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Preface

In questions of science, the authority of a thousand is not
worth the humble reasoning of a single individual.
Glalileo Galilei, physicist and astronomer (1564-1642)

This book is a second edition of “Classical Electromagnetic Theory” which derived
from a set of lecture notes compiled over a number of years of teaching electro-
magnetic theory to fourth year physics and electrical engineering students. These
students had a previous exposure to electricity and magnetism, and the material
from the first four and a half chapters was presented as a review. I believe that the
book makes a reasonable transition between the many excellent elementary books
such as Griffith’s Introduction to Electrodynamics and the obviously graduate level
books such as Jackson’s Classical Electrodynamics or Landau and Lifshitz’ Electro-
dynamics of Continuous Media. If the students have had a previous exposure to
Electromagnetic theory, all the material can be reasonably covered in two semesters.
Neophytes should probable spend a semester on the first four or five chapters as
well as, depending on their mathematical background, the Appendices B to F. For
a shorter or more elementary course, the material on spherical waves, waveguides,
and waves in anisotropic media may be omitted without loss of continuity.

In this edition I have added a segment on Schwarz-Christoffel transformations to
more fully explore conformal mappings. There is also a short heuristic segment on
Cherenkov radiation and Bremstrahlung. In Appendix D there is a brief discussion
of orthogonal function expansions. For greater completeness, Appendices E and F
have been expanded to include the solution of the Bessel equation and Legendre’s
equation as well as obtaining the generating function of each of the solutions. This
material is not intended to supplant a course in mathematical methods but to
provide a ready reference provide a backstop for those topics missed elsewhere.
Frequently used vector identities and other useful formulas are found on the inside
of the back cover and referred to inside the text by simple number (1) to (42).

Addressing the complaint “I don’t know where to start, although I understand all
the theory”, from students faced with a non-transparent problem, I have included
a large number of examples of varying difficulty, worked out in detail. This edition
has been enriched with a number of new examples. These examples illustrate both
the theory and the techniques used in solving problems. Working through these
examples should equip the student with both the confidence and the knowledge
to solve realistic problems. In response to suggestions by my colleagues I have
numbered all equations for ease of referencing and more clearly delineated examples
from the main text.

Because students appear generally much less at ease with magnetic effects than



Vi Classical Electromagnetic Theory

with electrical phenomena, the theories of electricity and magnetism are developed
in parallel. From the demonstration of the underlying interconvertability of the
fields in Chapter One to the evenhanded treatment of electrostatic and magneto-
static problems to the covariant formulation, the treatment emphasizes the relation
between the electric and magnetic fields. No attempt has been made to follow the
historical development of the theory.

An extensive chapter on the solution of Laplace’s equation explores most of the
techniques used in electro- and magnetostatics, including conformal mappings and
separation of variable in Cartesian, cylindrical polar, spherical polar and oblate el-
lipsoidal coordinates. The magnetic scalar potential is exploited in many examples
to demonstrate the equivalence of methods used for the electric and magnetic po-
tentials. The next chapter explores the use of image charges in solving Poisson’s
equation and then introduces Green’s functions, first heuristically, then more for-
mally. As always, concepts introduced are put to use in examples and exercises. A
fairly extensive treatment of radiation is given in the later portions of this book.
The implications of radiation reaction on causality and other limitations of the
theory are discussed in the final chapter.

I have chosen to sidestep much of the tedious vector algebra and vector cal-
culus by using the much more efficient tensor methods, although, on the advice
of colleagues, delaying their first use to chapter 4 in this edition. Although it al-
most universally assumed that students have some appreciation of the concept of
a tensor, in my experience this is rarely the case. Appendix B addresses this fre-
quent gap with an exposition of the rudiments of tensor analysis. Although this
appendix cannot replace a course in differential geometry, I strongly recommend it
for self-study or formal teaching if students are not at ease with tensors. The latter
segments of this appendix are particularly recommended as an introduction to the
tensor formulation of Special Relativity.

The exercises at the end of each chapter are of varying difficulty but all should
be within the ability of strong senior students. In some problems, concepts not
elaborated in the text are explored. A number of new problems have been added to
the text both as exercises and as examples. As every teacher knows, it is essential
that students consolidate their learning by solving problems on a regular basis. A
typical regimen would consist of three to five problems weekly.

I have attempted to present clearly and concisely the reasoning leading to in-
ferences and conclusions without excessive rigor that would make this a book in
Mathematics rather than Physics. Pathological cases are generally dismissed. In an
attempt to have the material transfer more easily to notes or board, I have labelled
vectors by overhead arrows rather than the more usual bold face. As the material
draws fairly heavily on mathematics I have strived to make the book fairly self
sufficient by including much of the relevant material in appendices.

