EISHI H. IBE

Terrestrial Radiation Effects in ULSI Devices and Electronic Systems

Table of Contents

<u>Title Page</u>

<u>Copyright</u>

Dedication

About the Author

Preface

Acknowledgements

<u>Acronyms</u>

Chapter 1: Introduction

<u>1.1 Basic Knowledge on Terrestrial Secondary</u> <u>Particles</u>

1.2 CMOS Semiconductor Devices and Systems

<u>1.3 Two Major Fault Modes: Charge Collection and</u> <u>Bipolar Action</u>

<u>1.4 Four Hierarchies in Faulty Conditions in</u> <u>Electronic Systems: Fault – Error – Hazard – Failure</u>

1.5 Historical Background of Soft-Error Research

1.6 General Scope of This Book

References

Chapter 2: Terrestrial Radiation Fields

2.1 General Sources of Radiation

2.2 Backgrounds for Selection of Terrestrial High-Energy Particles

2.3 Spectra at the Avionics Altitude

2.4 Radioisotopes in the Field

2.5 Summary of Chapter 2

<u>References</u>

Chapter 3: Fundamentals of Radiation Effects

3.1 General Description of Radiation Effects

3.2 Definition of Cross Section

<u>3.3 Radiation Effects by Photons (Gamma-ray and X-ray)</u>

3.4 Radiation Effects by Electrons (Beta-ray)

3.5 Radiation Effects by Muons

3.6 Radiation Effects by Protons

3.7 Radiation Effects by Alpha-Particles

3.8 Radiation Effects by Low-Energy Neutrons

3.9 Radiation Effects by High-Energy Neutrons

3.10 Radiation Effects by Heavy Ions

3.11 Summary of Chapter 3

<u>References</u>

<u>Chapter 4: Fundamentals of Electronic Devices and</u> <u>Systems</u>

4.1 Fundamentals of Electronic Components

4.2 Fundamentals of Electronic Systems

<u>4.3 Summary of Chapter 4</u>

<u>References</u>

<u>Chapter 5: Irradiation Test Methods for Single Event</u> <u>Effects</u>

5.1 Field Test

5.2 Alpha Ray SEE Test

5.3 Heavy Ion Particle Irradiation Test

5.4 Proton Beam Test

5.5 Muon Test Method

5.6 Thermal/Cold Neutron Test Methods

5.7 High-Energy Neutron Test

5.8 Testing Conditions and Matters That Require Attention

5.9 Summary of Chapter 5

References

<u>Chapter 6: Integrated Device Level Simulation</u> <u>Techniques</u>

<u>6.1 Overall Multi-scale and Multi-physics Soft-Error</u> <u>Analysis System</u>

<u>6.2 Relativistic Binary Collision and Nuclear Reaction</u> <u>Models</u>

<u>6.3 Intra-nuclear Cascade (INC) Model for High-Energy Neutrons and Protons</u>

<u>6.4 Evaporation Model for High-Energy Neutrons and</u> <u>Protons</u>

<u>6.5 Generalised Evaporation Model (GEM) for Inverse</u> <u>Reaction Cross Sections</u>

6.6 Neutron Capture Reaction Model

6.7 Automated Device Modelling

<u>6.8 Setting of Random Position of Spallation Reaction</u> <u>Point in a Component</u>

6.9 Algorithms for Ion Tracking

6.10 Fault Mode Models

6.11 Calculation of Cross Section

<u>6.12 Prediction for Scaling Effects of Soft Error Down</u> to 22 nm Design Rule in SRAMs

6.13 Evaluation of Effects of Heavy Elements in Semiconductor Devices by Nuclear Spallation Reaction

6.14 Upper Bound Fault Simulation Model

6.15 Upper Bound Fault Simulation Results

<u>6.16 Upper Bound Simulation Method for SOC</u> (System On Chip)

