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Université P. Sabatier Toulouse 3
118 Route de Narbonne
31062 Toulouse Cedex, France
degond@mip.ups-tlse.fr

A. Deutsch (Complex Systems
in the Life Sciences)

Center for Information Services
and High Performance Computing

Technische Universität Dresden
01062 Dresden, Germany
andreas.deutsch@tu-dresden.de

M.A. Herrero Garcia (Mathematical Methods)
Departamento de Matematica Aplicada
Universidad Complutense de Madrid
Avenida Complutense s/n
28040 Madrid, Spain
herrero@sunma4.mat.ucm.es

W. Kliemann (Stochastic Modeling)
Department of Mathematics
Iowa State University
400 Carver Hall
Ames, IA 50011, USA
kliemann@iastate.edu

H.G. Othmer (Mathematical Biology)
Department of Mathematics
University of Minnesota
270A Vincent Hall
Minneapolis, MN 55455, USA
othmer@math.umn.edu

L. Preziosi (Industrial Mathematics)
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy
luigi.preziosi@polito.it

V. Protopopescu (Competitive Systems,
Epidemiology)

CSMD
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6363, USA
vvp@epmnas.epm.ornl.gov

K.R. Rajagopal (Multiphase Flows)
Department of Mechanical Engineering
Texas A&M University
College Station, TX 77843, USA
krajagopal@mengr.tamu.edu

Y. Sone (Fluid Dynamics in Engineering

Sciences)
Professor Emeritus
Kyoto University
230-133 Iwakura-Nagatani-cho
Sakyo-ku Kyoto 606-0026, Japan
sone@yoshio.mbox.media.kyoto-u.ac.jp



Antonio Romano · Addolorata Marasco

Continuum Mechanics

Advanced Topics and Research Trends

Birkhäuser
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Preface

In the companion book (Continuum Mechanics Using Mathematica R©) to
this volume, we explained the foundations of continuum mechanics and
described some basic applications of fluid dynamics and linear elasticity.
However, deciding on the approach and content of this book, Continuum
Mechanics: Advanced Topics and Research Trends, proved to be a more
difficult task. After a long period of reflection, we made the decision to direct
our efforts into drafting a book that demonstrates the flexibility and great
potential of continuum physics to describe the wide range of macroscopic
phenomena that we can observe. It is the opinion of the authors that this
is the most stimulating way to learn continuum mechanics. However, it is
also quite evident that this aim cannot be fully realized in a single book.
Consequently, in this book we chose to present only the basics of interesting
continuum mechanics models, along with some important applications of
them.

We assume that the reader is familiar with all of the basic principles
of continuum mechanics: the general balance laws, constitutive equations,
isotropy groups for materials, the laws of thermodynamics, ordinary waves,
etc. All of these concepts can be found in Continuum Mechanics Using
Mathematica and many other books.

We believe that this book gives the reader a sufficiently wide view of
the “boundless forest” of continuum mechanics, before focusing his or her
attention on the beauty and complex structure of single trees within it (in-
deed, we could say that Continuum Mechanics Using Mathematica provides
only the fertile humus on which the trees of this forest take root!).

The topics that we have selected for this book in order to show the power
of continuum mechanics to characterize the experimental behavior of real
bodies, and the order in which these topics are discussed here, are described
below.

In Chap. 1, we discuss some interesting aspects of nonlinear elasticity.
We start with the equilibrium equations and their variational formula-
tion and discuss some peculiarities of the boundary value problems of

ix



x Preface

nonlinear elasticity. We then analyze the homogeneous equilibrium solu-
tions of isotropic materials together with the universal equilibrium solutions
of Ericksen for compressible elastic materials. Moreover, some experimental
results for constitutive equations in nonlinear elasticity are briefly explored.
The existence and uniqueness theorems of Van Buren and Stoppelli, as well
as Signorini’s method, are presented with some recent extensions to live
loads. Finally, the chapter concludes with a survey of the propagation of
acceleration waves in an elastic body, and a new perturbation method for
the analysis of these waves is presented.