Rationalized SI units are employed throughout this book, having the advantage
of yielding the familiar electrical units used in everyday life. This connection to
reality tends to lessen the abstractness many students impute to electromagnetic
theory. It is an added advantage of SI units that it becomes easier to maintain a
clear distinction between B and H, a distinction frequently lost to users of gaussian
units.



Preface vii

I am indebted to my students and colleagues who provided motivation for this
book, and to Dr. Matti Stenroos and Dr. E.G. Jones who class tested a number
of chapters and provided valuable feedback. Lastly, recognizing the unfortunate
number of errata that escaped me and my proofreaders in the first edition, I have
made a significantly greater effort to assure the accuracy of this edition.

Jack Vanderlinde
email: jvdl@Qunb.ca
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Chapter 1

Static Electric and Magnetic Fields in Vacuum

1.1 Static Charges

Static electricity, produced by rubbing different materials against one another, was
known to the early Greeks who gave it its name (derived from rfAex7por, pronounced
électron, meaning amber). Experiments by Du Fay in the early 18th century estab-
lished that there are two kinds of electricity, one produced by rubbing substances
such as hard rubber and amber, called resinous, and another produced by rub-
bing glassy substances such as quartz, dubbed vitreous. Objects with like charge
were found to repel one another, while objects with unlike charge were found to
attract. Benjamin Franklin attempted to explain electricity in terms of an excess
or deficiency of the vitreous electric fluid, leading to the designations positive and
negative.

A report by Benjamin Franklin that a cork ball inside an electrically charged
metal cup is not attracted to the inside surface of the cup led Joseph Priestly to
infer that, like gravity, electrical forces obey an inverse square law. This hypothesis
was almost immediately confirmed (to limited accuracy) by John Robison, but the
results were not published for almost 50 years. Cavendish, in an elegant experiment,
showed that if a power law holds,! the exponent of r in the force law could not
differ from minus two by more than 1 part in 50, but he failed to publish his
results. Charles Augustin de Coulomb, who, in the late 18th century, measured
both the attractive and repulsive force between charges with a delicate torsion
balance, is credited with the discovery of the force law bearing his name —he found
that the force is proportional to the product of the charges, acts along the line
joining the charges, and decreases inversely as the square of the distance between
them. Charges of opposite sign attract one another, whereas charges of the same
sign repel. It has been verified experimentally that the exponent of r varies from
minus two by no more than 1 part in 10'® over distances of order one meter.

LA modern interpretation suggests that a test of the exponent is not appropriate because a
power law is not the anticipated form. In line with considerations by Proca and Yukawa, the
potential should take the form e=#" /r (3 = m~c/h) where m., is the rest mass (if any) of the
photon. Astronomical measurements of Jupiter’s magnetic field place an upper limit of 4 x 10~51
kg on the mass of the photon
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Figure 1.1: When ¢ and ¢’ are situated at r and r’ respectively, the vector
pointing from ¢’ to g is (¥ —7').

1.1.1 The Electrostatic Force

The inverse square electric force on a particle with charge ¢ located at 7 due to a
second charged particle with charge ¢’ located at 7’ is (Figure 1.1) economically
expressed by Coulomb’s law:

-
A= keqf(’"” (11)

Various system of units assign different values to k.. Gaussian Units (Appendix A),
used in many advanced texts, set k. = 1 thereby defining the unit of charge, the esu.
In Gaussian units, the force is measured in dynes and r in cm. In this book we will
uniformly use SI units, which have the advantage of dealing with ordinary electrical
units such as volt and amperes at the cost of requiring k. to take on a value of
roughly 9 x 10° N-m?/C2. Anticipating later developments, we write k = 1/4mweq
to obtain: ) P
F= L W@-T) (1-2)
drey |F—773
where €, the permittivity of free space, is experimentally determined to be 8.84519 x
1071202 /N-m2. More properly, as we will see, €9 can be derived from the (defined)
speed of light in vacuum, ¢ = 299,792,458 m/s and the (defined) permeability of
free space, po = 4w x 1077 kg-m/C?, to give g9 = 1/ppc? = 8.85418781--- x 10712
C? /N-m?.
The force of several charges ¢; on ¢ is simply the vector sum of the force ¢} exerts
on ¢ plus the force of ¢4 on ¢ and so on until the last charge ¢/,. This statement
may be summarized as

