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Preface

This book concerns the identification of systems in which only quantized
output observations are available, due to sensor limitations, signal quanti-
zation, or coding for communications. Although there are many excellent
treaties in system identification and its related subject areas, a system-
atic study of identification with quantized data is still in its early stage.
This book presents new methodologies that utilize quantized information
in system identification and explores their potential in extending control
capabilities for systems with limited sensor information or networked sys-
tems.

The book is an outgrowth of our recent research on quantized identi-
fication; it offers several salient features. From the viewpoint of targeted
plants, it treats both linear and nonlinear systems, and both time-invariant
and time-varying systems. In terms of noise types, it includes independent
and dependent noises, stochastic disturbances and deterministic bounded
noises, and noises with unknown distribution functions. The key method-
ologies of the book combine empirical measures and information-theoretic
approaches to cover convergence, convergence rate, estimator efficiency, in-
put design, threshold selection, and complexity analysis. We hope that it
can shed new insights and perspectives for system identification.

The book is written for systems theorists, control engineers, applied
mathematicians, as well as practitioners who apply identification algo-
rithms in their work. The results presented in the book are also relevant
and useful to researchers working in systems theory, communication and
computer networks, signal processing, sensor networks, mobile agents, data
fusion, remote sensing, tele-medicine, etc., in which noise-corrupted quan-



xiv Preface

tized data need to be processed. Selected materials from the book may also
be used in a graduate-level course on system identification.

This book project could not have been completed without the help and
encouragement of many people. We first recognize our institutions and
colleagues for providing us with a stimulating and supportive academic
environment. We thank the series editor Tamer Başar for his encouragement
and consideration. Our thanks also go to Birkhäuser editor Tom Grasso for
his assistance and help, and to the production manager, and the Birkhäuser
professionals for their work in finalizing the book. Our appreciation also
goes to three anonymous reviewers, who read an early version of the book
and offered many insightful comments and suggestions. During the years
of study, our research has been supported in part by the National Science
Foundation and the National Security Agency of the United States, and by
the National Natural Science Foundation of China. Their support is greatly
appreciated. We are deeply indebted to many researchers in the field for
insightful discussions and constructive criticisms, and for enriching us with
their expertise and enthusiasm. Most importantly, we credit our families for
their unconditional support and encouragement even when they question
our wisdom in working so tirelessly on mathematics symbols.

Detroit Le Yi Wang
Detroit George Yin
Beijing Ji-Feng Zhang
Beijing Yanlong Zhao



Conventions

This book uses a chapter-indexed numbering system for equations, theo-
rems, etc., divided into three groups: (1) equations; (2) definitions, the-
orems, lemmas, corollaries, examples, propositions, and remarks; (3) as-
sumptions. Each group uses its own number sequencing. For example, equa-
tion (3.10) indicates the tenth equation in Chapter 3. Similarly, group 2
entries are sequenced as Definition 4.1, Theorem 4.2, Corollary 4.3, Re-
mark 4.4, Example 4.5 in Chapter 4. Assumptions are marked with the
prefix “A” such as (A6.1), which indicates the first-listed assumption in
Chapter 6.

In this book, the subscript is mainly used as a time index or iteration
number for a sequence, such as yk for signals at time k, al for the lth value of
the system impulse response, and θN for the estimate at the Nth iteration.
We limit the usage of superscripts whenever possible to avoid confusion
with polynomial powers, or double subscripts to reduce convoluted nota-
tion, and will confine them in local sections when they must be used. The
further dependence of a symbol on other variables such as vector or matrix
indices, parameters, data length, etc., will be included in parentheses. For
example, for a vector process yk, y

{i}
k denotes its ith element; M(i, j) or

M{i,j} represents the element at the ith row and jth column of a matrix M ;
eN (θ, μ) or M(i, j; θ, μ) indicates their dependence on parameters θ and μ,
although such a dependence will be suppressed when it becomes clear from
the context. For a quick reference, in what follows we provide a glossary of
symbols used throughout the book.