In Chap. 2, we discuss the theory of continua with directors, which was
proposed at the beginning of the twentieth century by the Cosserat brothers
and was subsequently developed by many other authors. In this model, a
continuous system S is no longer considered a collection of simple points
defined by their coordinates in a frame of reference; instead, S is regarded
as a set of complex particles that also possess a certain number of vectors
that move independently of the particles with which they are associated.
Such a model provides a better description of aggregates of microcrystals,
polarized dielectrics, ferromagnetic substances, and one-dimensional and
two-dimensional bodies. It can also be applied whenever the system contains
a length that: (i) is less than the limit considered in continuum mechanics;
(ii) characterizes the dimensions of microscopic regions that influence the
macroscopic behavior of the body through their internal evolutions.

In Chap. 3, we consider a simplified model of a continuum with a nonma-
terial moving surface across which the bulk fields can exhibit discontinu-
ities. The general balance equations of this model are formulated together
with the associated local field equations and jump conditions. In Chap. 4,
this model is used to describe the phase equilibrium of two different phases.
In particular, Maxwell’s rule and Clapeyron’s equation are derived.

The same model is applied in Chap. 5 to describe dynamical phase
changes like melting and evaporation. The related difficult free-boundary
problems are stated together with some numerical results.

Chapter 6 introduces the principles of mixture theory. This model, which
allows us to describe the evolution of each constituent of a mixture as well
as the whole mixture, is very useful in chemistry, biology, and mineralogy
(alloys). This chapter contains a proof for the Gibbs rule, together with an
analysis of phase equilibrium in a binary mixture.

Chapters 7 and 8 describe the interactions of electric and magnetic fields
with matter using a continuum model with a nonmaterial interface. After
a general discussion of the different properties resulting from a change of
reference frame for the mechanical and electromagnetic equations, the ap-
proximations of quasi-electrostatics and quasi-magnetostatics are discussed.
In particular, by adopting a continuum mechanics approach, we show that
various physical models that have been proposed to explain the behavior of
dielectrics and magnetic bodies are actually equivalent from a macroscopic
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perspective. In other words, different microscopic models can lead to the
same macroscopic behavior.

In Chap. 9, we present the macroscopic approach to micromagnetism
together with the very difficult mathematical problems associated with this
model. Among other things, it is shown that the model of a continuum with
a nonmaterial interface can be used to determine the form of Weiss’ domains
for some crystals and geometries.

Chapter 10 provides an introduction to continua in special relativity. Af-
ter a brief analysis of the historical motivations of this theory, Minkowski’s
geometrical model of spacetime is presented. The relativistic balance equa-
tions are then formulated in terms of the symmetric momentum–energy
four-tensor. After an accurate description of Fermi transport, the intrin-
sic deformation gradient is introduced, in order to define elastic materials
by extending the objectivity principle to special relativity. We then justify
the different transformation formulae adopted in the literature for the to-
tal work, the total energy and the total heat of an homogeneous system
through a wide-ranging discussion of the absolute and relative viewpoints.
At the end of this chapter, the fundamental problem of the interaction
between matter and electromagnetic fields is analyzed, together with the
different models that have been adopted to describe it. Finally, we prove
the equivalence of all of these proposals.

There are only a few notebooks written in Mathematica R© for this book
(which can be downloaded from the publisher’s website at
http:// www.birkhauser.com/978-0-8176-4869-5), since the topics here dis-
cussed are more theoretical in nature than those treated in Continuum Me-
chanics Using Mathematica. However, many of the notebooks associated
with that book can also be applied to the topics covered here.

A. Romano
A. Marasco



Chapter 1

Nonlinear Elasticity

1.1 Preliminary Considerations

In this chapter we focus on the basics of nonlinear elasticity in order
to show its interesting mathematical and physical aspects. Readers who
are interested in delving deeper into this subject should refer to the many
existing books on it (see, for instance, [1]–[15]). We start by listing the main
difficulties associated with this subject:

• The equations governing the equilibrium and the motion of an elastic
body are nonlinear.