= g =)
E = i 1-3
"7 oo o F— TP (1-3)

or, to translate it to the language of calculus, with the small element of source

charge denoted by dq’
5_ 4 [(F=7)dd
F:] - 471'60 / r (174)
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Although we know that electric charges occur only in discrete quanta +e =
+1.6021917 x 10712 coulomb (or j:%e andi%e if quarks are considered), the ele-
mentary charge is so small that we normally deal with many thousands at a time
and we replace the individual charges by a smeared-out charge density. Thus the
charge distribution is described by a charge density p(7') = n(7’)e, with n the net
number (positive minus negative) of positive charges per unit volume centered on
r’. For a distributed charge, we may generally write

Ff} _ q / p(F/)(F_F/) d37‘/ (175)

N 4’/T€0 |7_"—’I7/‘3

where dg’ has been replaced byp(7’)d3r’. The differential dr’ represents the three-
dimensional differential volume in arbitrary coordinates. For example, in Cartesians
d3r' = da'dy'dz’, whereas in spherical polars, d*r’ = r'2sinf’dr’df’dy’. For charges
distributed over a surface, it suffices to replace dq’ by o(#')dA’ and for line charges
we write dg’ = A\(7')dl’.

If required, the lumpiness of a point charge ¢’ can be accommodated in (1-5) by
letting the charge density have the form of a three-dimensional Dirac ¢ function.?
Line charges and surface charges can similarly be accommodated.

The original form (1-2) is easily recovered by setting p(7') = ¢'6(7"" — ) with
S(F —7y) = 6(a" — x4)0(y' —yg)8(2' — 2z4) 3 and carrying out the integration called
for in (1-5).

EXAMPLE 1.1: Find the force on a charge ¢ lying on the z axis above the center of a

circular hole of radius ¢ in an infinite uniformly charged flat plate occupying the
z-y plane, carrying surface charge density o (Figure 1.2).

Z A

'

q

22+ 7

ar YT

Figure 1.2: Example 1.1 — A uniformly distributed charge lies on the z-y
plane surrounding the central hole in the plate.

2The § function §(x — a) is a sharply spiked function that vanishes everywhere except at z =
a, where it is infinite. It is defined by f f(@)d(x — a)dr = f(a) when a is included in the region
of integration; it vanishes otherwise. For further discussion, see Appendix C.

3In non-Cartesian coordinate systems the § function may not be so obvious. In spherical polar
coordinates, for example, §(7 — 7') = 7/ ~26(r — r')6(cos§ — cos0') 6(¢ — ).
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Solution: The boundary of the integration over the charge distribution is most
easily accommodated by working in cylindrical polar coordinates. The field point is
located at zk and the source points have coordinates ' and ¢’ giving 7— 7/ = zk —
' cos 't — ' sin ¢’j. An element of charge dq’ takes the form dq’ = o(r’, ¢')dA’ =
or’dr'dy’. The distance |7 — 7'| of the source charge element from the field point
is V22 + 1’2 leading us to write:

e’} 21 7 / N , . R
= q o(zk —r'cospi—r'singj) ,. , .,
b= 4meg /a /0 (22 + 1/2)3/2 rdr'de (Ex1.1.1)

The integrations over sin ¢ and cos ¢ yield 0, reducing the integral to:

= q ozk y
F = Areq 277/a (22 +T/2)3/2T dr

q —ozk
== — =—— (Ex1.1.2)
2e0 /22 412 . 2e0V 2% + a?

The force points upward above the plane and downward below. At large dis-
tances it tends to a constant, %qoiﬂ, exactly what it would be in the absence of
the hole. We further verify that as z — 0, in the center of the hole, the force
vanishes. It is probably worth mentioning that the charge would not distribute
itself uniformly on a conducting plate so that we have not solved the problem of a
charged conducting plate with a hole.

qozk

EXAMPLE 1.2: Find the force exerted on a point charge @) located at 7 in the z-y plane

by a long (assume infinite) line charge A, uniformly distributed along a thin wire
lying along the z axis (Figure 1.3).

Solution: An element of charge along the wire is given by dg¢’ = Adz’ so that using
(1-4) we can write the force on the charge

~
1]
N
[

L YrZez?

Figure 1.3: A line charge A is distributed uniformly along the z axis.
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A Q [ (r — 2'k) A2’
7 dmey oo (P2 22)32

where 7 is a unit vector in the z-y plane pointing from the origin to the charge Q.
The integral is best evaluated in two parts. The second part,

® A\ kdZ

(Ex1.2.1)

— 00
because the integrand is odd. The remaining integral is then,

P Q [ Arrdd
Q= dmen J_oo (12 + 22)3/2

(Ex 1.2.3)

r and 7 are constants with respect to dz’ so that we may use (28) to evaluate the
integral:

QM
N 2megr

@ dmegr?\/r? 4 22

This question will be revisited in example 1.5 where we will allow the charge carrying
wire to have finite size.