Glossary of Symbols

A′ transpose of a matrix or a vector A
A−1 inverse of a matrix A
Ballp(c, r) closed ball of center c and radius r in the lp norm
C space of complex numbers
Ci ith threshold of a quantized sensor
CR lower bound Cramér–Rao lower bound
Eξ expectation of a random variable ξ
F (·) probability distribution function
F σ-algebra
{Ft} filtration {Ft, t ≥ 0}
G(v) componentwise operation of a scalar function G

on a vector v = [v{1}, . . . , v{n}]′, G(v) =
[
G(v{1}) ,

. . . , G(v{n})
]′

G−1(v) componentwise inverse of a scalar invertible
function G on a vector v: G−1(v) =

[
G−1(v{1}) ,

. . . , G−1(v{n})
]′

H(eiω) scalar or vector complex function of ω
I identity matrix of suitable dimension
IA indicator function of the set A
N set of natural numbers
ODE ordinary differential equation
QCCE quasi-convex combination estimate
O(y) function of y satisfying supy �=0 |O(y)|/|y| < ∞
R

n n-dimensional real-valued Euclidean space



xviii Glossary of Symbols

Radp(Ω) radius of an uncertainty set Ω in lp

S binary-valued or quantized sensor
T Toeplitz matrix
Z+ set of positive integers

a+ = max{a, 0} for a real number a
a− = −max{−a, 0} for a real number a
a.e. almost everywhere
a.s. almost sure
diag(A1, . . . , Al) diagonal matrix of blocks A1, . . . , Al

f(·) probability density function f(x) = dF (x)/dx
gx or ∇xg gradient of a function g with respect to (w.r.t.) x
i pure imaginary number with i2 = −1
i.i.d. independent and identically distributed
ln x natural logarithm of x
log x or log2 x base 2 logarithm of x
o(y) function of y satisfying limy→0 o(y)/|y| = 0
q one-step delay operator: qxk = xk−1

sk = S(yk) output of a sensor, either scalar or vector
tr(A) trace of the matrix A
v{i} ith component of the vector v
w.p.1 with probability one
�x� ceiling function: the smallest integer that is ≥ x
�x� floor function: the largest integer that is ≤ x
‖x‖p lp norm of a sequence of real numbers x = {xk;k ∈N}

ΦN = [φ0, . . . , φN−1]′, regression matrix at iteration N
(Ω,F , P ) probability space

�(c, r) neighborhood about c of radius r
θ system parameter (column) vector of the modeled

part
θ̃ system parameter vector of the unmodeled

dynamics, usually infinite dimensional
θN estimate of θ at iteration step N
φk regression (column) vector of θ at time k

φ̃k regression vector of θ̃ at time k, usually infinite
dimensional

:= or def= defined to be
11 column vector with all elements equal to one
� end of a proof
| · | absolute value of a scalar or the Euclidean norm
‖ · ‖ of a vector largest singular value of a matrix
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1
Introduction

This book studies the identification of systems in which only quantized
output observations are available. The corresponding problem is termed
quantized identification.

Sampling and quantization were initially introduced into control systems
as part of the computer revolution when controllers became increasingly im-
plemented in computers. When computers had very limited memory and
low speeds, errors due to sampling and quantization were substantial. Dra-
matic improvements in computer memory, speed, precision, and computa-
tional power made these considerations more an academic delicacy than a
practical constraint. This seems to be the case even for wired and dedicated
computer networks for which fiber optic networks can carry large quantities
of data with lightning speed.

The recent explosive development in computer and communication net-
works has ushered in a new era of information processing. Thousands, even
millions, of computers are interconnected using a heterogeneous network of
wireless and wired systems. Due to fundamental limitations on bandwidth
resources in wireless communications and large numbers of customers who
share network resources, bandwidths have become a bottleneck for nearly
all modern networks. Similar concerns arise in special-purpose networks
such as smart sensors, MEMS (micro electromechanical systems), sensor
networks, mobile agents, distributed systems, and remote-controlled sys-
tems, which have very limited power for communications and whose data-
flow rates carry significant costs and limitations. These developments have
made the issue of sampling and quantization once again fundamental for
theoretical development and practical applications [13, 61, 80, 81, 82].

