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Preface

What the role of mathematics in physical sciences is, is a relevant 

philosophical and historical question whose answer is necessary to fully 

understand the real status of physics, in particular of contemporary physics.

Exactly the wish to have good and plausible answers has spurred 

physicists, mathematicians, historians of science, and philosophers of science 

from many countries to join together and friendly but rigorously discuss. 

From that meeting, which was held in the wonderful Isle of Losinj (Croatia) 

in 2003, this book had its origin.

Actually, it does not simply contain the text of the lectures given. It is 

something different and something more. Some chapters are new and 

improved versions of what was presented. Some others have been added to 

enrich the variety of possible suggestions. 

This book has been published in occasion of the 40th anniversary 

celebrations of the Consorzio per la Fisica of Trieste.

The editors 
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PHILOSOPHICAL ASPECTS 
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3
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As only a cursory examination of the subject can illustrate, mathematics 

and physics have been related for centuries and now it seems quite 

impossible to think the latter without the former. In other words, to speak 

about the indispensability of mathematics for physics appears to be a real 

platitude. However it is not at all that simple and unproblematic. In fact a lot 

of problems arise from this relation: is mathematics really indispensable for 

physics, or could we have physics without mathematics? Did physics without 

mathematics exist? Could physics without mathematics exist now? Which 

are the relations between physics and mathematics? Is mathematics just a 

tool, or something more? Is it the language in which is written the nature or 

is it the language by means of which we try to know nature? Has it only a 

role in the logical structuration of a physical theory or does it furnish also a 

good path to discover new physical entities? Should we think physically and 

then should we add the mathematics apt to formalise our physical intuition, 

or should we think mathematically and then should we interpret physically 

what found? Can physics generate new mathematics? Can mathematics 

generate new physics? How can we explain the success of mathematics in 

the physical sciences? Should it really be explained, or is such a question a 

pseudo-question? Are there any limits to the mathematical applications? 

Does a pure mathematical method to construct new physical theories exist? 

Do we get mathematical objects by abstraction from real objects, or are they 

a direct product of our intuition? 

5
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6 GIOVANNI BONIOLO, PAOLO BUDINICH, MAJDA TROBOK

All these questions and problems have been discussed in this book from 

different perspectives and by authors with different philosophical 

backgrounds.

We have thought of dividing the book into three parts. The first one 

contains four contributions on the historical role of mathematics in physics.

Giorello and Sinigaglia question the idea that mathematical objects are 

not obtained by abstraction from real ones, but rather that they are generated 

by mathematical practice. The authors analyse this thesis in the light of two 

historical cases: the evolution of complex numbers and the development of 

Heaviside’s Operational Calculus and give arguments for supporting 

Lakatos’s idea of quasi-empiricism in mathematics.

Gómez Pin discusses the problem of the ontological priority between 

continuous and discrete quantity and analyses the relationship between 

discrete and continuous quantity as one of the main topics in both history of 

philosophy and science. He explains that, while the unit of discrete quantity 

is a genuine (atomic) unit but ontologically is a vacuum, the unit of a 

continuous quantity has great ontological weight but it is in fact a false (non 

atomic) unit. The history the author concentrates on is the debate Aristotle-

Thom/Dedekind-Cantor.

Rédei presents J. von Neumann’s view on mathematical and axiomatic 

physics. The author argues that the common evaluation of von Neumann’s 

view on the mathematical rigour in physics, according to which he 

considered the axioms of set theory as a purely formal system, is misleading. 

Namely, as the author points out, von Neumann thought that conceptual 

clarity and an intuitively satisfactory interpretation was more important for a 

physical theory than its mathematical rigour and precision. 

Finally, Singh looks at the Indian tradition of mathematics with respect to 

theories of mind and matter. In particular, the author explores the reason for 

the absence of mathematical physics in Indian mathematical traditions, while 

at the same time the mathematical thought was employed by several Indian 

philosophical schools in order to understand the functioning of human’s 

mind. The author enquires the reasons for this analysing the connection 

between mathematics and the idea of causation in Indian tradition. The 

relation between causation and mathematics is clarified through the causal 

analysis of numeric cognition. 

The second group of papers deals with philosophical analyses on the 

interaction between mathematics and physics.