6.17 Summary of Chapter 6

References

<u>Chapter 7: Prediction, Detection and Classification</u> <u>Techniques of Faults, Errors and Failures</u>

7.1 Overview of Failures in the Field

7.2 Prediction and Estimation of Faulty Conditions due to SEE

7.3 In-situ Detection of Faulty Conditions due to SEE

7.4 Classification of Faulty Conditions

7.5 Faulty Modes in Each Hierarchy

7.6 Summary of Chapter 7

<u>References</u>

<u>Chapter 8: Mitigation Techniques of Failures in</u> <u>Electronic Components and Systems</u>

8.1 Conventional Stack-layer Based Mitigation Techniques, Their Limitations and Improvements

8.2 Challenges for Hyper Mitigation Techniques

8.3 Summary of Chapter 8

References

Chapter 9: Summary

<u>9.1 Summary of Terrestrial Radiation Effects on ULSI</u> <u>Devices and Electronic Systems</u>

9.2 Directions and Challenges in the Future

<u>Appendices</u>

A.1 Hamming Code

<u>A.2 Marching Algorithms</u>

A.3 Why VB Is Used For Simulation?

A.4 Basic Knowledge of Visual Basic

A.5 Database Handling by Visual Basic and SQL
A.6 Algorithms in Text Handling and Sample Codes
A.7 How to Make a Self-Consistent Calculation
A.8 Sample Code for Random Selection of Hit Points in a Triangle

<u>Index</u>

End User License Agreement

List of Illustrations

Figure 1.1 Figure 1.2 Figure 1.3 Figure 1.4 Figure 1.5 Figure 1.6 Figure 1.7 Figure 1.8 Figure 1.9 **Figure 1.10 Figure 1.11 Figure 1.12 Figure 1.13 Figure 1.14** Figure 1.15 Figure 2.1 Figure 2.2

Figure 2.3 Figure 2.4 Figure 2.5 Figure 2.6 Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12 **Figure 3.13** Figure 3.14 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7

Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8 Figure 5.9 Figure 5.10 Figure 5.11 <u>Figure 5.12</u> <u>Figure 5.13</u> Figure 5.14 Figure 5.15 Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6

Figure 6.7 Figure 6.8 Figure 6.9 Figure 6.10 Figure 6.11 Figure 6.12 Figure 6.13 Figure 6.14 Figure 6.15 Figure 6.16 Figure 6.17 **Figure 6.18** Figure 6.19 Figure 6.20 Figure 6.21 Figure 6.22 Figure 6.23 Figure 6.24 Figure 6.25 Figure 6.26 Figure 6.27 **Figure 6.28** Figure 6.29 Figure 6.30 Figure 6.31

Figure 6.32 Figure 6.33 Figure 6.34 Figure 6.35 Figure 6.36 Figure 6.37 **Figure 6.38** Figure 7.1 Figure 7.2 Figure 7.3 Figure 7.4 Figure 7.5 Figure 7.6 Figure 7.7 Figure 7.8 Figure 7.9 <u>Figure 7.10</u> Figure 7.11 Figure 7.12 Figure 7.13 Figure 7.14 **Figure 7.15** Figure 8.1 Figure 8.2 Figure 8.3

Figure 8.4 Figure 8.5 Figure 8.6 <u>Figure 8.7</u> Figure 8.8 Figure 8.9 Figure 8.10 **Figure 8.11** Figure 8.12 Figure 8.13 Figure 8.14 Figure 8.15 Figure 8.16 Figure 8.17 Figure 8.18 Figure 8.19

List of Tables

 Table 1.1

 Table 1.2

 Table 2.1

 Table 2.2

 Table 2.3

 Table 5.1

 Table 5.2

Table 5.3 Table 5.4 <u>Table 5.5</u> <u>Table 5.6</u> Table 5.7 <u>Table 5.8</u> Table 6.1 Table 7.1 Table 7.2 <u>Table 7.3</u> Table 7.4 Table 7.5 <u>Table 7.6</u> Table 7.7 <u>Table 7.8</u> Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6

TERRESTRIAL RADIATION EFFECTS IN ULSI DEVICES AND ELECTRONIC SYSTEMS

Eishi H. Ibe Chief Researcher, Hitachi Ltd., Japan

WILEY

This edition first published 2015

© 2015 John Wiley & Sons Singapore Pte. Ltd.

