

CONTENTS

FOREWORD

INTRODUCTION

WHO THIS BOOK IS FOR

WHAT THIS BOOK COVERS

HOW THIS BOOK IS STRUCTURED

WHAT YOU NEED TO USE THIS BOOK

MOTIVATION FOR WRITING

CONVENTIONS

SOURCE CODE

ERRATA

P2P.WROX.COM

CONTACT THE AUTHORS

NOTES

PART I INTRODUCTION TO JAVA EE DESIGN

PATTERNS

CHAPTER 1 A BRIEF OVERVIEW OF DESIGN

PATTERNS

WHAT IS A DESIGN PATTERN?

DESIGN PATTERN BASICS

ENTERPRISE PATTERNS

SUMMARY

NOTES

CHAPTER 2 THE BASICS OF JAVA EE

MULTITIER ARCHITECTURE

THE CLIENT TIER

THE MIDDLE TIER

THE EIS TIER

JAVA EE SERVERS

THE JAVA EE WEB PROFILE

CORE PRINCIPLES OF JAVA EE

CONVENTION OVER CONFIGURATION

CONTEXT AND DEPENDENCY INJECTION

INTERCEPTORS

SUMMARY

EXERCISES

PART II IMPLEMENTING DESIGN PATTERNS IN JAVA

EE

CHAPTER 3 FAÇADE PATTERN

WHAT IS A FAÇADE?

IMPLEMENTING THE FAÇADE PATTERN IN

PLAIN CODE

IMPLEMENTING THE FAÇADE PATTERN IN JAVA

EE

WHERE AND WHEN TO USE THE FAÇADE

PATTERN

SUMMARY

EXERCISES

NOTES

CHAPTER 4 SINGLETON PATTERN

WHAT IS A SINGLETON?

IMPLEMENTING THE SINGLETON PATTERN IN

JAVA EE

WHERE AND WHEN TO USE THE SINGLETON

PATTERN

SUMMARY

EXERCISES

NOTES

CHAPTER 5 DEPENDENCY INJECTION AND CDI

WHAT IS DEPENDENCY INJECTION?

IMPLEMENTING DI IN PLAIN CODE

IMPLEMENTING DI IN JAVA EE

SUMMARY

EXERCISES

NOTES

CHAPTER 6 FACTORY PATTERN

WHAT IS A FACTORY?

FACTORY METHOD

ABSTRACT FACTORY

IMPLEMENTING THE FACTORY PATTERN IN

JAVA EE

WHERE AND WHEN TO USE THE FACTORY

PATTERNS

SUMMARY

EXERCISES

NOTES

CHAPTER 7 DECORATOR PATTERN

WHAT IS A DECORATOR?

IMPLEMENTING THE DECORATOR PATTERN IN

PLAIN CODE

IMPLEMENTING THE DECORATOR PATTERN IN

JAVA EE

WHERE AND WHEN TO USE THE DECORATOR

PATTERN

SUMMARY

EXERCISES

NOTES

CHAPTER 8 ASPECT-ORIENTED PROGRAMMING

(INTERCEPTORS)

WHAT IS ASPECT-ORIENTED PROGRAMMING?

IMPLEMENTING AOP IN PLAIN CODE

ASPECTS IN JAVA EE, INTERCEPTORS

WHERE AND WHEN TO USE INTERCEPTORS

SUMMARY

NOTES

CHAPTER 9 ASYNCHRONOUS

WHAT IS ASYNCHRONOUS PROGRAMMING?

IMPLEMENTING ASYNCHRONOUS PATTERN IN

PLAIN CODE

ASYNCHRONOUS PROGRAMMING IN JAVA EE

WHERE AND WHEN TO USE ASYNCHRONOUS

PROGRAMMING

SUMMARY

EXERCISES

NOTES

CHAPTER 10 TIMER SERVICE

WHAT IS THE TIMER SERVICE?

