

PROFESSIONAL JAVA® EE DESIGN PATTERNS

INTRODUCTION . xxv

▸ PART I INTRODUCTION TO JAVA EE DESIGN PATTERNS

CHAPTER 1 A Brief Overview of Design Patterns . 3

CHAPTER 2 The Basics of Java EE . 13

▸ PART II IMPLEMENTING DESIGN PATTERNS IN JAVA EE

CHAPTER 3 Façade Pattern . 25

CHAPTER 4 Singleton Pattern . 33

CHAPTER 5 Dependency Injection and CDI . 49

CHAPTER 6 Factory Pattern . 63

CHAPTER 7 Decorator Pattern . 83

CHAPTER 8 Aspect‐Oriented Programming (Interceptors) 97

CHAPTER 9 Asynchronous . 113

CHAPTER 10 Timer Service . 127

CHAPTER 11 Observer Pattern . 139

CHAPTER 12 Data Access Pattern . 153

CHAPTER 13 RESTful Web Services . 165

CHAPTER 14 Model View Controller Pattern . 183

CHAPTER 15 Other Patterns in Java EE . 195

▸ PART III SUMMARY

CHAPTER 16 Design Patterns: The Good, the Bad, and the Ugly 209

INDEX . 215

PROFESSIONAL

Java® EE Design Patterns

PROFESSIOONNAALL

Java® EE Design Patterns

Murat Yener
Alex Theedom

Professional Java® EE Design Patterns

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-84341-3
ISBN: 978-1-118-84358-1 (ebk)
ISBN: 978-1-118-84345-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014946684

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. Java is a registered trademark of Oracle America, Inc. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

To Nilay and all my family (Semra and

Musfata Yener), for all your support and time I needed

to write this book.

—Murat

To Mariu, for all your support and encouragement.

—Alex

ABOUT THE AUTHORS

MURAT YENER is a code geek and open source committer, working at Intel New Devices Group as
an Android developer. He has extensive experience with developing Java, web frameworks, JavaEE,
and OSGi applications, in addition to teaching courses and mentoring. Murat is an Eclipse commit-
ter and one of the initial committers of the Eclipse Libra project, he is currently working on building
native and Hybrid mobile apps with HTML5 and mGWT.

Murat has been a user group leader at GDG Istanbul since 2009, organizing, participating, and
speaking at events. He is also a regular speaker at JavaOne, EclipseCon, and Devoxx conferences.

Linkedin—www.linkedin.com/in/muratyener

twitter—@yenerm

blog—www.devchronicles.com

ALEX THEEDOM is a Senior Java Developer at Indigo Code Collective indigocodecollective.com
(part of the E-scape Group) where he played a pivotal role in the architectural design and develop-
ment of a microservice based, custom built lottery and instant win game platform.

Prior to that, he developed ATM software for an international Spanish bank and code quality analy-
sis software for a software consultancy.

Alex is experienced with Java web application development in a diverse range of fi elds including
fi nance, e-learning, lottery and software development. His passion for development has taken him to
projects throughout Europe and beyond. He is a blogger at alextheedom.com and can be found help-
ing fellow problem solvers in online forums.

Linkedin—www.linkedin.com/in/alextheedom

Twitter—@alextheedom

Blog—www.alextheedom.com

http://www.linkedin.com/in/muratyener
http://www.devchronicles.com
http://www.linkedin.com/in/alextheedom
http://www.alextheedom.com

ABOUT THE TECHNICAL EDITOR

MOHAMED SANAULLA is a Software Developer with over five years of professional experience
developing software. He is currently working for India’s largest e-Commerce establishment and
is also a moderator on the JavaRanch Forums. When he is not working on his PC, he is busy
tending to his cute little daughter. He shares his experiments and thoughts on software devel-
opment at http://blog.sanaulla.info.

http://blog.sanaulla.info

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT EDITOR
Adaobi Obi Tulton

TECHNICAL EDITOR
Mohamed Sanaulla

PRODUCTION MANAGER
Kathleen Wisor

COPY EDITOR
Karen A. Gill

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY AND
STRATEGY DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

PROJECT COORDINATOR, COVER
Patrick Redmond

PROOFREADER
Nancy Carrasco

INDEXER
John Sleeva

COVER DESIGNER
Wiley

COVER IMAGE
© iStock.com/pavlen

BACKGROUND
© PhotoAlto Images/Fotosearch

CREDITS

ACKNOWLEDGMENTS

AS MY COAUTHOR Alex always says, we wanted to write a book we would like to own and read for
ourselves. To begin with, I want to thank Alex for all his patience, hard work, and great knowledge.
Without him, this book wouldn’t be nearly as good.