Aol
F QArrz (Ex1.2.4)

1.1.2 The Electric Field

Although Coulomb’s law does an adequate job of predicting the force one particle
causes another to feel, there is something almost eerie about one particle pushing or
pulling another without any physical contact. Somehow, it would be more satisfying
if the charged particle felt a force due to some local influence, a field, created by
all other charged particles. This field would presumably exist independent of the
sensing particle ¢. (In quantum electrodynamics, even the notion of a field without
a carrier [the photon] is held to be aphysical.)

The force on the sensing particle must be proportional to its charge; all the other
properties of the force will be assigned to the electric field, E (7). Thus we define
the electric field by

F = qE(F) (1-6)

where F is the force on the charge ¢ situated at 7 and E (7) is the electric field at
position 7 due to all other charges. (The source charge’s coordinates will normally
be distinguished from the field point by a prime ['].) One might well wonder why
the sensing particle, ¢’s field would not be a component of the field at its position.
A simple answer in terms of the electric field’s definition, (1-6) above, is that since
a particle can exert no net force on itself, its own field cannot be part of the field it
senses (in the same way that you cannot lift yourself by your bootstraps). Unfor-
tunately, this appears to suggest that two point charges at the same position might
well experience a different field. That argument, however, is somewhat academic, as
two point charges at the same location would give rise to infinite interaction forces.
One might also argue that, as a point particle’s field must be spherically symmetric,



6 Classical Electromagnetic Theory

it would, in fact make no difference whether we included the sensing particle’s own
field in computing the force on the particle. This particular point of view runs into
trouble when we consider the no longer spherically symmetric fields of accelerated
charges in Chapter 12. Whatever the best answer, this self field will continue to
trouble us whenever we deal seriously with point particles.

Factoring the charge ¢ from Coulomb’s law (1-5), we find that the electric field
produced by a charge distribution p(7) must be

o Ry LA W

4meq |7 —7')3

where the integration is carried out over all space (p must of course vanish at
sufficiently large r, making the volume of integration less than infinite). We reiterate
that coordinates of the source of the field will be primed, while the field points are
denoted by unprimed coordinates.

ExAMPLE 1.3: Find the electric field above the center of a flat, circular plate of radius
R, bearing a charge @ uniformly distributed over the top surface (Figure 1.3).

Figure 1.4: The field at height z above a uniformly charged disk.

Solution: The charge density on the plate takes the form p(¥) = ﬂ%z §(z") for
2’2 + 9’2 < R? and 0 elsewhere. Using

B(F) = — /p(i) ("= ) (Ex 1.3.1)

4reg |7 — 773

we obtain the explicit expression

RZ_yIZ N PSRN
// KTV gy (Bx13.2)

E(0,0,2) = JRyE (@2 4y 4 22)E

47750 TR2?

In cylindrical polar coordinates, ' = ' cos ', y' = r'sin¢’, and dx'dy’ = r'dr'dy’,
giving

_ 1 27 (2k — 1’ cos @' — ' sin ') d' 1! dr’
A s / / T (Ex 1.3.3)
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The integration over ¢’ eliminates the sin ¢’ and the cos ¢’ terms, leaving only

. . R
7(0,0,2) = Q B ke'ar' . Q 2k
U 2megR2 Jy o (2 +22)3/2 0 2megR? (2 4 52)1/2

0

Q zk zk Qk 1 z (Fx 1.3.4)
= - = —_—— x 1.3.
2regR? \ V22 VR?2 422 2meg R? VR + 22

When z is small compared to R the field reduces to (o/ 250)1%, the value it would
have above an infinite sheet, whereas at large distances it tends to Q/(4meo2?). It
is worth noting that adding to Ex 1.3.4 the field of the plate with the hole deduced
from Ex 1.1.2 gives precisely the field of the infinite plate with the hole filled in.

The invention of the electric field appears at this point no more than a response
to a vague uneasiness about the action at a distance implicit in Coulomb’s law.
As we progress we will endow the field, E, with properties such as energy and
momentum, and the field will gain considerable reality. Whether E is merely a
mathematical construct or has some independent objective reality cannot be settled
until we discuss radiation in Chapter 10.

1.1.3 Gauss’ Law

It is evident that the evaluation of E, even for relatively simple source charge
distributions, is fairly cumbersome. When problems present some symmetry, they
can often be solved much more easily using the integral form of Gauss’ law, which

states ,
7{ E(F)-dSi) =L (1-8)
S €0

where S is any closed surface, ¢’ is the charge enclosed within that surface, ds is
surface element of S pointing in the direction of an outward-pointing normal, and 7
is the location of the element dS on the surface. Note that S need not be a physical
surface.