IMPLEMENTING A TIMER IN JAVA EE

SUMMARY

EXERCISES

NOTES

CHAPTER 11 OBSERVER PATTERN

WHAT IS AN OBSERVER?

IMPLEMENTING THE OBSERVER PATTERN IN

PLAIN CODE

IMPLEMENTING THE OBSERVER PATTERN IN

JAVA EE

WHERE AND WHEN TO USE THE OBSERVER

PATTERN

SUMMARY

EXERCISES

NOTES

CHAPTER 12 DATA ACCESS PATTERN

WHAT IS A DATA ACCESS PATTERN?

OVERVIEW OF THE DATA ACCESS PATTERN

IMPLEMENTING THE DATA ACCESS PATTERN

IN JAVA EE

WHERE AND WHEN TO USE THE DATA ACCESS

PATTERN

SUMMARY

EXERCISES

NOTES

CHAPTER 13 RESTFUL WEB SERVICES

WHAT IS REST?

THE SIX CONSTRAINTS OF REST

RICHARDSON MATURITY MODEL OF REST API

DESIGNING A RESTFUL API

REST IN ACTION

IMPLEMENTING REST IN JAVA EE

HATEOAS

WHERE AND WHEN TO USE REST

SUMMARY

EXERCISES

NOTES

CHAPTER 14 MODEL VIEW CONTROLLER PATTERN

WHAT IS THE MVC DESIGN PATTERN?

IMPLEMENTING THE MVC PATTERN IN PLAIN

CODE

IMPLEMENTING THE MVC PATTERN IN JAVA EE

THE FACESSERVLET

MVC USING THE FACESSERVLET

WHERE AND WHEN TO USE THE MVC PATTERN

SUMMARY

EXERCISES

NOTE

CHAPTER 15 OTHER PATTERNS IN JAVA EE

WHAT ARE WEBSOCKETS?

WHAT IS MESSAGE-ORIENTATED MIDDLEWARE

WHAT IS THE MICROSERVICE ARCHITECTURE?

FINALLY, SOME ANTI-PATTERNS

NOTES

PART III SUMMARY

CHAPTER 16 DESIGN PATTERNS: THE GOOD, THE

BAD, AND THE UGLY

THE GOOD: PATTERNS FOR SUCCESS

THE BAD: OVER AND MISUSE OF PATTERNS

…AND THE UGLY

SUMMARY

NOTES

TITLEPAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHORS

ABOUT THE TECHNICAL EDITOR

CREDITS

ACKNOWLEDGMENTS

ADVERT

WILEY END USER LICENSE AGREEMENT

List of Tables

Chapter 10

Table 10.1

Table 10.2

Table 10.3

Table 10.4

List of Illustrations

Chapter 1

Figure 1.1 A class diagram showing inheritance

Figure 1.2  The singleton pattern class diagram

Chapter 2

Figure 2.1 Multitier architecture showing the

interaction between tiers

Figure 2.2 Technology used in the Web and Business

layers

Chapter 3

Figure 3.1 Class diagram of the façade pattern

Chapter 4

Figure 4.1 The singleton pattern class diagram

Chapter 6

Figure 6.1 The class diagram shows the structure of

the factory method pattern. You can see how the

object creation is encapsulated in the subclasses.

Figure 6.2 As can be seen in the class diagram, you

can use the abstract factory pattern to group existing

factories and encapsulate how you access them.

Chapter 7

Figure 7.1 Class diagram of the decorator pattern

Chapter 9

Figure 9.1 Asynchronous flow diagram

Chapter 11

Figure 11.1 Class diagram of the observer pattern

Chapter 12

Figure 12.1 Class diagram of the data access pattern

Chapter 14

Figure 14.1 Diagram of the model view controller

pattern

Figure 14.2 Diagram of Spring’s MVC

implementation

Chapter 15

Figure 15.1 Point-to-point implementation

Figure 15.2 Publish/subscribe implementation

Figure 15.3 Monolithic architecture

Figure 15.4 The AKF cube should have X-, Y-, and Z-

axis scaling.