I am grateful to Mary James, our former acquisitions editor, who contacted me about writing a
book on Spring but listened to my ideas that formed the basis of this book. Without her support and
guidance, this book wouldn’t have become a reality. No words would be enough to thank Adaobi
Obi Tulton, who patiently worked on all the details while keeping most of the schedule stresses
away from us. And thanks, of course, to everyone at Wrox/Wiley who got this book on the shelves.
Thanks, also, to Reza Rahman for all his encouragement.

I must thank three important people who had a huge impact on where I am in my professional life in
terms of software.

First, thanks to my dad, Mustafa Yener, for buying me my fi rst computer, a C64, at an early age
while I was asking for slot cars. That computer is where I wrote my very fi rst codes.

Second, thanks to my thesis advisor, Prof. Mahir Vardar, whom I owe all the early guidance I
needed to start my career.

Finally, thanks to my life-time mentor and friend (also my ex-boss) Naci Dai, who taught me almost
anything I know about being a professional software developer.

—Murat

WE ARE VERY PROUD of this, our fi rst book, and hope that you will get as much from reading it as
we have writing it. We approached writing this with the perspective that it should be the kind of
book we would buy if we hadn’t written it. We have achieved that.

However, this book would not have been possible without the dedication, patience, and understand-
ing of the many others who have contributed directly and indirectly to its creation. We would like
to acknowledge the contributions made by the dedicated and experienced team at Wiley Publishing.
They have stuck with us through thick and thin and believed that it was all possible. We would like
to give special thanks to Mary James, our acquisitions editor, whose support made this book a real-
ity. Thanks also to Adaobi Obi Tulton, whose patience and gentle nudges kept us on our toes and
whose attention to detail saved us from tripping over ourselves. I would like to thank my coauthor,
Murat Yener, for his inspiration and sense of humor that makes this book unique; and fi nally, but
not least, I would like to thank my wife, Maria Eugenia García García, for her total support and
understanding while writing this book. Thank you.

—Alex

CONTENTS

FOREWORD xxiii

INTRODUCTION xxv

PART I: INTRODUCTION TO JAVA EE DESIGN PATTERNS

CHAPTER 1: A BRIEF OVERVIEW OF DESIGN PATTERNS 3

What Is a Design Pattern? 4
How Patterns Were Discovered and Why We Need Them 5
Patterns in the Real World 5

Design Pattern Basics 6
Enterprise Patterns 7

Java to Enterprise Java 7
The Emergence of Enterprise Java Patterns 8
Design Patterns Versus Enterprise Patterns 8
Plain Old Design Patterns Meet Java EE 9
When Patterns Become Anti‐Patterns 10

Summary 10
Notes 10

CHAPTER 2: THE BASICS OF JAVA EE 13

Multitier Architecture 14
The Client Tier 15
The Middle Tier 16

Web Layer 16
Business Layer 16

The EIS Tier 18
Java EE Servers 18
The Java EE Web Profi le 18
Core Principles of Java EE 19
Convention over Confi guration 19
Context and Dependency Injection 20
Interceptors 21
Summary 22
Exercises 22

xviii

CONTENTS

PART II: IMPLEMENTING DESIGN PATTERNS IN JAVA EE

CHAPTER 3: FAÇADE PATTERN 25

What Is a Façade? 26
Façade Class Diagram 27

Implementing the Façade Pattern in Plain Code 27
Implementing the Façade Pattern in Java EE 29

Façade with Stateless Beans 29
Façade with Stateful Bean 31

Where and When to Use the Façade Pattern 31
Summary 31
Exercises 32
Notes 32

CHAPTER 4: SINGLETON PATTERN 33

What Is a Singleton? 34
Singleton Class Diagram 34
Implementing the Singleton Pattern in Plain Code 35

Implementing the Singleton Pattern in Java EE 38
Singleton Beans 39
Using Singletons at Startup 39
Determining Startup Order 40
Managing Concurrency 42

Where and When to Use the Singleton Pattern 45
Summary 46
Exercises 46
Notes 47

CHAPTER 5: DEPENDENCY INJECTION AND CDI 49

What Is Dependency Injection? 50
Implementing DI in Plain Code 50
Implementing DI in Java EE 53