To prove this result, we expand E in (1-8) using (1-7) to obtain

§ B0 80 = f [ / ’0()£_|)d} - 45(7)

__! / [ =) dﬁ(r)] oY (19)

dmeg |7 — 7|3

We must now evaluate the surface integral § % -dS.

We divide the source points into those lying inside the surface S and those lying
outside. The divergence theorem (20) generally allows us to write

=) 4§ = /v Tf ;id?’ (1-10)

|T—T’\3
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For any fixed source point with coordinate 7/ outside the closed surface, S,
the field point 7 (located inside S for the volume integration resulting from the
application of the divergence theorem) never coincides with 7/, and it is easily
verified by direct differentiation that the integrand on the right hand side of (1-10),
the divergence of (7 — 7')/|7— 7|3, vanishes identically. We conclude, therefore,
that charges lying outside the surface make no contribution to the surface integral
of the electric field.

When 7 is inside the bounding surface S, the singularity at ¥ = 7 prevents a
similar conclusion because the divergence of (1-10) becomes singular. To deal with
this circumstance, we exclude a small spherical region of radius R centered on 7’
from the § and integrate over this spherical surface separately. In the remaining
volume, excluding the small sphere, (7 — 7') /|7 — 7'|> again has a vanishing diver-
gence and presents no singularities, allowing us to conclude that it too, makes no
contribution to the surface integral of E. Setting R = (F—7') and R -dS = R2dQ,
with d2 = sin 0 df dy, an element of solid angle, we may write the integral

(=7 & % (R - R) R*dS)
() = BBy 1-11
jgphere ‘F_ 7?/|3 S(T) sphere R3 " ( )

We substitute this result, (1-11) into (1-9) to get (1-8), the desired result

/

% B(F) - dS(F) = —— - 4r / p(@)d3r = L
sphere

4dmeg €0

A more geometric insight into the evaluation of (1-10) may be obtained by
recognizing that the left hand side of (1-10) represents the solid angle covered by
the surface as seen from 7’. When 7’ is inside the surface, S encloses the entire
4m solid angle, whereas when 7’ lies outside S, the contribution from near side of
the surface makes the same solid angle as the back side, but the two bear opposite
signs (because the normals point in opposite directions) and cancel one another.

To reiterate, only the charge inside the surface S enters into the integration.
In words, Gauss’ law states that the perpendicular component of the electric field
integrated over a closed surface equals 1/g¢ times the charge enclosed within that
surface, irrespective of the shape of the enclosing surface.

EXAMPLE 1.4: Find the electric field at a distance r from the center of a uniformly
charged sphere of radius R and total charge Q.

Solution: The charge Q(r) enclosed within a sphere of radius r centered on the
charge center is

ra3
Q(r) = { (E) @ forr<Rh (Ex 1.4.1)
Q forr > R

On a spherical surface of radius r, symmetry requires E = E,.(r)7 with no ¢
dependence. Gauss’ law then gives us

]{E -dS = j{E -7 r2dQ = 4nr? B, (Ex 1.4.2)
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Equating this to Q(r)/eq yields

rQ
4meg R3 r<k
E, = QO (Ex 1.4.3)
R
4ﬂ€0T2 re

The electric field inside the sphere grows linearly with radius and falls off
quadratically outside the sphere. As Gauss’ law applies equally to gravity and
electrostatics (it depends only on the =2 nature of the force), the same field de-
pendence pertains to gravitational fields within gravitating bodies.

EXAMPLE 1.5: Find the electric field near a long, uniformly charged cylindrical rod of

A N

[ | |

e Ko

< H) —m—>

\/

Figure 1.5: The cylinder about the rod forms a Gaussian surface perpen-
dicular to the electric field. The end faces contribute nothing to the surface
integral.

Solution: E, = 0, as reversing the z axis, or translating the origin along the z axis
does not change the problem. Fy = 0 as reversing  or rotating the system about
the z axis leaves the system invariant. Evidently E(r, 6, z) = E,(r)#. Drawing a
cylinder about the rod as indicated in Figure 1.4 (the cylinder may be interior to
the rod), we obtain from Gauss’ law, (1-8),

fﬁ-dﬁ:/ﬁd%’
€0

For r > a, this becomes

25 2
owrtE, =74 o B = P2 (Ex 1.5.1)
€0 2e0r
while for r < a we obtain
20
2nrlE, = prr , or B, = L (Ex 1.5.2)
€0 280

We will make frequent use of Gaussian cylinders (and “pill-boxes” in the next ex-
ample) throughout the remainder of this book.
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EXAMPLE 1.6: Find the electric field between two conducting infinite parallel plates
bearing surface charge densities o and — o.