Boniolo and Budinich join the contemporary discussion about the 

relation between mathematics and physics, via a semiotic approach, which is 

useful for the many aspects it allows us to tackle. In particular, they argue 

that the problem of the effectiveness of mathematics in physics is actually a 

false problem, caused by a misunderstanding of contemporary theoretical 
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physics, which is intrinsically mathematical. Finally, they emphasize what 

they call Dirac’s methodological revolution according to which the 

contemporary physical theory should be constructed by working with pure 

mathematics instead of reflecting conjecturally only on physical phenomena, 

thus allowing the discovery of new phenomena, as it happened with the 

discovery of antimatter, gravitational lenses and so on. 

Crivellari looks at the algorithmic representation of astrophysical 

structures and presents an iterative structural algorithm that is the numerical 

stimulation of the physical processes that occur in a stellar atmosphere. 

Through its analysis the author tries to show that, when the right 

mathematics is to be determined, it is the physics of the problem to have a 

bearing on what the most efficient solution is. 

Dieks discusses the, so called, unreasonable effectiveness of mathematics 

and argues that, quite the contrary, its effectiveness is actually to be expected 

and its being unreasonable is unfairly attributed to it. Dieks shows that 

mathematics is flexible and versatile and that it is the very difference in 

nature between mathematics and physics that makes it applicable in the most 

disparate scientific domains and hence vastly effective. The author illustrates 

his view by offering many examples from fundamental physics.

Dorato questions the mathematical aspects of physics, by analysing the 

possible connection between the problem of effectiveness of mathematics in 

the natural sciences and the philosophical questions concerning the nature of 

natural laws. The author argues that the problem of the effectiveness is, 

contrary to what some authors endorse, a genuine one and criticises the 

algorithmic conception of law. The aim is to review and evaluate the 

available literature on that matter and suggest new possible directions of 

inquiry regarding the problem. 

Ghirardi analyses some mathematical aspects of modern science and 

argues that new and inexplicable phenomena can suggest new and innovative 

theoretical and mathematical perspectives; those perspectives and their 

formal aspects might in turn yield new and innovative views about nature, 

and therefore all such formal aspects should be fully developed whenever 

they qualify themselves as successful tools, to account for some basic 

features of a revolutionary phenomenological framework. 

Rivadulla presents some theoretical explanations in mathematical 

physics in the context of the analysis of the problem of the usefulness of 

mathematics in physics. The authors criticises the view according to which 

mathematics tallies with nature since it is a structural science as nature is, 

and because of some evolutionary reasons that make us adapted to the 

structured world; Rivadulla gives reasons for sustaining that such a view is 

incomplete because it does not take into account the overdetermination of 

physics.
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Šiki  is interested in the relationship among mathematics, physics and 

music. He investigates the Pythagorean law of small numbers and its 

relevance in order to interpret our sensory discriminations of consonance vs.

dissonance. The author argues that the view, which is allegedly confirmed by 

the fact of non-western musical traditions, according to which we should 

take the discriminations to be acquired and subjective, is a wrong one. 

Finally, Stöltzner looks at theoretical mathematics and points to the 

philosophical significance of the Jaffe-Quinn debate, which is viewed as a 

paradigm for problems of rigour and mathematical ontology. After going 

over the essential of the debate, the author concentrates on the quasi-

empirical character of mathematics and the dialectics of proofs and 

refutations, trying to make sense of “theoretical mathematics” within the 

Lakatosian approach.

 The third part of the book contains two interesting considerations on 

the relation between mathematics and physics that spur us to think about it in 

a wider way.

In particular Arnold joins the discussion about the relationship between 

mathematics and physics. He presents, through examples, the problem of the 

mathematical rigour of the bases of physics and explains what the utility of a 

precise mathematical perspective of the real world is. The author also offers 

some arguments for the existing difference in the approach to the truth as 

understood by mathematicians and physicists. 

In the last paper, Zovko questions the notions of value and meaning in 

quantum universe. The author suggests that the mental universe is subject to 

the same mechanism as the physical universe and that human thoughts are 

just actual quantum events over the entire brain or over a large part of it. He 

points out that both the mental and material universe can be unified as a 

physical reality on a deeper level, beyond our direct experience; such a  

realm could also accommodate ethical concepts of choice, meaning and 

value.