Figure 15.5 Y-axis decomposition

FOREWORD

Ignorant men raise questions that wise men answered a

thousand years ago

—JOHANN WOLFGANG VON GOETHE

Design patterns are our link to the past and the future.

They make up a foundational language that represents well

understood solutions to common problems that talented

engineers before us have added to our collective

knowledge base. Design patterns or blueprints exist in

every engineering field in one way or another. Software

development is no different. Indeed, design patterns are

probably our most tangible link to engineering rather than

the more organic and less regimented world of the artisan

or craftsman. The art and science of design patterns was

brought to the world of software engineering—and more

specifically to enterprise Java—by the seminal Gang of Four

(GoF) book. They have been with us ever since through our

adventures in J2EE, Spring, and now modern lightweight

Java EE. This is for very good reasons. Server-side Java

developers tend to write the type of mission critical

applications that need to stand the test of time and hence

benefit the most from the discipline that design patterns

represent.

It really takes a special kind of person to write a book on

design patterns, let alone a book on how to utilize design

patterns in Java EE applications. You require not only basic

knowledge of APIs and the patterns themselves, but deep

insight that can only come with hard-earned experience, as

well as an innate ability to explain complex concepts

elegantly. I am glad Java EE now has Murat and Alex to

accomplish the mighty feat.

This book fulfills a much needed gap and fills it well. It is

also very good that the book is on the cutting edge and

covers Java EE 7 and not just Java EE 6 or Java EE 5. In

fact many of the design patterns covered, like Singleton,

Factory, Model-View-Controller (MVC), Decorator, and

Observer, are now incorporated right into the Java EE

platform. Others like Facade, Data Access Object (DAO),

and Data Transfer Object (DTO) fit elegantly on top. Murat

and Alex tackle each pattern, explain its pragmatic

motivation, and discuss how it fits into Java EE.

It is an honor and a privilege to write a small opening part

of this very important book that I hope will become a very

useful part of every good Java EE developer's bookshelf. I

hope you enjoy the book, and that it helps you write better,

more satisfying enterprise Java applications.

M. REZA RAHMAN

Java EE/GlassFish Evangelist

Oracle Corporation

INTRODUCTION

THIS BOOK DISCUSSES THE CLASSIC DESIGN

PATTERNS that were first mentioned in the famous book by

the GoF1 and updates them specifically for Java EE 6 and 7.

In every chapter we describe the traditional

implementation of each pattern and then show how to

implement it using Java EE-specific semantics.

We use full code examples to demonstrate both the

traditional and Java EE implementations and color each

chapter with real-life stories that show the use (or misuse)

of the pattern.

We investigate the pros and cons of each pattern and

examine their usages. Each chapter finishes with some

exercises that challenge your understanding of the pattern

in Java EE.

WHO THIS BOOK IS FOR

This book is for everyone with any level of experience. It

covers almost everything about a pattern, from how it is

referred to in other books, to code on basic Java

implementation, to Java EE implementation, and finally real

life examples of how and when to use a specific pattern. It

also has real life war stories that talk about good and bad

practices.

Having some basic knowledge of design patterns and Java

EE will aid you as you read this book.

If you are already experienced with patterns and basic Java

implementations, you may prefer to jump into Java EE

implementations. Refreshing your memory and knowledge

of design patterns could prove helpful.

WHAT THIS BOOK COVERS

This book covers all classical design patterns that Java EE

offers as part of standard implementation, besides some

new patterns. The coverage goes back to Java EE5 and is

up to date for the latest version available, which is Java EE

7.

We hope this book will be a reference you will keep on your

shelf for a long time.

HOW THIS BOOK IS STRUCTURED

Each chapter focuses on a design pattern. If the pattern is

classical, a simple Java implementation is given after the

explanation of the pattern. Each chapter offers war stories

telling a good or bad real life example about the pattern

focused on/in the chapter. The war story is followed by a

Java EE implementation, example, and explanation. Each

code sample given can be run by itself. Finally, each

chapter ends with when and how to use the pattern

effectively.

