessment process today becomes possible due to the

borrowing of concepts developed in other scientific domains and due to

the power improvement of engineering tools (computers, network,

languages, software, etc.).

From such a perspective, we propose in Part 1 to revisit the

traditional approach of systems reliability modeling by the means of

the monotone structure function concept and its representation by a

graph, the concept that we will progressively transform in Part 2 into

that of stochastic hybrid automaton. So, we will take advantages of

concepts developed in the fields of graph and finite-state automata

theories in which probabilistic aspects have been introduced.

We will present some simple examples and the associated tools to

illustrate the pedagogical approach as well as results obtained with

more complex case studies in the context of research programs. We

thank Dr G.-A. Perez Castaneda and Dr G. Babykina for their

important contribution to the research partially reported in the final

part.



PART 1

Predicted Reliability of Static Systems;
a Graph-Theory Based Approach
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Static and Time Invariant Systems
with Boolean Representation

A system whose outputs are only dependent at any time on its

variables states is generally called a time invariant system or stationary

system. Furthermore, a static system is a system whose outputs do not

depend on the past of its inputs; it has no memory. Translated in the

context of reliability, these definitions become: at any time, the same

combination of components states induces the same state of the system

and, at a given time, the knowledge of the reliability of each

component is sufficient to access the reliability of the system. In

addition, we will only consider in this section systems and components

with Boolean behaviour (“ON or Operating” and “FAIL” states that

will be represented by the Boolean variables “1” and “0”).

1.1. Notations

Let us suppose that a system S with Boolean states is composed of

r components ci. The state of a component ci is defined by the Boolean

variable ui. We will use the following notation:

– C = {c1, c2, ..., cr} the set of the r components,

– U = (u1, u2, ..., ur) the Boolean word representing the states of

the components with ui ∈ B = {0, 1}, so U ∈ Br can take at most

2r different values (the system’s state number is generally lower than
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2r because some degradation states are inaccessible, the system being

stopped beforehand).

1.2. Order relation on U
Let us recall that a relation R on a variable set is an order relation

if it is reflexive (aRa), antisymmetric (aRb and bRa =⇒ a = b) and

transitive (aRb and bRc=⇒ aRc). A set provided with such a relation is

an ordered set. In the Boolean set B, two operations establish an order:

the identity operation noted � and the implication operations sometimes

noted � and �, (analog of the operations defined on the integers with

the same symbols).

Let us now consider two distinct values of U ∈ Br : A =
(a1, a2, ..., ar) and B = (b1, b2, ..., br). We will say that:

– A = B if and only if ∀i ∈ (0, 1, ..., r), ai = bi;

– A � B (read A upper bounds B) if and only if ∀i ∈
(0, 1, ..., r), ai � bi;

– A � B (read A lower bounds B) if and only if ∀i ∈
(0, 1, ..., r), ai � bi.

It is really a matter of order relations on Br because it is reflexive

(A � A and A � A), transitive (A � B,B � C =⇒ A � C and A �
B,B � C =⇒ A � C) and antisymmetric (A � B,B � A =⇒ A = B
and A � B,B � A =⇒ A = B).

For example we can write: (1, 0, 0, 1, 0) � (1, 1, 0, 1, 0) �
(1, 1, 0, 1, 1)

But (1, 0, 1, 1, 0) is not in relation with (1, 1, 0, 1, 0).

A drawing of this order relation is given by its Hasse diagram

[VEL 05], that is to say, a graph in which the nodes are the possible

values of U and the arcs are the representations of the order relation. It

is a subset of the sagittal diagram of the relation where the loops and

the arcs representing respectively the reflexivity and the transitivity

properties are removed. Such a structure is sometimes called r-cube

[ARN 97].