PART 1 

MATHEMATICS AND PHYSICS: REFLECTING 

ON THE HISTORICAL ROLE OF 

MATHEMATICS



OLIVER HEAVISIDE’S “DINNER” 

Algebraic Imagination and Geometrical Rigour

GIULIO GIORELLO
1
 and CORRADO SINIGAGLIA

2

1
University of Milan, Milan, Italy; 

2
University of Milan, Milan, Italy 

Abstract: In the following pages we begin, in the first chapter, with a reappraisal of some 

ideas of Edouard Le Roy about mathematical experience, mainly in relation 

with the history of complex numbers. In the second chapter we discuss in some 

detail the i-story, and we draw a comparison between “Imaginary Quantity” 

and Operational Calculus from the perspective of Heaviside’s conceptions of 

the growth of mathematics. In the third chapter we reconstruct the -story, i.e. 

the Heaviside calculus leading to the constitution of a new mathematical 

object, the so-called Dirac’s -function. Finally, in the last chapter, we bring 

together methodological and historical considerations in order to support 

Lakatos’ idea of quasi-empiricism in mathematics. 

Key words: complex numbers; operational calculus; -function; abstraction; quasi-

empiricism in mathematics; mixed mathematics; applications to physics.

1. “MATHEMATICAL FACTS” AS CONSTRAINTS 

Le progrès [de la Mathématique] consiste moins en une application de 

formes intelligibles données d’avance rigides et toutes faites qu’en une 

création incessante de formes intelligibles nouvelles, en un élargissement 

graduel des conditions de l’intelligibilité. Elle suppose une transformation 

de l’esprit lui-même. (Le Roy, 1960, p. 304).

 We wish to thank G. Bertolotti, G. Boniolo, P. Budinich, V. Fano, N. Guicciardini, and B. 

Sassoli for suggestions and comments. 
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12 GIULIO GIORELLO and CORRADO SINIGAGLIA

The quotation is from Le Roy’s lectures at the Collège de France (Paris) 

in the years 1914-1915 and 1918-1919.  More or less in the same years, Le 

Roy’s key idea is echoed in Pierre Boutroux’s search for the objective 

character of mathematical knowledge, based on 

1. the so called “résistance” (resistance) of the mathematical matters to our 

will (we have really some “mathematical facts”)   and 

2. the “contingence” (contingency) of mathematical findings or discoveries 

(see e.g. (Boutroux, 1920)). 

Le Roy’s version, as we shall see, helps to clarify crucial epistemological 

notions concerning “discovery/invention” in mathematics, mainly in 

connection with Lakatos’ quasi-empiricism (Lakatos, 1976a); see also 

(Crowe, 1975; Gillies, 2000; Cellucci, 2000).  Moreover, even if the title of 

Le Roy’s lectures sounds Pure Mathematical Thought, some of his remarks 

contribute powerful insights into the standard dichotomy pure/applied 

mathematics, and throw important light on the controversial matter of the 

status of “mathematical objects”. Indeed, in Le Roy’s own words (Le Roy, 

1960): “Même en Analyse pure, l’expérience joue un rôle, et un rôle capital. 

L’invention y est souvent découverte” (p. 298); see also (Hadamard, 1949).

According to Le Roy (see Boutroux point (1)), the working 

mathematician receives some inputs from the constellation of established 

ideas; however this constellation is not sufficient for generating outputs. The 

case of complex numbers will be exemplar. Le Roy observes (Le Roy, 

1960):

Les [quantités] imaginaires ne se déduisent pas de la science antérieure. 

Mais elles sont réclamées par celle-ci comme une condition de sa vie et 

de son progrès (p. 298).