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
c© Springer Science+Business Media, LLC 2010

1,



4 1. Introduction

Consider, for example, computer information processing of a continuous-
time system whose output is sampled with a sampling rate of N Hz and
quantized with a precision word-length of B bits. Its output observations
carry the data-flow rate of NB bits per second (bps). For a typical 16-bit
precision and 2-KHz sampling rate, a 32K-bps bandwidth of data trans-
mission resource is required, on observations of one output alone. This is
a significant resource demand, especially when wireless communications of
data are involved.

Additionally, quantized sensors are commonly employed in practical sys-
tems [10, 42, 49, 73, 90, 98, 99]. Usually they are more cost-effective than
regular sensors. In many applications, they are the only ones available dur-
ing real-time operations. There are numerous examples of binary-valued or
quantized observations such as switching sensors for exhaust gas oxygen,
ABS (anti-lock braking systems), and shift-by-wire in automotive applica-
tions; photoelectric sensors for positions, and Hall-effect sensors for speed
and acceleration for motors; chemical process sensors for vacuum, pressure,
and power levels; traffic condition indicators in the asynchronous transmis-
sion mode (ATM) networks; and gas content sensors (CO, CO2, H2, etc.)
in the gas and oil industries. In medical applications, estimation and pre-
diction of causal effects with dichotomous outcomes are closely related to
binary sensor systems. The following examples represent some typical sce-
narios.

1.1 Motivating Examples

ATM ABR Traffic Control
An ATM network, depicted in Figure 1.1, consists of sources, switches,
and destinations. Due to variations in other higher-priority network traffic
such as constant bit rate (CBR) and variable bit rate (VBR), an available
bit rate (ABR) connection experiences significant uncertainty on the avail-
able bandwidth during its operation. A physical or logical buffer is used
in a switch to accommodate bandwidth fluctuations. The actual amount
of bandwidth an ABR connection receives is provided to the source using
rate-based closed-loop feedback control. One typical technique for provid-
ing traffic information is relative rate marking, which uses two fields in the
Resource Management (RM) cell—the No Increase (NI) bit and the Con-
gestion Indication (CI) bit. The NI bit is set when the queue reaches length
C1, and the CI bit is set when the queue length reaches C2 (C2 > C1).

In this system, the queue length is not directly available for traffic control.
The NI and CI bits indicate merely that it takes values in one of the three
uncertainty sets [0, C1], (C1, C2], and (C2,∞). This can be represented by
two binary sensors. It is noted that the desired queue length is usually a
value different than C1 or C2.
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Threshold C2

Threshold C1

data RM data RM

RM RM RM

Source Destination

NI bit: no increase, queue length > C
1

CI bit: congestion indicator, queue length > C
2

Quantized sensor with two thresholds

FIGURE 1.1. ATM network control

LNT and Air-to-Fuel Ratio Control with an EGO Sensor

Linear Sensors:

Uniform Sensitivity and Measurement Errors

Smooth Nonlinear Sensors:

Invertible and Finite Sensitivity

Variable Sensitivity and Measurement Errors

Switching Sensors:

Non-invertible and Infinite Sensitivity

Switching Point Errors

Input

Input

Input

Output

Output

Output

Input

Output

Binary-Valued Sensors

Practical Switching Sensors

FIGURE 1.2. Sensor types

In automotive and chemical process applications, oxygen sensors are widely
used for evaluating gas oxygen contents. Inexpensive oxygen sensors are
switching types that change their voltage outputs sharply when excess
oxygen in the gas is detected; see Figure 1.2. In particular, in automo-
tive emission control, the exhaust gas oxygen sensor (EGO or HEGO) will
switch its outputs when the air-to-fuel ratio in the exhaust gas crosses the
stoichiometric value. To maintain the conversion efficiency of the three-way
catalyst or to optimize the performance of a lean NOx trap (LNT), it is es-
sential to estimate the internally stored NOx and oxygen. In this case, the
switching point of the sensor has no direct bearing on the control target.
The idea of using the switching sensor for identification purposes, rather
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than for control only, can be found in [98, 99, 112].

