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 FOREWORD

Ignorant men raise questions that wise men answered a thousand years ago

—Johann Wolfgang von Goethe

Design patterns are our link to the past and the future. They make up a foundational language
that represents well understood solutions to common problems that talented engineers before
us have added to our collective knowledge base. Design patterns or blueprints exist in every
engineering fi eld in one way or another. Software development is no different. Indeed, design
patterns are probably our most tangible link to engineering rather than the more organic 
and less regimented world of the artisan or craftsman. The art and science of design patterns
was brought to the world of software engineering—and more specifi cally to enterprise 
Java—by the seminal Gang of Four (GoF) book. They have been with us ever since through
our adventures in J2EE, Spring, and now modern lightweight Java EE. This is for very good
reasons. Server-side Java developers tend to write the type of mission critical applications
that need to stand the test of time and hence benefi t the most from the discipline that design
patterns represent.

It really takes a special kind of person to write a book on design patterns, let alone a book on
how to utilize design patterns in Java EE applications. You require not only basic knowledge 
of APIs and the patterns themselves, but deep insight that can only come with hard-earned
experience, as well as an innate ability to explain complex concepts elegantly. I am glad Java 
EE now has Murat and Alex to accomplish the mighty feat.

This book fulfi lls a much needed gap and fi lls it well. It is also very good that the book is on
the cutting edge and covers Java EE 7 and not just Java EE 6 or Java EE 5. In fact many of the 
design patterns covered, like Singleton, Factory, Model-View-Controller (MVC), Decorator, 
and Observer, are now incorporated right into the Java EE platform. Others like Facade, Data 
Access Object (DAO), and Data Transfer Object (DTO) fi t elegantly on top. Murat and Alex 
tackle each pattern, explain its pragmatic motivation, and discuss how it fi ts into Java EE.

It is an honor and a privilege to write a small opening part of this very important book that I
hope will become a very useful part of every good Java EE developer’s bookshelf. I hope you
enjoy the book, and that it helps you write better, more satisfying enterprise Java applications.

M. Reza Rahman
Java EE/GlassFish Evangelist

Oracle Corporation





                                                                           INTRODUCTION 

    THIS BOOK DISCUSSES THE CLASSIC DESIGN PATTERNS that were fi rst mentioned in the famous 
book by the GoF1   and updates them specifi cally for Java EE 6 and 7. 

 In every chapter we describe the traditional implementation of each pattern and then show how to
implement it using Java EE‐specifi c semantics.

 We use full code examples to demonstrate both the traditional and Java EE implementations and
color each chapter with real‐life stories that show the use (or misuse) of the pattern.

 We investigate the pros and cons of each pattern and examine their usages. Each chapter fi nishes
with some exercises that challenge your understanding of the pattern in Java EE.

 WHO THIS BOOK IS FOR 

 This book is for everyone with any level of experience. It covers almost everything about a pattern,
from how it is referred to in other books, to code on basic Java implementation, to Java EE imple-
mentation, and fi nally real life examples of how and when to use a specifi c pattern. It also has real
life war stories that talk about good and bad practices.

 Having some basic knowledge of design patterns and Java EE will aid you as you read this book.

 If you are already experienced with patterns and basic Java implementations, you may prefer to 
jump into Java EE implementations. Refreshing your memory and knowledge of design patterns
could prove helpful.

 WHAT THIS BOOK COVERS 

 This book covers all classical design patterns that Java EE offers as part of standard implementa-
tion, besides some new patterns. The coverage goes back to Java EE5 and is up to date for the latest
version available, which is Java EE 7.

 We hope this book will be a reference you will keep on your shelf for a long time.   

 HOW THIS BOOK IS STRUCTURED

 Each chapter focuses on a design pattern. If the pattern is classical, a simple Java implementation
is given after the explanation of the pattern. Each chapter offers war stories telling a good or bad 
real life example about the pattern focused on/in the chapter. The war story is followed by a Java 
EE implementation, example, and explanation. Each code sample given can be run by itself. Finally,
each chapter ends with when and how to use the pattern effectively.