WHAT YOU NEED TO USE THIS BOOK

Any modern computer with an operating system that has a

Java Virtual Machine (JVM) implementation is sufficient to

run the samples given in this book. For ease of coding, you

need an integrated development environment (IDE) of your

own choice. The sample can run on any popular modern

IDEs including Eclipse, NetBeans, and IntelliJ.

You need the Java Development Kit (JDK) for Java EE7 to be

able to compile and run the code samples, but some of the

code samples would also work on previous Java EE JDKs.

You can use any Java EE7–compliant application server to

run the samples. We ran all the code samples on Glassfish,

which is the reference implementation server, and TomEE,

which is the Java EE version of the popular Java web server

Tomcat. You can use any server, but because Glassfish is

the reference implementation, you might want to try it for

the samples.

To run the samples in this book, you need the following:

An operating system that has a JDK for Java EE7, such

as Linux, Mac OS X, or Windows

Java EE 7 JDK

An IDE of your choice, such as Eclipse for Java EE

Developers, NetBeans, or IntelliJ

Java EE 7–compliant application server such as

GlassFish or TomEE

The source code for the samples is available for download

from the Wrox website at:

www.wrox.com/go/projavaeedesignpatterns

MOTIVATION FOR WRITING

In November 2011, after having a debate on Java EE versus

Spring for a project, I went back to my desk and wrote a

blog post titled “Java EE 6 and the Ewoks,”2 which became

popular pretty quickly. The story was based on the TV show

How I Met Your Mother. In this show, Barney, who is the

playboy character, introduced a theory that was focused on

Ewoks, the teddy bear–like creatures introduced in Episode

VI of Star Wars. Fans have mixed feelings on Ewoks.

According to Barney, those born before May 25, 1973,

when Return of the Jedi was released, think Ewoks are

childish and simply hate them. However, those born after

that date find Ewoks cute because they remind them of

teddy bears.

Now back to my story. Engaging in a debate with a

customer about Java EE versus Spring made me realize

that it’s similar to the Ewok theory. Those who are old

enough to have used J2EE 1.4 (EJB 1.0/2.0/2.1) in corporate

projects had a slow, unproductive development

environment with RAM-eating and buggy IDEs and servers

taking several minutes to boot. The architecture was over

engineered and probably failed, resulting in a migration to

http://www.wrox.com/go/projavaeedesignpatterns

Spring. Those users tended to hate Java EE with a passion,

no matter what version they used. The release of Java EE 5

was underrated and did not really impress anyone.

Java EE will never be J2EE again. It is now open, has a

large community and reshapes itself by assimilating good

ideas from frameworks such as Spring and Hibernate. The

first great change was the architecture and style of coding.

Enterprise JavaBeans (EJB) followed the lightweight Plain

Old Java Object (POJO) model, almost unusable entity

beans were replaced with Java Persistence API (JPA), REST

and Web Services became standard and integral parts of

the run time, and annotations replaced XML configuration.

Still, some might argue that Java EE 5 was not ready for

the huge shift because it was not as mature as Spring, and

the development environment was still not responsive

enough. Using Spring on Tomcat instead of EJBs and Java

EE 5 on an application server greatly increased the

development productivity, but Java EE 5 was still a big step

forward towards designing, leveraging, and architecting

the Enterprise Java platform from scratch.

This shift was followed by Java EE 6 and 7, which used the

same principles and ideas as Java EE 5. Java EE is a great

choice for development, but the debate was not over,

thanks to the Ewok theory.

It was a hot August day when I first got a call from

Wrox/Wiley about whether I would be interested in writing

a Spring book. I was experienced and confident with

implementing and developing in Spring, but there were

already tons of books written about it, which made it hard

to see the value in writing a new one.