Identification of Binary Perceptrons
There is an interesting intersection between quantized identification and
statistical learning theory in neural networks. Consider an unknown bi-
nary perceptron depicted in Figure 1.3 that is used to represent a dynamic
relationship:

y(t) = S(w1x1 + w2x2 + · · · + wnxn − C + d),

where C is the known neuron firing threshold, w1, . . . , wn are the weighting
coefficients to be learned, and S(·) is a binary-valued function switching at
0. This learning problem can be formulated as a special case of binary sen-
sor identification without unmodeled dynamics. Traditional neural models,
such as the McCulloch–Pitts and Nagumo–Sato models, contain a neural
firing threshold that naturally introduces a binary function [13, 38, 42, 73].
Fundamental stochastic neural learning theory studies the stochastic up-
dating algorithms for neural parameters [94, 95, 96].

w1
x1

w2
x2

wn
xn

d

Firing

Threshold
y

inputs system disturbance
binary

sensor

FIGURE 1.3. Artificial neural networks

Networked Systems
In a networked system, see Figure 1.4, signals must be transmitted through
communication channels. Since communications make quantization manda-
tory, it is essential to understand identification with quantized observations.
Unlike physical sensors whose characteristics such as switching thresholds
cannot be altered during identification experiments, quantization for com-
munication may be viewed generally as a partition of the signal range into
a collection of subsets. Consequently, quantization thresholds may be se-
lected to reduce identification errors, leading to the problems on threshold
selection. Furthermore, source coding and channel coding after quantiza-
tion play an important role in identification error characterization when
communication channels are noisy.
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FIGURE 1.4. Communication networks

1.2 System Identification with Quantized
Observations

The most common example of quantization is to divide the output range
into equal-length intervals. This book considers a general class of quantized
observations that allows a partition of the output range into a finite collec-
tion of subsets. The subsets may have unequal lengths or be unbounded,
may be fixed due to sensor configuration limitations, or may be design vari-
ables such as quantization or coding in communication systems. This sub-
ject is of importance in understanding the modeling capability for systems
with limited sensor information, establishing relationships between commu-
nication resource limitations and identification complexity, and studying
sensor networks [1, 10, 13, 34, 61, 80, 81, 90, 112, 115].

The use of quantized observations introduces substantial difficulties since
only very limited information is available for system modeling, identifica-
tion, and control. Since switching sensors are nonlinear components, studies
of their roles and impact on systems are often carried out in nonlinear sys-
tem frameworks, such as sliding mode control, describing function analysis,
switching control, hybrid control, etc. In these control schemes, the switch-
ing thresholds of the sensors are directly used to define a control target.
However, their fundamental impact on system modeling and identification
is a relatively new area. This book presents recent developments on the
inherent consequences of using quantized observations in system identifi-
cation as well as methods and algorithms that use quantized observations
effectively to extend control capabilities.

The main motivation is embodied in many applications in which mod-
eling of such systems is of great importance in performing model predic-
tive control, model-based diagnosis, outcome predictions, optimal control
strategy development, control adaptation, etc. When inputs can be arbi-
trarily selected within certain bounds and outputs are measured by regular
sensors, system identification problems have been studied extensively in
the traditional setup under the frameworks of either stochastic systems or
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worst-case identification. The issues of identification accuracy, convergence,
model complexity, time complexity, input design, persistent excitation,
identification algorithms, etc. have been pursued by many researchers. A
vast literature is now available on this topic; see [17, 55, 62, 67], among
others.