Solution: For a Gaussian enclosing surface we now choose a very flat cylinder (com-
monly referred to as a pillbox) that includes one of the two charged surfaces, say the
top surface, of the bottom plate, as illustrated in Figure 1.6. The charge enclosed
within the pillbox is 0 A where A is the flat area included in the box. Because of
the symmetry we anticipate an electric field whose only non vanishing component
is F,. Gauss’ law then becomes:

L A
jfE -dS = A(Eyop — Eyor) = ‘%0 (Ex 1.6.1)

If the plates are conductors, then the electric field on the bottom surface of the
pillbox lying inside the conductor must vanish (otherwise charges inside the metal
would be subject to a Coulomb force and move until the field does vanish). We
conclude, then, that the electric field at the top surface of the pillbox is E, = o /e.
Increasing the height of the pillbox straddling the bottom plate so that its top
surface lies progressively closer to the top plate produces no variation of the enclosed
charge; we infer that the field is uniform, (i.e., it does not vary with z.)

A similar argument could of course have been employed at the top plate, giving
exactly the same result. This time below the plate, the surface of the pillbox along
which E does not vanish points downward so that —F, = —oeg. As stated above,
we shall make frequent use of the pillbox whenever we deal with the behavior of the
field at surfaces, both conducting and nonconducting.

Gauss’ law may be restated in terms of the local charge density by means of
the divergence theorem. Writing the charge enclosed within the boundary S as the
volume integral of the charge density enclosed, we find

?{E -d§ = / L g3y (1-12)
€0
d§t0p

d§bott

(o

Figure 1.6: The “pillbox” encloses one of the charged surfaces. The electric
field is parallel to the curved surface side so that the integral over the curved
side makes no contribution to the surface integral.
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With the aid of the divergence theorem, the surface integral of the electric field
may be rewritten:

=/

/lﬁ-E(F)df"r:/lp(”d?’r’ (1-13)

€0
Since the boundary and hence the volume of integration was arbitrary but the
same on both sides, we conclude that the integrands must be equal

—
—

V -E(F) = %) (1-14)

1.1.4 The Electric Potential

The expression for the electric field arising from a charge distribution may be use-
fully expressed as a gradient of a scalar integral as follows.

o 1 o (F=7
E(T’) _ /p(T‘/)(Fq?)’dST‘/

47T€() ‘7?—

1 S\ 1 3,./
471_60/[)(7“) <|F—F’|>dr (1-15)

As V acts only on the unprimed coordinates, we may take it outside the integral
(1-15) to obtain

=/

0= v 1 p(™’) s \va%s
() (47r50 |7 — 7] d'r (1-16)

We identify the electric potential, V, with the integral

— 1 p(?" ,) 3,./
(T) 4m €0 |T Fll " ( )

Since the curl of any gradient vanishes, we have immediately
VXxE=-Vx(VV)=0 (1-18)

There are obvious advantages to working with the scalar V instead of the vector
field E. First, the integral for V requires computing only one component rather
than the three required for E . Second, the electric field obtained from several
localized sources would require taking the vector sum of the fields resulting from
each source. Since taking the gradient is a linear operation, the electric field could
as well be found from

E =-VV,-VVy—-VV3—...

—

= VVi+Va+Vat...)

where now we need only find a scalar sum of potentials. These simplifications make
it well worthwhile to use the electric scalar potential whenever possible.
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Figure 1.7: The circular plate is assumed to lie in the z-y plane.

EXAMPLE 1.7: Find the potential V at height z above the center of a disk of radius a
carrying charge @ uniformly distributed over its top surface (Figure 1.7).

Solution: The charge density on the disk is

%5(2’) for 2’2 +y'? < a?
p=4{ T (Ex1.7.1)
0 elsewhere

The potential above the center of the plate is then

1 p(7") d? / /2” rdr'dg
V(0,0,z2) =
( ) 72) 47TE()/ ‘,,:» 7:' 4ﬂ.50 71'0,2 /2+22

\/m (\/m—z) (Ex 1.7.2)

To find the field E as we have already done in the example 1.3, we merely find the
gradient of V giving

oV Q z
EZ(O,O,Z) = — E = 27(60a2 (]. m) (EX 173)

At large distance the field reduces to that of a point charge. (Notice that because
we have not calculated V as a function of z and y [or r and ¢], no information
about E or E, can be obtained from V, however, symmetry dictates that they must
vanish on the z axis.)

27r50 a? 27r50a2

Like the electric field, the potential can also be expressed in terms of the local
charge density by combining the differential form of Gauss’ law with the definition
of V, -VV = FE:

V.E=V. (-VV)=-V?V = g (1-19)
0
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The differential equation solved by V, V2V = —p/eq, is known as Poisson’s
equation. Its homogeneous counterpart (p = 0) is the Laplace equation. The
Laplace equation will be discussed in considerable detail in Chapter 5 and the
solution of Poisson’s equation is the subject of Chapter 6.