Besides, I was using Java EE more than ever since version

6 had been released. Considering the Spring versus Java

EE debates, my blog posts, and the Ewoks, I felt like

writing about Java EE. However, just like Spring, there

were many great Java EE books that I admired. I always

had the feeling that some properties of Java EE were

underrated. Java EE has great built-in implementations of

design patterns with simple use of annotations.

The classic patterns listed in the GoF book were used

extensively in almost all languages, frameworks, and

platforms. J2EE was no exception and neither was Java EE.

Actually Java EE took a bold step in providing default

implementations for many of those patterns, but still even

most of the experienced developers underestimated the

value of those out of the box implementations.

I had been blogging about those patterns for almost a year,

so I decided to present a counteroffer to write a book on

the “classic” design patterns in Java EE. As you are reading

this book now, you may guess the feedback was positive.

This book fills the gap between the Java EE platform with

the classic design patterns from the GoF book as well as

talking about new patterns. This way we did not write just

another Java EE book but a catalogue for design patterns in

Java EE.

I started blogging, writing and giving talks on design

patterns in Java EE to extend my knowledge and

experience on a platform I really believed in, so the best

thing about writing this book for me was that I had the

chance to write about something I was really passionate

about. Although my blog had simpler examples, I was

already using it as a reference when I needed, so writing a

book, which is more formally and properly formatted while

still following the same idea was a great opportunity.

Every chapter that my coauthor Alex and I wrote had the

same goal: Write content that we would like to read

ourselves. The result is a book that we both want to keep as

a reference.

We hope that you enjoy reading this book as much as we

enjoyed writing it.

CONVENTIONS

To help you get the most from the text and keep track of

what’s happening, we’ve used a number of conventions

throughout the book.

NOTE Notes indicates notes, tips, hints, tricks, or

asides to the current discussion.

As for styles in the text:

We highlight new terms and important words when we

introduce them.

We show keyboard strokes like this: Ctrl+A.

We show file names, URLs, and code within the text like

so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most

code examples.

We use bold to emphasize code that is particularly

important in the present context or to show

changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may

choose either to type in all the code manually or to use the

source code files that accompany the book. All the source

code used in this book is available for download at

www.wrox.com. Specifically for this book, the code download is

on the Download Code tab at:

www.wrox.com/go/projavaeedesignpatterns

You can also search for the book at www.wrox.com by ISBN

(978-1-118-84341-3) to find the code. A complete list of

code downloads for all current Wrox books is available at

www.wrox.com/dynamic/books/download.aspx.

Each chapter starts with introducing a basic Java

implementation of the pattern, if there is any. Next, the

chapter lists a Java EE implementation of the pattern that

can only compile and run on the Java EE JDK and a Java

EE–compliant application server.

Most of the code on www.wrox.com is compressed in .ZIP,

.RAR, or a similar archive format appropriate to the

platform. Once you download the code, just decompress it

with an appropriate compression tool.

ERRATA

We make every effort to ensure that there are no errors in

the text or in the code. However, no one is perfect, and

mistakes do occur. If you find an error in one of our books,

like a spelling mistake or a faulty piece of code, we would

be very grateful for your feedback. By sending in errata,

you may save another reader hours of frustration. At the

same time, you will be helping us provide even higher

quality information.

To find the errata page for this book, go to:

www.wrox.com/go/projavaeedesignpatterns

Then click the Errata link. On this page, you can view all

errata that has been submitted for this book and posted by

Wrox editors.

http://www.wrox.com/
http://www.wrox.com/go/projavaeedesignpatterns
http://www.wrox.com/
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/
http://www.wrox.com/go/projavaeedesignpatterns

If you don’t spot “your” error on the Book Errata page, go

to www.wrox.com/contact/techsupport .shtml and complete the

form there to send us the error you have found. We’ll check

the information and, if appropriate, post a message to the

book’s errata page and fix the problem in subsequent

editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at

http://p2p.wrox.com. The forums are a web-based system for

you to post messages relating to Wrox books and related

technologies and interact with other readers and

technology users. The forums offer a subscription feature

to e-mail you topics of interest of your choosing when new

posts are made. Wrox authors, editors, other industry

experts, and your fellow readers are present on these

forums.

