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Preface

In everyday life, we do not recognise the presence of terrestrial radiation – secondary
particles are produced from cosmic ray and radiation from radioisotopes at ground
level. Terrestrial radiation is so weak (low flux) that they do not have any visible or
recognisable influence on human tissues, but it does have an impact on LSI (Large
Scale Integration), VLSI (Very large scale integration) and ULSI (Ultra large scale
integration) devices in electronic systems at ground level.

When I was a fourth grade student of the Kyoto University in 1974, my major subject
matter was the measurement of lifetime of terrestrial muon. At that time, no one,
including me, knew about or even imagined such impacts from terrestrial neutrons.

Rapid progress in semiconductor industries has forced us to be aware of the impacts
of terrestrial radiation on semiconductor devices. First, alpha-ray soft error from
contaminated radioisotopes on/in the DRAM (Direct Random Access Memory) and
SRAM (Static Random Access Memory) devices. As the readers will see in this
book, terrestrial neutron-induced soft error has been unacknowledged up until the
late 1990s for many reasons. As device scaling has nosedived into below 100 nm, the
impacts of terrestrial radiation has spread very widely and deeply. Not only terrestrial
neutrons but also other terrestrial radiative particles such as protons and muons are
recently among the focus of scientific investigations. Beyond memories, sequential
and combinational logic devices and circuits are also being scrutinised. Concerns
over failures have broadened from servers/routers to the automobile industry.

It is commonly recognised now that failures in electronic systems due to faults or
errors introduced in devices/circuits by terrestrial radiation can only be mitigated by
the combination or cooperation of mitigation techniques in two or more stack lay-
ers such as substrate, cell, circuit, CPU (Central Processing Unit), middleware, OS
(Operating System) and application. This is a very challenging task that requires a
wide variety of scientific fields like astronomy, cosmic ray physics, nuclear physics,
accelerator physics, semiconductor physics, circuit theory, computer theory, numer-
ical simulation, EDA (Electric Design Automation) tools, coding theory, reliability
physics, database handling, and so on.

Meanwhile, this task is fascinating. During my research in this field, I have learned
a number of exciting facts about the Earth.



xvi Preface

We cannot live without air that is only a 50 km thick layer above the Earth – 1/250
of the diameter of the Earth. An astronaut has a limit to how long he can stay in
the inner/outer space due to the limit of radiation exposure by cosmic rays. We,
humankind, cannot live on a planet without air and have been protected from harsh
cosmic radiation in outer space by only this very thin layer of air in the Earth.

Beautiful aurora australis and borealis are the outcome of interactions between cos-
mic rays and the atmosphere.

Carbon-14 that is used for radiocarbon dating is produced by nuclear reaction of
nitrogen-14 and cosmic ray proton in the atmosphere. Even clouds in the sky have
recently been revealed to be mostly triggered by cosmic rays according to CERN’s
team report.

The author hopes that this book will trigger the readers’ interest in the impact of
cosmic rays on the Earth and our everyday lives.

16 April 2014
Eishi H. Ibe

Enjoying scuba diving in Saipan, USA
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1
Introduction

1.1 Basic Knowledge on Terrestrial Secondary Particles

Cosmic rays, which have extremely high energies, come from the galactic core and the
sun to the atmosphere of the Earth. Primary cosmic rays in outer space consist mainly
of protons (about 90%). Since cosmic rays are charged particles they twine around
lines of geomagnetic or heliomagnetic forces as illustrated in Figure 1.1. Some of them
are trapped by geomagnetic force to form the Van Allen radiation belts. Cosmic rays
with energies less than the geomagnetic rigidity cutoff are deflected before entering
the geomagnetic field. On the other hand, some are attracted into geomagnetic poles
along with lines of geomagnetic force sometimes accompanied by the aurora borealis
or australis. Cosmic rays are deflected more strongly near the equator since the lines
of geomagnetic force are parallel to the surface of the Earth. Therefore, the strength of
cosmic rays that reach the atmosphere differs depending on the geomagnetic latitude
of the Earth.

When the energetic protons enter the atmosphere (troposphere and stratosphere)
of the Earth, some protons undergo nuclear spallation reaction with nuclei (mainly
nitrogen and oxygen nuclei) in the atmosphere to produce a number of light particles
including neutrinos, photons, electrons, muons, pions, protons and neutrons as illus-
trated in Figure 1.2. Since secondary neutrons have longer ranges in the atmosphere
compared to protons, they release cascades of spallation reactions in the atmosphere
to make air showers that reach the surface of the Earth. Figure 1.3 shows an estimated
differential neutron spectrum at NYC (New York City) sea level based on measure-
ments in different locations in the USA [1]. The neutron energy at the ground ranges
over 1 GeV and its flux beyond 1 MeV is around 20 n/cm2/h in average. As the air can
shield neutrons, strength (flux and energy) of neutrons depends upon altitude and to a
slight extent atmospheric pressure [2]. Compared to the neutron flux at ground level,
the neutron flux at avionics altitude is much higher by a factor of 100.