It should be clarified that the treatments of this book will be meaning-
ful only for the application problems in which quantization levels carry a
substantial system cost or operational penalty. If an application can use
cheaper sensors of high precision and data-flow rates do not carry a cost,
traditional system identification methods will suffice. On the other hand,
when a sensor of lower precision is cheaper than a higher-precision sen-
sor, it is important to understand what the performance penalty will be
if the cheaper sensor is used. Similarly, when communication bandwidths
are limited, the reduction of quantization levels will save communication
resources. Intrinsically, one may choose to use coarse quantization (lower
space complexity) so that more data points can be transmitted (higher time
complexity) with the same bandwidth resource demand. This tradeoff be-
tween sampling rates and quantization accuracy is a fundamental issue in
complexity analysis for understanding the impact of communication chan-
nels on system performance.

Some fundamental issues emerge when the output observation is quan-
tized: How accurately can one identify the parameters of the system? How
fast can one reduce uncertainty on model parameters? What are the op-
timal inputs for fast identification? What are the conditions that ensure
the convergence of the identification algorithms? What are the impacts
of unmodeled dynamics and disturbances on identification accuracy and
time complexity? In contrast to classical system identification, answers to
these familiar questions under switching sensors differ substantially from
the traditional setup.

This book demonstrates that quantized observations increase time com-
plexity significantly; the optimal inputs differ from those in traditional iden-
tification; identification characteristics depart significantly between stochas-
tic and deterministic noise representations; and unmodeled dynamics have
a fundamental influence on identification accuracy of the modeled part. In
contrast to traditional system identification, in which the individual mer-
its of stochastic versus worst-case frameworks are sometimes debated, it
is beneficial to combine these two frameworks in quantized identification
problems.

1.3 Outline of the Book

This book is organized into five parts as follows: I. Overview; II. Stochastic
Methods for Linear Systems; III. Deterministic Methods for Linear Sys-
tems; IV. Identification of Nonlinear and Switching Systems; V. Complexity
Analysis.
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Part I is an overview that provides motivational applications for system
identification with quantized observations in Chapter 1 and that introduces
the common systems settings for the entire book in Chapter 2. After a gen-
eral introduction of the problems in Chapter 1, generic system settings
are formulated in Chapter 2. Special cases of systems are then delineated,
such as gain systems, finite impulse-response systems, rational systems,
and nonlinear systems. The main issues of system identification are further
explained, including typical inputs and signal ranks. System uncertainties
considered in this book consist of unmodeled dynamics for linear dynam-
ics, model mismatch for nonlinear functions, and disturbances in either a
stochastic or deterministic worst-case description. Identification in differ-
ent system configurations is outlined, in which distinct issues arising from
open-loop and closed-loop systems, and input and actuator noises are fur-
ther discussed.

In this book, unmodeled dynamics are always described as a bounded
but unknown uncertainty. In contrast, disturbances are modeled either in
a stochastic framework, or as an unknown but bounded uncertainty. Since
these two frameworks require vastly different input design, employ distinct
analysis methods, and entail diversified convergence properties, they are
presented in their elementary but fundamental forms in Parts II and III,
respectively.

Part II covers stochastic methods for linear systems with quantized ob-
servations. It presents identification algorithms, properties of estimators,
and various convergence results in a stochastic system framework. Chap-
ter 3 introduces the main methodology of empirical measures and derives
convergence properties, including strong convergence, convergence in distri-
bution, and mean-square convergence. When noise is modeled as a stochas-
tic process and the system is subject to unmodeled dynamics, it becomes
mandatory to deal with a combined framework, which is investigated in
Chapter 4. Upper and lower error bounds are derived.

When dealing with a complicated system structure, a fundamental idea is
to reduce the identification of its parameters to a finite set of identification
of gains. This is achieved by employing some intrinsic properties of periodic
inputs and invertible mappings. In Chapter 3, we show how a full-rank peri-
odic input can reduce the problem of identifying a finite impulse-response
system to a number of core identification problems of gains. When the
system is rational, the problem becomes much more difficult. We show in
Chapter 5 that this difficulty can be overcome by full-rank periodic inputs
when the rational model is co-prime.