He goes on: 

[Les quantités imaginaires] marquent pour l’analyste je ne sais quelle 

obligation de synthèse créatrice. Et leur apparition au bout d’une foule de 

voies dialectiques diverses, comme point de concours ou centre de 

convergence, comme élément simple ou invariant méthodique, leur 

confère une réelle objectivité, c’est-à-dire une existence indépendante de 

nos procédés d’étude. Mais une véritable expérience en a été nécessaire 

pour en arriver là. […] On […] saisira mieux encore [ça] en songeant aux 

deux problèmes que soulève encore de nos jours – au moins en quelque 

mesure – la conception des imaginaires. Comment, inventées qu’elles 

furent pour la résolution de l’équation du second ou du troisième degré, 

sont-elles non seulement nécessaires, mais encore suffisantes, pour la 

démonstration générale du théorème de D’Alembert qui domine toute 

l’algèbre? Comment ne faut-il pas des imaginaires nouvelles pour chaque 
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degré nouveau d’équation? Pourquoi d’autre part, couples numériques 

représentables par des vecteurs dans un plan, ne se prêtent-elles à aucune 

extension, complexes à n éléments, vecteurs de l’espace à trois 

dimensions ou même de l’hyperespace, qui respecte la permanence des 

formes opératoires? (p. 298).

In these two passages, Le Roy emphasizes the need (this is the meaning 

of the French “réclamées”) of resorting to a sort of experience in connection 

with the genesis of objectivity: in his own example, such is the research on 

factorisation of extensions of Q or R via some particular complex numbers 

(e.g. see (Ellison, 1978), as well the research on extensions of C violating 

some relevant formal properties (as in the case of William Rowan 

Hamilton’s quaternions; see (Kline, 1972; van der Waerden, 1985).

So far, so good. However, it is not so easy to find any “counterpart in 

nature” for complex numbers (Giusti, 1999). This is not tantamount to 

claiming that complex numbers have no applications to the physical world. 

Of course, they do; indeed, applications in Electromagnetism and in 

Quantum Mechanics are well known. The point is rather this: the genesis of 

complex numbers theory, and in the building of the complex functions 

theory, “abstraction from physical objects” does not seem to be working 

(Giusti, 1999).

Yet, even here, we are dealing with what Le Roy calls “experience” (Le 

Roy, 1960): 

les imaginaires ne sont pas [...] le résultat d’une création factice. Elles ont 

été suggérées, amenées, appelées par toutes sortes d’exigences  

préalables. De bien des manières, avant même qu’on en eût élucidé la 

théorie, elles voulaient être, elles s’imposaient. Puis elles se sont 

montrées infiniment fécondes et, de plus en plus à mesure qu’on les 

expérimentait davantage, elles ont heureusement réagi sur le système 

entier de la mathématique. Aurait-on pu prévoir a priori qu’elles 

permettraient de résoudre les équations de tous les degrés, qu’elles 

engendreraient la théorie générale des fonctions par où l’Analyse a été 

plus que doublée ? Qui aurait pu deviner avant toute expérience le line 

merveilleux qui devait s’établir entre les nombres e et  et l’unité 

imaginaire i ? Remarque sur l’imprévisibilité du fait que les imaginaires 

seraient suffisants pour les équations de tous les degrés, alors qu’on avait 

démontré l’impossibilité d’une résolution algébrique. De même, qui 

aurait pu deviner avant toute expérience tant de liens merveilleux entre 

des éléments réels, établis par l’intermédiaire des nombres complexes? 

Remarque sur l’étonnement qu’on éprouve à trouver la dépendance 

foncière de certaines intégrations par rapport aux fonctions de variable 

imaginaire, jusqu’en physique mathématique. Cauchy a eu profondément 
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ce sens du réel dont je parlais tout à l’heure, et le travail par lequel s’est 

constituée peu à peu la doctrine des imaginaires nous présente vraiment 

l’aspect d’une élaboration expérimentale. (pp. 301-302)

Let us take an example. Remember that in the ring of the whole numbers 

Z we have the fundamental theorem of arithmetic (a generalization of 

Euclid’s Elements, IX, 14: “If a number be the least that is measured by 

prime numbers, it will not be measured by any other prime number except 

those originating measuring it” (Euclid, 1956); see also (Heath, 1981)) 

stating that (except for + 1 and – 1) a number can only be resolved into prime 

factors in one way. After Pierre de Fermat and mainly thanks to Leonhard 

Euler, it was an interesting new mathematical practice to study “numbers” of 

the form a D , with a, b Z, where D is a given integer (positive or 

negative) which is not a perfect square. The idea was to build a kind of 

arithmetic of numeri surdi; indeed, for D < 0, “numbers” a + b D  are 

complex numbers, as it happens in Euler’s procedure for Fermat’s equation 

x
3
 + y

3
 = z

3
, where D = – 3. Moreover, rings Z[ D ] proved to be very useful 

tools in dealing with many mathematical problems in 19
th
 Century; the same 

is true for rings Z[ ], where  is a complex nth-root of the unity (i.e. 
n
 = 1). 