Registered office

John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628.

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at <u>www.wiley.com</u>.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the Publisher, John Wiley & Sons Singapore Pte. Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628, tel: 65-66438000, fax: 65-66438008, email: <u>enquiry@wiley.com</u>.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Ibe, Eishi H.

Terrestrial radiation effects in ULSI devices and electronic systems / Eishi H. Ibe.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-47929-2 (cloth : alk. paper) 1. Electronic circuits-Effect of radiation on. 2. Integrated circuits-Ultra large scale integration-Reliability. 3. Integrated circuits-Effect of radiation on. I. Title.

TK7870.285.I24 2015

621.3815-dc23

2014022262

To my daughters, Akane and Hikari

About the Author

Dr. Eishi Hidefumi IBE received his BS degree in Physics from Kyoto University, Japan in 1975, and his PhD degree in Nuclear Engineering from Osaka University, Japan in 1985.

He has joined the Atomic Energy Research Laboratory, Hitachi Ltd in 1975. He was promoted to chief researcher in the Yokohama Research Laboratory (formerly Production Engineering Research Laboratory), Hitachi Ltd. in 2006.

He has made outstanding accomplishments in nuclear engineering during the first 20 years of his career, in particular radiation effects on water (radiolysis) and component materials, and in single event effects on semiconductor devices during the last 18 years. His expertise covers very wide areas of sciences, such as elementary particle/cosmic ray physics, nuclear/neutron physics, semiconductor physics, mathematics and computing technologies, ion-implantation/mixing and accelerator technologies, electro-chemistry, database handling, RBS (Rutherford Backscattering Spectrometry)/Auger/SEM (Scanning Electron Microscopy)/Laser-beam micro analysis, and so on.

He has carried out pioneering work on simulation techniques of water radiolysis in the coolant of nuclear power plants to reveal that water coolant in the core decomposes into H_2 and H_2O_2 . He has also established a theoretical basis for the hydrogen water chemistry techniques used to suppress oxidising H_2O_2 , which is now widely applied to Japanese boiling water reactors to mitigate inter-granular stress corrosion cracking of the component materials. He has received awards from the

Japanese Atomic Energy Society in 1986 and 1990, and from the American Nuclear Society in 1996.

During the last 18 years, he has dedicated himself to the development of quantification and mitigation techniques for terrestrial neutron-induced soft error in electronic devices and components. He developed the novel soft-error models for CMOS (Complementary Metal Oxide Semiconductor) devices. The models have been utilised to design more reliable semiconductor memory devices and logic gates, bringing in the breakthrough knowledge on the nature of terrestrial neutron soft error. Under his leadership, novel experimental techniques to quantify soft-error susceptibility of the devices and components have been developed and accepted as international standards.

He has contributed to IEEE journals such as *EDS* and *TNS*, conferences such as IRPS, IOLTS, ICICDT, WDSN, NSREC, RADECS, RASEDA, ICITA and SELSE as a program committee member, or a reviewer in the field of neutron-induced faults/errors/failures. He has authored more than 90 international technical papers and presentations including 25 invited contributions in the field of radiation effects. He has reviewed more than 200 technical papers responding to requests from the Chairs of the journals and conferences. This accumulation has given him wide and deep scope in the field of single event effects.

Dr. Ibe was promoted to IEEE Fellow for contributions to analysis of soft errors in memory devices in 2008. Some of his achievements are now accessible worldwide through his recent publications with World Scientific Inc. (2008) and Springer (2010, 2011).