The convergence and efficiency of estimators in quantized identifica-
tion are studied in Chapter 6. When the observation becomes quantized
with a finite number of thresholds, an algorithm, termed optimal quasi-
convex combination estimation (optimal QCCE), is introduced to derive
an estimate from multiple thresholds. The resulting estimate is shown
to be asymptotically efficient by comparing its convergence speed to the
Cramér–Rao (CR) lower bound.
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The utility of full-rank periodic inputs is further investigated in Chapter 7
in typical system configurations such as cascade and feedback connections.
It is revealed that periodicity and full-rankness of a signal are two funda-
mental input properties that are preserved after the signal passes through
a stable system with some mild constraints. Consequently, it becomes clear
that the input design, identification algorithms, and convergence properties
are inherently invariant under open-loop and closed-loop configurations.
Furthermore, we present in Chapter 8 the joint identification of system par-
ameters, unknown thresholds, and unknown noise distribution functions.
The main idea is to use signal scaling to excite further information on
sensor thresholds and noise distribution functions.

Part III is concerned with deterministic methods for linear systems. Here
the emphasis is shifted to the deterministic framework for disturbances.
Under this framework, noise is modeled as unknown but bounded. Our ex-
ploration starts in Chapter 9 with the case of binary-valued observations.
Input design that utilizes the idea of bisection is shown to reduce uncer-
tainty exponentially. This idea is employed when both observation noise
and unmodeled dynamics are present. Explicit error bounds are derived.
Chapter 10 considers the case of quantized observations. The utility of
multiple thresholds in accelerating convergence speed is investigated.

Part IV concentrates on the identification of nonlinear and switching
systems. The first concentration is on Wiener and Hammerstein systems
in which the nonlinearity is confined to be memoryless. The algorithms for
identifying such nonlinear systems closely follow the ideas of signal scaling
in Chapter 8 to separate the identification of the linear dynamics and non-
linear function and to extract information on the nonlinear part. This is es-
pecially apparent in Chapter 11 for Wiener systems. Hammerstein systems
are treated in Chapter 12. Although there are similarities between Wiener
and Hammerstein systems, input design is more stringent in Hammerstein
systems. Some new concepts of input ranks are introduced. Systems with
switching parameters are discussed in Chapter 13. In such systems, param-
eters are themselves Markov chains. Two essential cases are included. In
the first case, parameters switch their values much faster than identification
convergence speeds. Consequently, it is only feasible to identify the average
of the switching parameters. On the other hand, if the parameter jumps
occur infrequently with respect to identification speeds, parameter tracking
by identification algorithms can be accomplished. Algorithms, convergence,
and convergence rates toward an irreducible uncertainty set are established.

Part V explores fundamental complexity issues in system identification
with quantized observations. The main tool is the asymptotic efficiency that
defines the impact of observation time complexity (data length) and space
complexity (number of thresholds) on identification accuracy. The tradeoff
between time complexity and space complexity points to a broad utility
in threshold selection, optimal resource allocations, and communication
quantization design. These discussions are contained in Chapter 14. This
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understanding is further utilized to study the impact of communication
channels on system identification in Chapter 15. The concept of the Fisher
information ratio is introduced.

In addition to the aforementioned chapters and an extensive list of ref-
erences at the end of the book, each chapter (except for Chapter 1) has
a section of notes in which historical remarks, developments of related
work and references, and possible future study topics are presented and
discussed.



2
System Settings

This chapter presents basic system structures, sensor representations, input
types and characterizations, system configurations, and uncertainty types
for the entire book. This chapter provides a problem formulation, shows
connections among different system settings, and demonstrates an overall
picture of the diverse system identification problems that will be covered in
this book. Other than a few common features, technical details are deferred
to later chapters.