The @Named Annotation 54
Context and Dependency Injection (CDI) 55
CDI Versus EJB 56
CDI Beans 56
The @Inject Annotation 57
Contexts and Scope 57
Naming and EL 58
CDI Beans for Backing JSF 58
Qualifi ers 59
Alternatives 59

xix

CONTENTS

Stereotypes 60
Other Patterns via CDI 60

Summary 61
Exercises 61
Notes 62

CHAPTER 6: FACTORY PATTERN 63

What Is a Factory? 64
Factory Method 64

Implementing the Factory Method in Plain Code 66
Abstract Factory 68

Implementing the Abstract Factory in Plain Code 69
Implementing the Factory Pattern in Java EE 70

Harness the Power of CDI 76
Where and When to Use the Factory Patterns 80
Summary 80
Exercises 81
Notes 81

CHAPTER 7: DECORATOR PATTERN 83

What Is a Decorator? 84
Decorator Class Diagram 85

Implementing the Decorator Pattern in Plain Code 86
Implementing the Decorator Pattern in Java EE 89

Decorators Without XML Confi guration 94
Where and When to Use the Decorator Pattern 94
Summary 95
Exercises 96
Notes 96

CHAPTER 8: ASPECT‐ORIENTED PROGRAMMING
(INTERCEPTORS) 97

What Is Aspect‐Oriented Programming? 98
Implementing AOP in Plain Code 100
Aspects in Java EE, Interceptors 102

Interceptor Life Cycle 105
Default‐Level Interceptors 106
Interceptor Order 107
CDI Interceptors 109

Where and When to Use Interceptors 111
Summary 112
Notes 112

xx

CONTENTS

CHAPTER 9: ASYNCHRONOUS 113

What Is Asynchronous Programming? 114
Asynchronous Pattern 114

Implementing Asynchronous Pattern in Plain Code 116
Asynchronous Programming in Java EE 118

Asynchronous Beans 118
Asynchronous Servlets 120

Where and When to Use Asynchronous Programming 124
Summary 125
Exercises 125
Notes 126

CHAPTER 10: TIMER SERVICE 127

What Is the Timer Service? 127
Implementing a Timer in Java EE 130

Automatic Timers 130
Programmatic Timers 131
Timer Expression 134
Transactions 136

Summary 137
Exercises 137
Notes 138

CHAPTER 11: OBSERVER PATTERN 139

What Is an Observer? 139
Description 140
Observer Class Diagram 141

Implementing the Observer Pattern in Plain Code 142
Implementing the Observer Pattern in Java EE 144
Where and When to Use the Observer Pattern 149
Summary 150
Exercises 151
Notes 151

CHAPTER 12: DATA ACCESS PATTERN 153

What Is a Data Access Pattern? 154
Data Access Class Diagram 154

Overview of the Data Access Pattern 155
Data Transfer Object Pattern 155

xxi

CONTENTS

Java Persistence Architecture API and Object Relational Mapping 156
Implementing the Data Access Pattern in Java EE 157

Type‐Safe DAO Implementation 162
Where and When to Use the Data Access Pattern 163
Summary 163
Exercises 163
Notes 163

CHAPTER 13: RESTFUL WEB SERVICES 165

What Is REST? 166
The Six Constraints of REST 167

Client‐Server 167
Uniform Interface 167
Stateless 168
Cacheable 168
Layered System 168
Code on Demand 168

Richardson Maturity Model of REST API 168
Level 0: The Swamp of POX (Plain Old XML) 169
Level 1: Resources 169
Level 2: HTTP Verbs 169
Level 3: Hypermedia Controls 169

Designing a RESTful API 169
Resource Naming 170
Nouns Not Verbs 170
Self‐Descriptive 170
Plural Not Singular 171
HTTP Methods 171
Get 171
Post 171
Put 172
Delete 172

Rest in Action 172
The users noun 172s
The topics noun and the s posts noun 173s

Implementing REST in Java EE 175
HATEOAS 178
Where and When to Use REST 180
Summary 181
Exercises 181
Notes 182

xxii

CONTENTS

CHAPTER 14: MODEL VIEW CONTROLLER PATTERN 183

What Is the MVC Design Pattern? 184
MVC Types 185

Implementing the MVC Pattern in Plain Code 186
Implementing the MVC Pattern in Java EE 190
The FacesServlet 190
MVC Using the FacesServlet 190
Where and When to Use the MVC Pattern 193
Summary 193
Exercises 193
Note 193

CHAPTER 15: OTHER PATTERNS IN JAVA EE 195

What Are WebSockets? 195
What Is Message‐Orientated Middleware 198
What Is the Microservice Architecture? 199

Monolithic Architecture 199
Scalability 200
Decomposing into Services 201
Microservice Benefi ts 202
Nothing in Life Is Free 203
Conclusions 204