Preface

In everyday life, we do not recognise the presence of terrestrial radiation – secondary particles are produced from cosmic ray and radiation from radioisotopes at ground level. Terrestrial radiation is so weak (low flux) that they do not have any visible or recognisable influence on human tissues, but it does have an impact on LSI (Large Scale Integration), VLSI (Very large scale integration) and ULSI (Ultra large scale integration) devices in electronic systems at ground level.

When I was a fourth grade student of the Kyoto University in 1974, my major subject matter was the measurement of lifetime of terrestrial muon. At that time, no one, including me, knew about or even imagined such impacts from terrestrial neutrons.

Rapid progress in semiconductor industries has forced us to be aware of the impacts of terrestrial radiation on semiconductor devices. First, alpha-ray soft error from contaminated radioisotopes on/in the DRAM (Direct Random Access Memory) and SRAM (Static Random Access Memory) devices. As the readers will see in this book, terrestrial neutron-induced soft error has been unacknowledged up until the late 1990s for many reasons. As device scaling has nosedived into below 100 nm, the impacts of terrestrial radiation has spread very widely and deeply. Not only terrestrial neutrons but also other terrestrial radiative particles such as protons and muons are recently among the focus of scientific investigations. Beyond memories, sequential and combinational logic devices and circuits are also being scrutinised. Concerns over failures have broadened from servers/routers to the automobile industry.

It is commonly recognised now that failures in electronic systems due to faults or errors introduced in devices/circuits by terrestrial radiation can only be mitigated by the combination or cooperation of mitigation techniques in two or more stack layers such as substrate, cell, circuit, CPU (Central Processing Unit), middleware, OS (Operating System) and application. This is a very challenging task that requires a wide variety of scientific fields like astronomy, cosmic ray physics, nuclear physics, accelerator physics, semiconductor physics, circuit theory, computer theory, numerical simulation, EDA (Electric Design Automation) tools, coding theory, reliability physics, database handling, and so on.

Meanwhile, this task is fascinating. During my research in this field, I have learned a number of exciting facts about the Earth.

We cannot live without air that is only a 50 km thick layer above the Earth – 1/250 of the diameter of the Earth. An astronaut has a limit to how long he can stay in the inner/outer space due to the limit of radiation exposure by cosmic rays. We, humankind, cannot live on a planet without air and have been protected from harsh cosmic radiation in outer space by only this very thin layer of air in the Earth.

Beautiful aurora australis and borealis are the outcome of interactions between cosmic rays and the atmosphere.

Carbon-14 that is used for radiocarbon dating is produced by nuclear reaction of nitrogen-14 and cosmic ray proton in the atmosphere. Even clouds in the sky have recently been revealed to be mostly triggered by cosmic rays according to CERN's team report.

The author hopes that this book will trigger the readers' interest in the impact of cosmic rays on the Earth and our

everyday lives.

16 April 2014 Eishi H. Ibe Enjoying scuba diving in Saipan, USA

Acknowledgements

I gratefully acknowledge Professors Emeritus T. Nakamura, M. Baba and Professor Y. Sakemi for helpful discussions and support for the database on nuclear reactions and high-energy neutron experiments at CYRIC, Tohoku University. We also acknowledge Dr Alexander Prokofiev for cordial support in high-energy neutron experiments at TSL, Uppsala University. Communicative discussions with Drs. C. Slayman, S.-J. Wen of Cisco Systems Inc., N. Seifert of Intel, R. Baumann of TI, M. Nicolaidis of TIMA Laboratory, D. Alexandrescu and A. Evans of iRoc, T. Uemura of Fujitsu Laboratory and H. Kobayashi of SONY are deeply acknowledged. I am also grateful to Professors K. Kobayashi of Kyoto Institute of Technology, H. Onodera of Kyoto University, Drs. M. Yoshimura and Y. Matsunaga of Kyushu University for giving valuable information on SEU tolerant flip-flops and EDA tools. Invaluable discussions and information are given by Drs. Kuboyama, and D. Kobayashi of JAXA, Professor Y. Takahashi of Nippon University, and Ms. A. Makihara of HIREC.