Yet, the initial approach to problems like higher forms of Fermat’s Last 

Theorem was guided by the idea that, for Z D  or Z[ ],we have “natural” 

analogues of Euclid fundamental theorem of arithmetic. Now, this is 

obviously true for Z[ 3 ], but it is false in general. For instance, assume D

= – 5, and try with “numbers” a + b 5 , with a, b Z. Check that 6 = 2 

3 = (1 + 5 ) (1 5 ). It proves that in Z 5  it is impossible to get a 

unique prime factors decomposition. Likewise, it is possible to find 

counterexamples to the unique decomposition also in Z[ ]. (For the question 

see (Ellison, 1978, pp. 172-193); see also (Ribenboim, 1979; Giorello and 

Sinigaglia, 2001)

The proof that for some rings unique decomposition does not hold 

amounts to a refutation of this initial conjecture, which seemed so useful 

within Euler’s approach. It is precisely a conjecture like this that for Le Roy 

(Le Roy, 1960) constitutes a kind of guiding ideas, a sort of preconceived 

hypotheses, something similar in the realm of mathematics to the empirical 

hypotheses “qui, selon Claude Bernard, constituent le premier moment d’une 

expérience” (p. 299). As it is the case of Z 5 , we ignore a priori wheter 
or not this conjecture might be incorporated into the body of formal 
mathematics. The only way to settle the question is (Le Roy, 1960): 

mettre en pratique, en service, mettre à l’essai, faire fonctionner le 

concept et voir comment il se comporte dans le calcul, bref éprouver 

l’idée par ses fruits (p. 299).
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And Le Roy rhetorically asks (Le Roy, 1960):

Nous ne savons aucunement d’avance quelle sera la réponse, ni quel 

remaniement l’épreuve nous forcera de faire subir au système antérieur at 

au concept nouveau, quel aspect final ils prendront l’un et l’autre (p. 

299).

(Note that in this case one interesting “remaniement” led to Kummer’s 

theory of ideal numbers; on this point see (Ellison, 1978, pp. 195-200.))

Considerations like these support Mach’s well-known idea of a structural 

analogy between experiments in physics and demonstrations in mathematics 

(e.g. see (Mach, 1976). Indeed, this seems to explain why in general complex 

numbers offer a typical example of circumstances where “the body of 

mathematical tools anticipated the physicist’s needs” (Thom, 1982). 

2. THE I-STORY 

Keeping this in mind, let us come back to the crucial object studied by 

mathematicians who were building an arithmetic for various Z[D] or directly 

for C: the quantity i, where i
2
= – 1. To begin with, consider the following 

quotation from Heaviside’s Theory of Electromagnetism (ETM) (Heaviside, 

1899):

It is not so long ago since mathematicians of the highest repute could not 

see the validity of investigations based upon the use of the algebraic 

imaginary. The results reached were, according to them, to be regarded as 

suggestive merely, and required proof by methods not involving the 

imaginary. (p. 459)

Heaviside remarks that in a research of this kind, strict Euclideanism 

represents an obstacle.
1
 To those critics who note that “the rigorous logic of 

1
 “The reader who may think that mathematics is all found out, and can be put in a cut-and-

dried from like Euclid, in proposition and corollaries, is very much mistaken; and if he 

expects a similar systematic exposition here he will be disappointed. The virtues of the 

academical system of rigorous mathematical training are well known. But it has its faults. 

As very serious one (perhaps a necessary one) is that it checks instead of stimulating any 

originality student may possess, by keeping him in regular grooves. Outsiders may find 

that there are other grooves just as good, and perhaps a great deal better, for their  

purposes. Now, as my grooves are not the conventional ones, there is no need for any 

formal treatment. Such would be quite improper for our purpose, and would not be 

favourable to rapid acquisition and comprehension. For it is in mathematics just as in the 

real world; you must observe and experiment to find out the go of it. All experimentation  

is deductive work in a sense, only it is done by trial and error, followed by new deductions 
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the matter is not plain”, Heaviside replies (Heaviside, 1899): “Well, what of 

that? Shall I refuse my dinner because I do not fully understand of the 

process of digestion?” (p. 9). 