Section 2.1 presents the basic system structure and its special cases of
FIR (finite impulse response), IIR (infinite impulse response), rational, and
nonlinear systems that will be discussed in detail in later chapters. Quan-
tized observations and their mathematical representations are described in
Section 2.2. Essential properties of periodic input signals that are critical
for quantized identification are established in Section 2.3. When a system
is embedded in a larger configuration, its input and output are further
confined by the system structure, introducing different identification prob-
lems. Section 2.4 shows several typical system configurations and their cor-
responding unique features in system identification. There are many types
of uncertainties that can potentially impact system identification. These
are summarized in Section 2.5.

L.Y. Wang et al., System Identification with Quantized Observations, Systems &
Control: Foundations & Applications, DOI 10.1007/978-0-8176-4956-2
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2.1 Basic Systems

The basic system structure under consideration is a single-input–single-
output stable system in its generic form

yk = G(Uk, θ) + Δ(Uk, θ̃) + dk, k = 0, 1, 2, . . . , (2.1)

where Uk = {uj , 0 ≤ j ≤ k} is the input sequence up to the current time k,
{dk} is a sequence of random variables representing disturbance, θ is the
vector-valued parameter to be identified, and θ̃ represents the unmodeled
dynamics. All systems will assume zero initial conditions, which will not
be mentioned further in this book. We first list several typical cases of the
system in (2.1).

1. Gain Systems:
yk = auk + dk.

Hence, θ = a, G(Uk, θ) = auk, and Δ(Uk, θ̃) = 0.

2. Finite Impulse Response (FIR) Models:

yk = a0uk + · · · + an0−1uk−n0+1 + dk.

This is usually written in a regression form

G(Uk, θ) = a0uk + · · · + an0−1uk−n0+1 = φ′
kθ,

where θ = [a0, . . . , an0−1]′ is the unknown parameter vector and φ′
k =

[uk, . . . , uk−n0+1] is the regressor. In this case, the model order is n0,
which is sometimes used as a measure of model complexity. Again,
Δ(Uk, θ̃) = 0.

3. Infinite Impulse Response (IIR) Models:

yk =
∞∑

n=0

anuk−n + dk,

where the system parameters satisfy the bounded-input–bounded-
output (BIBO) stability constraint

∞∑

n=0

|an| < ∞.

For system identification, this model is usually decomposed into two
parts:

n0−1∑

n=0

anuk−n +
∞∑

n=n0

anuk−n = φ′
kθ + φ̃′

kθ̃, (2.2)
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where θ = [a0, . . . , an0−1]′ is the modeled part and θ̃ = [an0 , an0+1, . . .]′

is the unmodeled dynamics, with corresponding regressors

φ′
k = [uk, . . . , uk−n0+1] and

φ̃′
k = [uk−n0 , uk−n0−1, . . .],

respectively. In this case, the model order is n0. For the selected n0,
we have

G(Uk, θ) = φ′
kθ; Δ(Uk, θ̃) = φ̃′

kθ̃.

4. Rational Transfer Functions:

yk = G(q, θ)uk + dk. (2.3)

Here q is the one-step shift operator quk = uk−1 and G(q) is a stable
rational function2.1 of q:

G(q) =
B(q)

1 − A(q)
=

b1q + · · · + bn0q
n0

1 − (a1q + · · · + an0q
n0)

.

In this case, the model order is n0 and the system has 2n0 unknown
parameters θ = [a1, . . . , an0 , b1, . . . , bn0 ]

′. Note that in this scenario,
the system output is nonlinear in parameters. To relate it to sensor
measurement errors in practical system configurations, we adopt the
output disturbance setting in (2.3), rather than the equation distur-
bance structure in

yk + a1yk−1 + · · · + an0yk−n0 = b1uk−1 + · · · + bn0uk−n0 + dk,

which is an autoregressive moving average (ARMA) model structure.
The ARMA model structure is more convenient for algorithm devel-
opment. But output measurement noises in real applications occur in
the form of (2.3).

5. Wiener Models:

G(Uk, θ) = H(G0(q, θ1)uk, β),

or in a more detailed expression

xk =
n0−1∑

n=0

anuk−n, yk = H(xk, β) + dk.