Furthermore, as cosmic rays are also deflected by the heliomagnetic field or the
sun’s activity which has about an 11-year cycle, the strength of the neutron flux at
ground level also has about an 11-year cycle as shown in Figure 1.4 [3]. At the solar
maximum, the neutron flux at ground level is almost at its weakest, while it is at its

Terrestrial Radiation Effects in ULSI Devices and Electronic Systems, First Edition. Eishi H. Ibe.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



2 Terrestrial Radiation Effects in ULSI Devices and Electronic Systems

Ionoshere

500km

Stratosphere

20km

50km

Troposhere

Sea level

Geomagnetic field

Spallation

Air Shower

Earth

Heliomagnetic fieldEnergetic ions from

galactic nucleus

Fault/Error/Failure

Figure 1.1 Overall scheme of terrestrial radiation-induced single event effects

p (primary particle)

π–π+

π0

μ–

νμμ+
νμ

e–
e–

e+ e+

np

α

γγ

Atmospheric nucleus

Ground

Figure 1.2 Initial stage of secondary particle production



Introduction 3

1 10 100 1000 10000 100000 1000000

Neutron energy (MeV)

100

10–2

10–4

10–6

10–8

10–10

10–12

D
if
fe

re
n
ti
a
l 
fl
u
x
 (

n
/c

m
2
/s

/M
e
V

)

NYC sea level

40.7N 74 W

Cutoff rigidity: 2.08 GV

Figure 1.3 Differential high-energy neutron spectrum at NYC sea level based on JESD89A

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

1
9

8
8

.0
1

.0
1

1
9

8
8

.1
1

.1
0

1
9

8
9

.0
9

.2
0

1
9

9
0

.0
7

.3
1

1
9

9
1

.0
6

.1
0

1
9

9
2

.0
4

.1
9

1
9

9
3

.0
2

.2
7

1
9

9
4

.0
1

.0
7

1
9

9
4

.1
1

.1
7

1
9

9
5

.0
9

.2
7

1
9

9
6

.0
8

.0
6

1
9

9
7

.0
6

.1
6

1
9

9
8

.0
4

.2
6

1
9

9
9

.0
3

.0
6

2
0

0
0

.0
1

.1
4

2
0

0
0

.1
1

.2
3

2
0

0
1

.1
0

.0
3

2
0

0
2

.0
8

.1
3

2
0

0
3

.0
6

.2
3

2
0

0
4

.0
5

.0
2

2
0

0
5

.0
3

.1
2

2
0

0
6

.0
1

.2
0

2
0

0
6

.1
2

.1
4

2
0

0
7

.1
0

.2
4

2
0

0
8

.0
9

.0
2

2
0

0
9

.0
7

.1
4

2
0

1
0

.0
5

.2
4

2
0

1
1

.0
4

.0
3

2
0

1
2

.0
2

.1
1

Date(yyyy.mm.dd)

N
e

u
tr

o
n

 c
o

u
n

t 
ra

te
 (

A
.U

.)

Solar minimum Solar maximum

Figure 1.4 Long-term cyclic variation in neutron flux measured at Moscow Neutron Monitor
Centre (http://cr0.izmiran.rssi.ru/mosc/main.htm)
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Figure 1.5 Differential proton spectra originated from solar-minimum sun, big flares on the
sun and the galactic core

strongest at the solar minimum. Under normal activity, the sun emits a large quantity
of protons, but their energy level is relatively low as shown in Figure 1.5 for the solar
maximum period [4] since protons from the sun do not cause air showers directly
at ground level. However, when big flares take place on the sun’s surface, a much
larger quantity of protons is emitted with energy comparative to the galactic protons
as shown in Figure 1.5 [5] and this can cause air showers.

1.2 CMOS Semiconductor Devices and Systems

CMOS (Complementary Metal Oxide Semiconductor) devices like Static Random
Access Memory (SRAM) or Flip Flops (FFs) are basically made on the stripe struc-
ture of p and n-dual wells. For example, Figure 1.6 shows typical layouts of diffusion
layers (nodes) in SRAM one bit and an OR gate cell on the stripe structure. All nodes
in memories and logic circuits are basically made on the same stripe structure in a
chip. Unlike dual well structure, triple well structure has a deep n-well. As for Sil-
icon On Insulator (SOI), Buried OXides (BOXs) are made under the dual wells as
shown in Figure 1.7. Isolation oxides, usually Shallow Trench Isolation (STI) oxides
are also made to isolate each node in a lateral direction. When the thickness of the
SOI layer is thinner than the depth of the depletion layer in the SD (Source-Drain)
channel, the structure is known as FD (Fully-Depleted) SOI. Meanwhile, when the
thickness of the SOI layer is thicker than the depletion layer, the structure is known
as PD (Partially-Depleted) SOI. Since the upper surface of BOX is completely cov-
ered by the depletion layer, parasitic capacitance can be largely reduced compared to
Bulk/PDSOI, resulting in steep sub-threshold characteristics, reduction in latency and
power consumption.