At http://p2p.wrox.com, you will find a number of different

forums that will help you, not only as you read this book,

but also as you develop your own applications. To join the

forums, just follow these steps:

1. Go to http://p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any

optional information you wish to provide, and click

Submit.

4. You will receive an e-mail with information describing

how to verify your account and complete the joining

process.

http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com/
http://p2p.wrox.com/
http://p2p.wrox.com/

NOTE You can read messages in the forums without

joining P2P, but in order to post your own messages, you

must join.

Once you join, you can post new messages and respond to

messages that other users post. You can read messages at

any time on the web. If you would like to have new

messages from a particular forum e-mailed to you, click the

Subscribe to This Forum icon by the forum name in the

forum listing.

For more information about how to use the Wrox P2P, be

sure to read the P2P FAQs for answers to questions about

how the forum software works, as well as many common

questions specific to P2P and Wrox books. To read the

FAQs, click the FAQ link on any P2P page.

CONTACT THE AUTHORS

If you have any questions regarding the contents of this

book, the code, or any other related matter you can contact

the authors directly on their blogs and via Twitter.

Murat Yener:

Blog—devchronicles.com

Twitter—@yenerm

Alex Theedom:

Blog—alextheedom.com

Twitter—@alextheedom

NOTES

1. Design Patterns: Elements of Reusable Object-Oriented

Software (Addison-Wesley, 1994): Erich Gamma, Richard

Helm, Ralph Johnson, John Vlissides.

2. Java EE 6 and the Ewoks:

http://www.devchronicles.com/2011/11/javaee6-and-ewoks.html.

http://www.devchronicles.com/2011/11/javaee6-and-ewoks.html

PART I

Introduction to Java EE Design

Patterns

CHAPTER 1 : A Brief Overview of Design Patterns

CHAPTER 2 : The Basics of Java EE

1

A Brief Overview of Design Patterns

WHAT’S IN THIS CHAPTER?

An overview of design patterns

A short history about design patterns and why they are

important

The use of design patterns in the real world

The history and evolution of Java Enterprise Edition

The emergence of enterprise patterns

How these design patterns have evolved in the

enterprise environment

Why and how patterns become anti-patterns

This book is aimed at bridging the gap between the

traditional implementation of design patterns in the Java

SE environment and their implementation in Java EE.

If you are new to design patterns, this book will help you

get up to speed quickly as each chapter introduces the

design pattern in a simple-to-understand way with plenty of

working code examples.

If you are already familiar with design patterns and their

implementation but are not familiar with their

implementation in the Java EE environment, this book is

perfect for you. Each chapter bridges the gap between the

traditional implementation and the new, often easier,

implementation in Java EE.

If you are an expert in Java, this book will act as a solid

reference to Java EE and Java SE implementations of the

most common design patterns.

This book focuses on the most common Java EE design

patterns and demonstrates how they are implemented in

the Java EE universe. Each chapter introduces a different

pattern by explaining its purpose and discussing its use.

Then it demonstrates how the pattern is implemented in

Java SE and gives a detailed description of how it works.

From there, the book demonstrates how the pattern is now

implemented in Java EE and discusses its most common

usage, its benefits, and its pitfalls. All explanations are

accompanied by detailed code examples, all of which can

be downloaded from the website accompanying this book.

At the end of each chapter, you’ll find a final discussion and

summary that rounds up all you have read in the chapter.

There are even some interesting and sometimes

challenging exercises for you to do that will test your

understanding of the patterns covered in the chapter.

WHAT IS A DESIGN PATTERN?

Design patterns are “descriptions of communicating

objects and classes that are customized to solve a

general design problem in a particular context.”

—GANG OF FOUR

Design patterns offer solutions to common application

design problems. In object-oriented programming, design

patterns are normally targeted at solving the problems

associated with object creation and interaction, rather than

the large-scale problems faced by the overall software

architecture. They provide generalized solutions in the

form of boilerplates that can be applied to real-life

problems.