Quite correctly, Heaviside (1899) insists on the need for algebra to reach 

“a certain stage of development” before the imaginary “turns up”:

It was exceptional, however, and unintelligible, and therefore to be 

evaded, if possible. But it would not submit to be ignored. It demanded 

consideration, and has since received it. The algebra of real quantity is 

now a specialisation of the algebra of the complex quantity, say a + bi,

and great extensions of mathematical knowledge have arisen out of the 

investigation of this once impossible and non-existent quantity. It may be 

questioned whether it is entitled to be called a quantity, but there is no 

question as to its usefulness, and the algebra of real quantity would be 

imperfect without it. (pp. 457-458) 

As has recently been suggested (Stillwell, 1989), the quantity i seemed 

unintelligible because “a square of negative area did not exist in geometry” 

(p. 189). Appeal to history is here fundamental. The same historian pinpoints 

(Stillwell, 1989): 

The usual way to introduce complex numbers in a mathematical course is 

to point out that they are needed to solve certain quadratic equations, such 

as equation x
2
 + 1 = 0. However, this did not happen when quadratic 

equations first appeared, since at that time there was no need for all 

quadratic equations to have solutions. Many quadratic equations are 

implicit in Greek geometry, as one would expect when circles, parabolas, 

and the like, are being investigated, but one does not demand that every 

geometric problem have a solution. If one ask whether a particular circle 

and line intersect, say, then the answer can be yes or no. If yes, the 

quadratic equation for the intersection has a solution; if no, it has no 

solution. An “imaginary solution” is uncalled in this context. (p. 189) 

Indeed, the origin of i as a “solution” of the equation x
2
 + 1 = 0 is a myth 

(Giusti, 1999). The context for the imaginary quantity was the solution of the 

                                                                      

and changes of direction to suit circumstances. Only afterwards, when the go of it is 

known, is any formal exposition possible. Nothing could be more fatal to progress than to 

make fixed rules and conventions at the beginning, and then go by mere deduction. You 

would be fettered by your own conventions, and be in the same fix as the House of 

Commons with respect to the despatch of business, stopped by its own rules” (Heaviside, 

1899, pp. 32-33).  On the limits of the Euclidean approach see also (Lakatos, 1976a, pp. 

205-207).
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cubic equation in the heroic age of the Italian algebra. In fact, the del Ferro-

Tartaglia-Cardano solution of the cubic equation y
3
 = py  q is

3

32

3

32

322322

pqqpqq
y … .

The formula involves complex numbers when 

32

32

pq
 0. 

However, it is not possible to dismiss this as a case with no solution, 

because a cubic always has at least one real root (since y
3
 – py – q is 

positive for sufficiently large positive y and negative for sufficiently large 

negative y).

Thus the Cardano formula raises the problem of reconciling a real value, 

found by inspection, say, with an expression of the form (Stillwell, 1989, p. 

189):

33
11 baba .

The first work to take complex numbers seriously was not Cardano’s Ars

Magna (1545) (in spite of  the phrase “Cardano’s formula”), but Rafael 

Bombelli’s Algebra (1572). We will not attempt a detailed historical 

discussion of the solutions to this particular paradox of the cubic equation. 

For us, obviously, the solution is connected with the nature of i and the 

geometrical explanation of the meaning of this symbol in the Wessel-

Argand-Gauss geometrical interpretation (Kline; 1972; van der Waerden, 

1985, 178). But this interpretation came centuries after Cardano’s formula 

and the algebraic approach sketched in Bombelli’s work! Moreover, the 

turning point occurred when Descartes, in his Geometry, merged the problem 

of the nature of square root of –1 with the more general problem of 

“demonstrating” the so-called fundamental theorem of algebra. As he wrote, 

every algebraic equation has many solutions as his degree, but these 

solutions “ne sont pas toujours reelles, mais quelquefois seulement 

imaginaires” (Descartes, 1637). Aptly, Giusti comments that (Giusti, 1999) 