1.2 Moving Charges

In the remainder of this chapter we consider the forces and fields due to slowly
moving charges. Although the charges are allowed to move, we do insist that a
steady state exist so that the forces are static. This restriction will be lifted in later
chapters.

1.2.1 The Continuity Equation

Among the most fundamental conservation laws of physics is conservation of charge.
There is no known interaction that creates or destroys charge (unlike mass, which
can be created or annihilated). This conservation law is expressed by the equation
of continuity (1-24).
We define the current flowing into some volume as the rate that charge accumu-
lates in that volume:
dq

S dt

More usefully, we express I as the net amount of charge crossing the boundary
into the volume 7 with boundary S per unit time,

Iz—]{pﬂdg:—?{fdg (1-21)
S S

where J = p¥ is the current density. (Recall that ds points outward from the
volume so that J - dS is an outflow of current, hence the negative sign for current
flowing into the volume.) Combining (1-20) and (1-21) and replacing @ with the
volume integral of the charge density, we obtain

Fag— 2 __d [ .
j{sJ s = i dt/Tpdr (1-22)

With the aid of the divergence theorem, the right and left hand side of this
equation become

I (1-20)

S 0
/v Tdr=— | La3r (1-23)
T T at
Since the volume of integration 7 was arbitrary, the integrands must be equal,
giving the continuity equation
- - Jdp
V- J+——==0 1-24
5t (1-24)
(It is perhaps useful to maintain this intuitive view of divergence as the outflow of a
vector field from a point.) The equation of continuity states simply that an increase
in charge density can only be achieved by having more current arrive at the point
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than leaves it. The continuity equation expresses the conservation of charge, one
of the cornerstones of physics and is fundamental to the study of electromagnetic
theory. When dealing with electrostatics we have V-J=0 (note that this does not
preclude current flows, only that dp/0t = 0).

1.2.2 Magnetic Forces

Magnetic forces were familiar to Arab navigators before 1000 A.D. who used lode-
stones as primitive compasses. Magnetic poles of the earth were postulated in the
thirteenth century but it was not until about 1820 that Biot, Savart and Ampeére
discovered the interaction between currents and magnets.

As Biot, Savart and Ampere discovered, when charges are in motion, a force
additional to the electrical force appears. We could merely postulate a force law
(Equation (1-38), but it would be more satisfying to demonstrate the intimate
connection between electricity and magnetism by obtaining magnetism as a conse-
quence of electricity and relativistic covariance.

As a simple demonstration of why we expect currents to interact, let us consider
two long line charges, each of length L with linear charge density \; (consider them
tending to infinity, requiring only that AL be a finite constant) lying along the z-axis
and Ay parallel to the A1, at distance r from the z-axis. As seen by a stationary
observer, the force on wire 2 is (Ex 1.2.4)

1 ML

F=F= 5

© 2mey T

7 (1-25)

A second observer moving with velocity v along the z axis sees the line charges
in motion with velocity —v. According to special relativity, the transverse (to the
motion) components of forces in a stationary and a moving (indicated by a prime)
reference frame are related by F = vF’ [y = (1—v?/c?)~/2]. We deduce, therefore,
that in the moving observer’s frame, the total force of one wire on the other should
be F/ =y~ 1F. 4

Alternatively, we calculate a new length L’ for the moving line charges using
the length contraction formula L’ = v~ 'L, and we deduce, assuming conservation
of charge, an appropriately compressed charge density A] = vA; and A\, = 7\ in
the moving frame. Thus, if the same laws of physics are to operate, the moving
observer calculates an electric force
g LMK 1 (M)A

2meg 12 2meo r2

Yy )\1)\2.[/
2

7= F=~FE (126
¢ 2mey T vk (1-26)
clearly not the result anticipated above.
In fact, the moving observer, who of course believes the line charges to be in
motion, must invent a second force, say F,,, in order to reconcile the results of the
alternative calculations.

Thus

4More properly, the transverse force F, on a particle moving with velocity v in system X,
is related to F’ in X/ where the particle has velocity v’ by yF = «'F’, and transverse means
perpendicular to the velocity of frame ¥/ with respect to X.
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F'==—"=F+F, =+F+F, (1-27)

0 (o)L

€2 2megc3r?