Finally, Some Anti‐Patterns 204
Uber Class 204
Lasagna Architecture 204
Mr. Colombus 205
Friends with Benefi ts 205
Bleeding Edge 205
Utilityman 206

Notes 206

PART III: SUMMARY

CHAPTER 16: DESIGN PATTERNS: THE GOOD,THE BAD,
AND THE UGLY 209

The Good: Patterns for Success 209
The Bad: Over and Misuse of Patterns 211
…and The Ugly 212
Summary 214
Notes 214

INDEX 215

 FOREWORD

Ignorant men raise questions that wise men answered a thousand years ago

—Johann Wolfgang von Goethe

Design patterns are our link to the past and the future. They make up a foundational language
that represents well understood solutions to common problems that talented engineers before
us have added to our collective knowledge base. Design patterns or blueprints exist in every
engineering fi eld in one way or another. Software development is no different. Indeed, design
patterns are probably our most tangible link to engineering rather than the more organic
and less regimented world of the artisan or craftsman. The art and science of design patterns
was brought to the world of software engineering—and more specifi cally to enterprise
Java—by the seminal Gang of Four (GoF) book. They have been with us ever since through
our adventures in J2EE, Spring, and now modern lightweight Java EE. This is for very good
reasons. Server-side Java developers tend to write the type of mission critical applications
that need to stand the test of time and hence benefi t the most from the discipline that design
patterns represent.

It really takes a special kind of person to write a book on design patterns, let alone a book on
how to utilize design patterns in Java EE applications. You require not only basic knowledge
of APIs and the patterns themselves, but deep insight that can only come with hard-earned
experience, as well as an innate ability to explain complex concepts elegantly. I am glad Java
EE now has Murat and Alex to accomplish the mighty feat.

This book fulfi lls a much needed gap and fi lls it well. It is also very good that the book is on
the cutting edge and covers Java EE 7 and not just Java EE 6 or Java EE 5. In fact many of the
design patterns covered, like Singleton, Factory, Model-View-Controller (MVC), Decorator,
and Observer, are now incorporated right into the Java EE platform. Others like Facade, Data
Access Object (DAO), and Data Transfer Object (DTO) fi t elegantly on top. Murat and Alex
tackle each pattern, explain its pragmatic motivation, and discuss how it fi ts into Java EE.

It is an honor and a privilege to write a small opening part of this very important book that I
hope will become a very useful part of every good Java EE developer’s bookshelf. I hope you
enjoy the book, and that it helps you write better, more satisfying enterprise Java applications.

M. Reza Rahman
Java EE/GlassFish Evangelist

Oracle Corporation

 INTRODUCTION

 THIS BOOK DISCUSSES THE CLASSIC DESIGN PATTERNS that were fi rst mentioned in the famous
book by the GoF1 and updates them specifi cally for Java EE 6 and 7.

 In every chapter we describe the traditional implementation of each pattern and then show how to
implement it using Java EE‐specifi c semantics.

 We use full code examples to demonstrate both the traditional and Java EE implementations and
color each chapter with real‐life stories that show the use (or misuse) of the pattern.

 We investigate the pros and cons of each pattern and examine their usages. Each chapter fi nishes
with some exercises that challenge your understanding of the pattern in Java EE.

 WHO THIS BOOK IS FOR

 This book is for everyone with any level of experience. It covers almost everything about a pattern,
from how it is referred to in other books, to code on basic Java implementation, to Java EE imple-
mentation, and fi nally real life examples of how and when to use a specifi c pattern. It also has real
life war stories that talk about good and bad practices.

 Having some basic knowledge of design patterns and Java EE will aid you as you read this book.

 If you are already experienced with patterns and basic Java implementations, you may prefer to
jump into Java EE implementations. Refreshing your memory and knowledge of design patterns
could prove helpful.

 WHAT THIS BOOK COVERS

 This book covers all classical design patterns that Java EE offers as part of standard implementa-
tion, besides some new patterns. The coverage goes back to Java EE5 and is up to date for the latest
version available, which is Java EE 7.

 We hope this book will be a reference you will keep on your shelf for a long time.

 HOW THIS BOOK IS STRUCTURED

 Each chapter focuses on a design pattern. If the pattern is classical, a simple Java implementation
is given after the explanation of the pattern. Each chapter offers war stories telling a good or bad
real life example about the pattern focused on/in the chapter. The war story is followed by a Java
EE implementation, example, and explanation. Each code sample given can be run by itself. Finally,
each chapter ends with when and how to use the pattern effectively.