Acronyms

ACE	Architectural Correct Execution
ALLS	Aligned Laboratory System
ALPEN	ALpha Particle source/drain PENtration
ALS	Absolute Laboratory System
ALU	Arithmetic-Logic Unit
AMUSE	Autonomous MUltilevel emulation system for Soft Error evaluation
ANITA	Atmospheric-like Neutrons from thIck TArget
AOI	Area Of Interest
ASIC	Application Specific Integrated Circuit
ASIL	Automotive Safety Integrity Level
ASTEP	Altitude Single event effects Test European Platform
AVF	Architectural Vulnerability Factor
AVP	Architectural Verification Program
BAN	Body Area Network
BCDMR	Bistable Cross-coupled Dual Modular Redundancy
BICS	Built-In Current Sensor
BISER	Built-In Soft Error Resilience
BIPS	Built-in Pulse Sensor
BIST	Built-In Self Test
BL	Bit Line
BNL	Brookhaven National Laboratory
BOX	Buried Oxide
BPSG	Boron Phosphor Silicate Glass
BUT	Board Under Test
CAM	Content Addressable Memory
CAN	Controller Area Network

CCD	Charge Coupled Device
CHB	CHecker Board
CHBc	CHecker Board complement
CL	Confidence Level
CLR	Cross-Layer Reliability
СМ	Center of Mass
CMOS	Complementary Metal Oxide Semiconductor
CMP	Chemical Mechanical Polishing
CNL	UC Davis Crocker Nuclear Laboratory
CNRF	Cold Neutron Research Facility
CORIMS	COsmic Radiation IMpact Simulator
CPU	Central Processing Unit
CRAM	Configuration Random Access Memory
CRC	Cyclic Redundancy Code
CYCLON	Cyclotron of Louvain la Neuve
CYRIC	CYclotron and RadioIsotope Center
DCC	Duplication + Comparison + Checkpointing
DF	Derating Factor
DICE	Dual Interlocked storage CEll
DLL	Delay Locked Loop
DMR ₁	Dual Modular Redundancy
DMR ₂	Dynamic Memory Reconfiguration
DOA	Design On Average
DOAV	Design On Average and Variation
DOUB	Design On Upper Bound
DPM	Defects Per Million
DRAM	Dynamic Random Access Memory
DSP	Digital Signal Processor

DUE	Detected Unrecoverable Error
DUT	Device Under Test
ECC	Error Correction Code/Error Checking and Correction
EDA	Electric Design Automation
EDAC	Error Detection And Correction
EMI	Electro-Magnetic Interference
EX	Execution
FBE	Floating Body Effect
FDSOI	Fully Depleted SOI
FF	Flip-Flop
FFDA	Field Failure Data Analysis
FIT	Failure In Time
FPGA	Field Programmable Gate Array
FRAM	Ferroelectric Random Access Memory
GDS	Graphic Data System
GEM	Generalized Evaporation Model
GPS	Global Positioning System
GPU	Graphic Processing Unit
GPGPU	General Purpose GPU
GPU	Graphic Processing Unit
GTO	Gate Turn-Off Thyristor
HA	High Altitude
HHC	Hierarchical Hardware Checkpointing
HHFL	Heavy Halt Failure
ICICDT	International Conference on IC Design and Technology
ICITA	International Conference on Information Technology and Applications