“Descartes does not explain what these imaginary roots are, and we have to 

intend literaliter this adjective imaginary” (p. 90); see also (van der Waerden 

1985, pp. 72-75).
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Be that as it may, the general development of algebra needed the 

consideration of numbers like a b 1 , as Heaviside pointed out. Today, 

we can say that (Stillwell, 1989) 

at the beginning of their history, complex numbers a + b 1 were

considered to be “impossible numbers”, tolerated only in a limited 

algebraic domain because they seemed useful in the solutions of cubic 

equations. But their significance turned out to be geometric and 

ultimately led to the unification of algebraic functions with conformal 

mapping, potential theory, and another “impossible” field, non Euclidean 

geometry. This resolution of the paradox of 1 was so powerful, 

unexpected, and beautiful that only the word “miracle” seems adequate to 

describe it. (p. 188) 

This “miracle” is more astounding than the description of the i-story

offered by Heaviside would suggest. However, Heaviside’s account discloses 

an interesting pattern in the growth of mathematics: namely, the transition 

from intuition to geometrical rigour via a process guided by the reliance on 

the power of algebra, tested by some kind of “mathematical experiments”. 

Even more significantly, he draws a comparison between Imaginary Quantity 

and his Operational Calculus, in particular with the so-called fractional 

differentiation (Heaviside, 1899): 

Now just as the imaginary first presented itself in algebra as unintelligible 

anomaly, so does fractional differentiation turn up in physical 

mathematics. It seems meaningless, and that suggests its avoidance in 

favour of more roundabout but understandable methods. But it refuses to 

be ignored. Starting from the ideas associated with complete 

differentiations, we come in practice quite naturally to fractional ones and 

combinations. This occurs when we known unique solutions to exist, and 

asserts the necessity of a proper development of the subject. Besides, as 

the imaginary was the source of a large branch of mathematics, so I think 

must be with generalised analysis and series. Ordinary analysis is a 

specialised form of it. There is a universe of mathematics lying in 

between the complete differentiations and integrations. The bulk of it 

may not be useful, when found, to a physical mathematician. The same 

can be said of the imaginary lore. (pp. 459-460) 

We claim that an analogous pattern can be found in the Operational 

Calculus or in what we call the -story.
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3. THE DRIVING FORCE OF “ALGEBRAICAL” 

IMAGINATION. THE -STORY 

It is well known that Heaviside’s main contribution to science was his 

development and reformulation of Maxwell’s Electrodynamics.
2
 It was in 

this context that his mathematical ideas concerning Vector Analysis and 

Operational Calculus arose. In both fields, Heaviside was a great dissenter

with respect to the scientific community of his time. In what follows, we 

shall focus just on the Operational Calculus. In his classic article on 

Heaviside, sir Edmund Witthaker writes (Whittaker, 1928/1929): 

We should now (1928) place the Operational Calculus with Poincaré’s 

discovery of automorphic functions and Ricci’s discovery of the Tensor 

Calculus as the three most important mathematical advances of the last 

quarter of the nineteenth century. Applications, extensions and 

justifications of it constitute a considerable part of the mathematical 

activity of to day. (p. 216) 

The same source emphasizes Heaviside’s discomfort caused by criticism 

from Cambridge mathematicians (Witthaker, 1928/1929, pp. 211-216). In 

hindsight, however, we can say that it was precisely his experimental 

conception of mathematics, so despised by his purist critics, to lead him to 

the definition of operational methods and to the intuition of what would later 

be known as Dirac’s -function.

In the rest of this section, we are going to offer a reconstruction of 

Heaviside’s procedure with respect to some physical issues discussed in his 

EMT.  Along the lines of (Lützen, 1979) and (Petrova, 1987) (see also 

(Struppa, 1983; Guicciardini, 1993)), though in a somewhat different way, 

we shall distinguish four steps in Heaviside’s procedure:

a) operational solution 

b) algebrization 

c) fractional differentiation 

d) impulsive function 

(a)Operational solution 

In EMT §§ 238-242, Heaviside considers a semi-infinite cable and a 

network with resistance operator Z in sequence, operated upon by an electro-

motive force E. Putting aside the self-induction in the cable, he finds that the 

potential V(x, t) and the current C(x, t) are connected by the equations: 

2
 On Heaviside’s life and work see (Süsskind, 1972; Nahin, 1988; Lynch 1991). 