_ LB L LD (1-28)
2megc?r? 2mr2
In the frame where the line charges move, we find a force opposite to the electrical
force, proportional to the product of the currents. Parallel currents attract one
another; antiparallel currents repel. The term 1/g¢c?, conventionally abbreviated
as o, is called the permeability of free space. The constant pg has a defined value
47 x 1077 kg-m/C2. This choice fixes the unit of charge, the coulomb, which we
have conveniently left undefined to this point.
Again shying away from action at a distance we invent a field B, produced by
I at the location of the current I; with which the current I interacts. Since dﬁm,
the magnetic force on a short segment [ dl of current 1, is perpendicular to Iy, it
must be of the form
dF, = ,dl x B (1-29)

where B is a yet undetermined vector field known as the magnetic induction field,
or alternatively the magnetic flur density.

The magnetic force on a moving charged point particle is easily deduced by
identifying ¥dg with Id¢ in (1-29) to obtain dF,, = dq(7 x B). The total force on
a charged particle in a static electromagnetic field is known as the Lorentz force

F=q(E+7xB) (1-30)

Let us attempt to determine the magnetic induction field produced by the cur-
rent [» assumed to run along the z axis. Equation (1-29) requires B to be perpen-
dicular to dﬁm (which is directed along 7, the cylindrical radial position vector of the
current I1df). If, in addition, we make the not unnatural assumption that B is also

perpendicular to I3, then B must be directed along I x 7. Taking B= C(f; X T)
and substituting this form into (1-29), we find

dFy, = CLdl x (I x 7) = —CL Ldl 7

which, when compared with the result from (1-28)

(1-31)
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ré dl

Figure 1.8: The current is assumed to run along the z axis, and we pick the
observer in the z-y plane.

leads immediately to

o o I X T
B(r) = £ (1-32)

1.2.3 The Law of Biot and Savart

The magnetic induction field, B, of the long straight wire (1-32), must in fact be
the sum of contributions from all parts of wire 2 stretching from —oo to +o00. Since
the magnetic force is related to the electric force by a Lorentz transformation that
does not involve r, E and B must have the same r dependence, (1/72). The field,
dB , generated by a short segment of wire, ar carrying current I at the origin, must
therefore be given by

o Ldl" x 7
4 3

(The choice of numeric factor [ug/4n] will be confirmed below.) Equation (1-33)
is easily generalized for current segments located at 7/, rather than at the origin,
giving

dB = (1-33)

o Ldl” x (F—7)

dB() = o (1-34)

Integrating over the length of the current source, we obtain the Biot-Savart law:

- Mo IQdZ/ X (7?— 7_"/)
B(r) = M/IF—F’P (1-35)

We might verify that this expression does indeed give the field (1-32) of the
infinite straight thin wire. Without loss of generality we may pick our coordinate
system as in Figure 1.8, with the wire lying along the zaxis and the field point in
the (2-y plane. Then 7 — 7' = ri — 2'k, [F—7'| = V2 + 22 , and dl’ = k dz'. The
flux density, B , may now be calculated:

B = pols /+°° ki x (rffz'l%)dz, _ ol /°° r(k x 7) 5
i J_o (7‘2—|—Z'2)3/2 47 2
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B pola(k x 7)r 2! _ Mo I x 7 (1-36)
- 47 Vre 422 o r2

Noting that (1-36) reproduces (1-32), we consider the factor po/4m confirmed.

As we will normally deal with currents that have finite spatial extent, the current
element Igdf in (1-35) should in general be replaced by [ S J- dg’dé, where S is the
cross section Iy occupies. The Biot-Savart law may then be written

=/ —»_ =/
3(7) / T < (F =) s, (1-37)

Equation (1-37) plays the same role for magnetic fields as Coulomb’s law (1-7) does
for electric fields.

ExAMPLE 1.8: A circular loop of radius a carrying current [ lies in the z-y plane with
its center at the origin (Figure 1.9). Find the magnetic induction field at a point
on the zaxis.

-

Solution: In cylindrical coordinates, J(7) = I6(r' —a) §(z') ¢ and 7 — 7' = zk — af.
The numerator of the integrand of ( —37) then becomes

Jx (F=7")=16(0" —a)8(2) (2F + ak) (Ex1.8.1)

Thus (1-37) becomes:

H I5(r" —a)o(2 zf‘—f—a]%
B(0,0,2) = 472 / ( (a2)+(22))§/2 ) gy do! e
2w ~ 2 947
o I(—2t + ak) 10 2wa’Tk
T e G = e Ex1.8.2
4 /0 (a2 + 22)3/2 ady = (@@ + 2)32 (Ex )

where we have used the fact that ¢ 7dp = 0. In terms of the magnetic moment,
m = Ima®k, (defined in Chapter 2, usually just current times area of the loop) of
the loop, we may approximate this result at large distances as

po 1M

B(0,0,2) =27 =5 (Ex 1.8.3)

Yy

X

Figure 1.9: A circular loop carrying current [ in the z-y plane.