Instruction Decode
Instruction Fetch
Insulated Gate Bipolar Transistor
International On-Line Testing Symposium
Intra-Nuclear Cascade
International Reliability Physics Symposium
Indiana University Cyclotron Facility
Japan Aerospace Exploration Agency
JEDEC StanDard
Japan Proton Accelerator Research Complex
inter LAyer Built-In Reliability
Los Alamos Meson Physics Facility
Los Alamos NationalScience Center
Lawrence Berkeley National Laboratory
Layout design through Error Aware Placement
Low-Energy Neutron Source
Linear Energy Transfer
Linear Feedback Shift Register
Light Halt Failure
Local Interconnect Network
LINear particle ACcelerator
Laboratori Nazionali di Legnaro
Large Scale Integration
Latency Failure
Lookup Table
Memory Access
Multi-Bit Upset
Multi-Coupled Bipolar Interaction
Multi-Cell Upset

 MCU^1

- MCU² Micro Control Unit
- MF Masking Factor
- MFTF Mean Fluence To Failure
- MNFL Marginal Failure
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- MPR Memory Page Retire
- MTTF Mean Time To Failure
- MTTR Mean Time To Repair
- NBTI Negative Bias Temperature Instability
- NCAP European New Car Assessment Programme
- NIST National Institute of Standards and Technology
- NMIJ National Metrology Institute Japan
- NoC Network on Chip
- NSAA Nonstop Advanced Architecture
- NSREC Nuclear and Space Radiation Effects Conference
- NYC New York City
- OS Operating System
- PC¹ Program Counter
- PC² Power Cycle
- PC³ Personal Computer
- PCB Printed Circuit Board
- PCSE Power Cycle Soft-Error
- PDSOI Partially Depleted SOI
- PHITS Particle and Heavy Ion Transport Code System
- PIPB Propagation Induced Pulse Broadening
- PLL Phase Locked Loop

PVF	Program Vulnerability Factor
QMN	Quasi-Monoenergetic Neutron
RADECS	RAdiation Effects on Components and Systems
RAM	Radom Access Memory
RAP	Resilience Articulation Point
RAS	Reliability, Availability and Serviceability
RASEDA	RAdiation effects on SEmiconductor Devices for space Application
RCNP	Research Center for Nuclear Physics
RHBD	Radiation Hardened-By-Design
RIIF	Reliability Information Interchange Format
RILC	Radiation Induced Leakage Current
RMA	Return Material Authorisation
ROM	Read Only Memory
RTL	Register Transfer Level
RTOS	Real Time Operating System
SAW	Surface Acoustic Wave
SBRM	Symptom Based Redundant Multithreading
SBST	Software-Based Self-Test
SBU	Single Bit Upset
SDC	Silent Data Corruption
SEALER	Single Event Adverse and Local Effects Reliever
SEB	Single Event Burnout
SECDED	Single Error Correction and Double Error Detection
SEE	Single Event Effect
SEFI	Single Event Functional Interrupt
SEFR	Single Event Fault Rate
SEGR	Single Event Gate Rupture

SEILA	Soft Error Immune LAtch
SEL	Single Event Latchup
SELSE	Silicon Errors in Logic—System Effects
SEM	Soft Error Mitigation
SER	Soft-Error Rate
SES	Single Event Snapback
SESB	Single Event SnapBack
SET	Single Event Transient
SEU	Single Event Upset
SEUT	Single Event Upset Tolerant
SHE	Software Hardening Environment
SIL	Safety Integrity Level
SILC	Stress Induced Leak Current
SIMS	Secondary Ion Mass Spectrometry
SITR	Self-Imposed Temporal Redundancy
SLC	Single Level Cell
SLFL	Silent Failure
SOI	Silicon On Insulator
SPFD	Sets of Pairs of Functions to be Distinguished
SPICE	SimulationProgram with Integrated Circuit Emphasis
SRAM	Static Random Access Memory
SRIM	Stopping and Range of Ions in Matter
STEM	Soft and Timing Error Mitigation
STI	Shallow Trench Isolation
TAMU	Texas A&M University
TID	Total Ionizing Dose effect
TCAD	Technology Computer-Aided Design
TID	Total Ionisation Dose