• Instead of being expressed by given functions assigned to the bound-
ary of the region occupied by the elastic body, the boundary condi-
tions are generally functions of the unknown deformation.

• Finding the forms of the constitutive equations of an elastic isotropic
material is a very complex experimental task. We must determine un-
known functions instead of the two Lamé constants that characterize
a linearly elastic material.

The nonlinearity of the basic equations of nonlinear elasticity make it
difficult to determine explicit solutions for both the equilibrium equations
and the motion equations, except in simple cases. For the same reason,
it is also an arduous task to prove existence and uniqueness theorems for
boundary value problems that can be applied to equilibrium or dynamical
problems in nonlinear elasticity. In particular, wave propagation analysis
is much more complex than in linear elasticity. In this chapter, we try to
analyze all of the above problems. When the subject requires a deeper
analysis, references will be suggested.

We assume that the reader is familiar with the foundations of contin-
uum mechanics. Therefore, all of the basic concepts (such as the balance
equations) are provided without explanations. If necessary, the reader can

1A. Romano, A. Marasco, Continuum Mechanics, Modeling and Simulation in Science, 
Engineering and Technology, DOI 10.1007/978-0-8176-4870-1_1,  
© Springer Science+Business Media, LLC 2010 



2 Chapter 1. Nonlinear Elasticity

consult other books on this subject (see, for instance, [1]–[15]); in particular,
[16] utilizes the same notation as we have adopted here.

1.2 The Equilibrium Problem

Let S be a homogeneous elastic system in the reference configuration C∗.
From now on, S is assumed to be at a constant and uniform temperature.
The system S adopts an equilibrium configuration C in the presence of
body forces acting on the region C and surface tensions across the whole
boundary ∂C or to a part Σ of ∂C. The task of elastostatics is to determine
the finite deformation x = x(X), where X ∈ C∗, x ∈ C, or, equivalently,
the displacement u(X) = x(X)−X that S undergoes when moving from
C∗ to C under the influence of the applied forces mentioned above. We
denote the deformation gradient by F = (∂xi/∂XL), the displacement gra-
dient by H = (∂ui/∂XL) = F − I, and the right Cauchy–Green tensor by
C = FFT .

The equilibrium equations, the jump conditions across a surface Σ1

separating two different materials, and the boundary conditions are,
respectively:

∇x ·T + ρb = 0, in C − Σ1, (1.1)
[[T · n]] = 0, on Σ1, (1.2)

T ·N = t, on Σ, (1.3)

where ρ is the mass density in C, T is the Cauchy stress tensor , n is the
unit vector normal to Σ1, and N is the unit vector normal to the part
(denoted Σ) of ∂C where surface forces act with a density of t.

It is convenient to use the Lagrangian equilibrium conditions, since the
unknown function x = x(X) depends on the point X in C∗. Another reason
to use these equations is that the forces acting on the part Σ of the boundary
∂C cannot be assigned because ∂C is unknown. The Lagrangian formulation
corresponding to (1.1)–(1.3) is expressed by the following equations:1

∇X ·T∗ + ρ∗b = 0, in C∗ − Σ∗1, (1.4)
[[T∗ · n∗]] = 0, on Σ∗1, (1.5)

T∗ ·N∗ = t∗, on Σ∗, (1.6)

where T∗ is the Piola–Kirchhoff tensor and ρ∗, n∗, σ∗, N∗, Σ∗, Σ∗1, and t∗
are the Lagrangian quantities corresponding to T, ρ, n, σ, N, Σ, Σ1, and t,

1See [16], p. 148.