Usually design patterns are visualized using a class

diagram, showing the behaviors and relations between

classes. A typical class diagram looks like Figure 1.1.

Figure 1.1 A class diagram showing inheritance

Figure 1.1 shows the inheritance relationship between

three classes. The subclasses CheckingAccount and

SavingsAccount inherit from their abstract parent class

BankAccount.

Such a diagram is followed by an implementation in Java

showing the simplest implementation. An example of the

singleton pattern, which will be described in later chapters,

is shown in Figure 1.2.

Figure 1.2  The singleton pattern class diagram

And here is an example of its simplest implementation.

public enum MySingletonEnum {

 INSTANCE;

 public void doSomethingInteresting(){}

}

How Patterns Were Discovered and Why We

Need Them

Design patterns have been a hot topic since the famous

Gang of Four (GoF, made up of Erich Gamma, Richard

Helm, Ralph Johnson, and John Vlissides) wrote the book

Design Patterns: Elements of Reusable Object-Oriented

Software,1 finally giving developers around the world tried

and tested solutions to the commonest software

engineering problems. This important book describes

various development techniques and their pitfalls and

provides 23 object-oriented programming design patterns.

These patterns are divided into three categories:

creational, structural, and behavioral.

But why? Why did we suddenly realize we needed design

patterns so much?

The decision was not that sudden. Object-oriented

programming emerged in the 1980s, and several languages

that built on this new idea shortly followed. Smalltalk,

C++, and Objective C are some of the few languages that

are still prevalent today. They have brought their own

problems, though, and unlike the development of

procedural programming, this time the shift was too fast to

see what was working and what was not.

Although design patterns have solved many issues (such as

spaghetti code) that software engineers have with

procedural programming languages like C and COBOL,

object-oriented languages have introduced their own set of

issues. C++ has advanced quickly, and because of its

complexity, it has driven many developers into fields of

bugs such as memory leaks, poor object design, unsafe use

of memory, and unmaintainable legacy code.

However, most of the problems developers have

experienced have followed the same patterns, and it’s not

beyond reason to suggest that someone somewhere has

already solved the issues. Back when object-oriented

programming emerged, it was still a pre-Internet world,

and it was hard to share experiences with the masses.

That’s why it took a while until the GoF formed a collection

of patterns to well-known recurring problems.

Patterns in the Real World

Design patterns are infinitely useful and proven solutions to

problems you will inevitably face. Not only do they impart

years of collective knowledge and experience, design

patterns offer a good vocabulary between developers and

shine a light on many problems.

However, design patterns are not a magic wand; they do

not offer an out-of-the-box implementation like a framework

or a tool set. Unnecessary use of design patterns, just

because they sound cool or you want to impress your boss,

can result in a sophisticated and overly engineered system

that doesn’t solve any problems but instead introduces

bugs, inefficient design, low performance, and maintenance

issues. Most patterns can solve problems in design, provide

reliable solutions to known problems, and allow developers

to communicate in a common idiom across languages.

Patterns really should only be used when problems are

likely to occur.

Design patterns were originally classified into three

groups:

Creational patterns—Patterns that control object

creation, initialization, and class selection. Singleton

(Chapter 4, “Singleton Pattern”) and factory (Chapter 6,

“Factory Pattern”) are examples from this group.

Behavioral patterns—Patterns that control

communication, messaging, and interaction between

objects. The observer (Chapter 11, “Observer Pattern”)

is an example from this group.

Structural patterns—Patterns that organize

relationships between classes and objects, providing

guidelines for combining and using related objects

together to achieve desired behaviors. The decorator

pattern (Chapter 7, “Decorator Pattern”) is a good

example of a pattern from this group.

Design patterns offer a common dictionary between

developers. Developers can use them to communicate in a

much simpler way without having to reinvent the wheel for

every problem. Want to show your buddy how you are

planning to add dynamic behavior at run time? No more