2.1When G(q, θ) is used in a closed-loop system, it will be allowed to be unstable,
but is assumed to be stabilized by the feedback loop.
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Here, β is the parameter (column) vector of the output memory-
less nonlinear function H and θ1 = [a0, . . . , an0−1]′ is the parameter
vector of the linear part. The combined unknown parameters are
θ = [θ′1, β

′]′.

6. Hammerstein Models:

G(Uk, θ) = G0(q, θ1)H(uk, β)

or

yk =
n0−1∑

n=0

anxk−n + dk, xk = H(uk, β).

Here, β is the parameter vector of the input memoryless nonlinear
function H and θ1 = [a0, . . . , an0−1]′ is the parameter vector of the
linear part. The combined unknown parameters are θ = [θ′1, β

′]′.

2.2 Quantized Output Observations

Let us begin with Figure 2.1. The output yk in (2.1) is measured by a

s

y

1

0 C1 C2 Cm

m

FIGURE 2.1. Quantized observations

sensor of m0 thresholds −∞ < C1 < . . . < Cm0 < ∞. The sensor can be
represented by a set of m0 indicator functions sk = [sk(1), . . . , sk(m0)]′,
where sk(i) = I{−∞<yk≤Ci}, i = 1, . . . , m0, and

I{yk∈A} =

⎧
⎨

⎩
1, if yk ∈ A,

0, otherwise.

In such a setting, the sensor is modeled as m0 binary-valued sensors
with overlapping switching intervals, which imply that if sk(i) = 1, then
sk(j) = 1 for j ≥ i. An alternative representation of the sensor is by
defining s̃k(i) = I{Ci−1<yk≤Ci} with C0 = −∞, and Cm0+1 = ∞ with the
interval (Cm0 ,∞). This representation employs distinct switching intervals.
Consequently, only one sk(i) = 1 at any k.

Under a quantized sensor of m0 thresholds, each sample of the signal can
be represented by a code of length log2 m0 bits. This will be viewed as the
space complexity of the signal measurements.
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2.3 Inputs

In this book, we use extensively periodic input signals in identification
experiments under a stochastic framework. A signal vk is said to be n0-
periodic if vk+n0 = vk. We first establish some essential properties of peri-
odic signals, which will play an important role in the subsequent develop-
ment.

Toeplitz Matrices

Recall that an n0 × n0 Toeplitz matrix [37] is any matrix with constant
values along each (top-left to bottom-right) diagonal. That is, a Toeplitz
matrix has the form

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 . . . v2 v1

vn0+1
. . . . . . v2

...
. . . . . .

...

v2n0−1 . . . vn0+1 vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is clear that a Toeplitz matrix is completely determined by its entries in
the first row and the first column {v1, . . . , v2n0−1}, which is referred to as
the symbol of the Toeplitz matrix.

Circulant Toeplitz Matrices and Periodic Signals

A Toeplitz matrix T is said to be circulant if its symbol satisfies vk = vk−n0

for k = n0 + 1, . . . , 2n0 − 1; see [25]. A circulant matrix [57] is completely
determined by its entries in the first row [vn0 , . . . , v1], so we denote it as
T ([vn0 , . . . , v1]). Moreover, T is said to be a generalized circulant matrix if
vk = ρvk−n0 for k = n0 + 1, . . . , 2n0 − 1, where ρ > 0, which is denoted by
T (ρ, [vn0 , . . . , v1]) and

T (ρ, [vn0 , . . . , v1]) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vn0 . . . v2 v1

ρv1
. . . . . . v2

...
. . . . . .

...

ρvn0−1 . . . ρv1 vn0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 2.1. An n0-periodic signal generated from its one-period val-
ues v = (v1, . . . , vn0) is said to be full rank if T ([vn0 , . . . , v1]), the circulant
matrix, is full rank.

An important property of circulant matrices is the following frequency-
domain criterion.