1.2. The Equilibrium Problem 3

respectively. In this chapter we will frequently use the following relations:2

T∗ = JT(F−1)T , (1.7)

dσ = J
√

N∗ ·C−1N∗ dσ∗, (1.8)

N =
(F−1)T

√
N∗ ·C−1N∗

N∗, (1.9)

t =
1
J

√
N∗ ·C−1N∗ t∗. (1.10)

In a hyperelastic material, the Piola–Kirchhoff stress tensor T∗ is ex-
pressed in terms of the specific elastic potential ψ by the relation (see [16],
p. 161)

T∗ = ρ∗
∂ψ(F)
∂F

= ρ∗
∂ψ̂(H)
∂H

, (1.11)

where we have introduced the notation ψ(F) = ψ(I + H) ≡ ψ̂(H).
Substituting (1.11) into (1.4) and introducing the fourth-order elasticity

tensor

AijLM (H) = ρ∗
∂T∗iL

∂HjM
= ρ∗

∂2ψ̂

∂HiL∂HjM
, (1.12)

we obtain the following second-order quasi-linear partial differential system

AijLM (H)
∂2uj

∂XL∂XM
+ ρ∗bi = 0, (1.13)

whose unknowns are the components ui, i = 1, 2, 3, of the displacement.
One of the main aims of elasticity is to verify that the system (1.13) and

the boundary conditions (1.2)–(1.3) allow us to determine (at least in prin-
ciple) the finite deformation x = x(X); i.e., the equilibrium configuration
of the body S to which a given load is applied. In other words, we need
to establish the conditions for the unknown displacement field that make
it possible to prove existence and uniqueness theorems for the boundary
value problem obtained by associating the boundary conditions (1.2)–(1.3)
with the equilibrium equations (1.13).

In the next section, some specific difficulties of this boundary value prob-
lem will be highlighted.

2See [16], p. 82, p. 148.



4 Chapter 1. Nonlinear Elasticity

1.3 Remarks About Equilibrium Boundary Problems

We assume that the fields that appear in the equilibrium equations and
the boundary conditions are smooth enough to allow us to perform all of the
differentiation operations required. Moreover, the boundary part ∂C∗ −Σ∗
is assumed to be fixed or deformed in a known manner. Formally, we write

x(X) = x0(X) on ∂C∗ − Σ∗. (1.14)

If Σ∗ = ∅, the corresponding boundary value problem (BVP) is said to
be one of place; if ∂C∗ = Σ∗, then the BVP is one of traction. Finally, the
BVP is said to be mixed when Σ∗ ⊂ ∂C∗.

We can make the following remarks about these BVPs.

Remark The boundary data of a BVP are given functions of the bound-
ary of the domain in which the solution must be found. For instance, to
solve the Laplace equation in a domain Ω, we can provide either the values
of the unknown solution u on ∂Ω (Dirichlet’s BVP) or the values of its
normal derivative (Neumann’s BVP). The following examples show that a
different situation occurs in nonlinear elasticity.

• Let S be an elastic body at equilibrium, with a uniform pressure
p0 acting on the boundary ∂C of the equilibrium configuration. The
Eulerian formulation of the corresponding BVP is expressed by the
equations:

∇x · T = 0 in C,
T ·N = −p0N on ∂C.

In this formulation, the pressure p0 is assigned to the unknown bound-
ary ∂C. Using (1.4), (1.6), (1.9), and (1.10), this BVP can be formu-
lated in the following Lagrangian form:

∇X · T∗ = 0 in C∗,
T∗ · N∗ = −p0J(F−1)T N∗ ≡ t∗(X) on ∂C∗.

Consequently, t∗ is not a known function of X ∈ ∂C∗ since it depends
on the gradient of the unknown deformation. In other words, the
function t∗(X) cannot be assigned completely because we only know
how it depends on the deformation.

• Analogously, consider the elastic system S in Fig. 1.1, and suppose
that the specific force t = ks(x)i acts on the part Σ of its boundary.



1.3. Remarks About Equilibrium Boundary Problems 5

In the above expression, s(x) is the lengthening of the spring at the
point x, k is its elastic constant, and i is the unit vector orthogonal
to the wall l.

S �

xs l

Fig. 1.1 A surface live load

In view of (1.10), the boundary condition to assign to the correspond-
ing part Σ∗ of ∂C∗ is

t∗ = −J
√

N∗ · C−1 · N∗ k s(x(X))i,

which again depends on the unknown deformation.

Any load which depends on the deformation in C∗ is called a live load ,
whereas a load that is a known function of X ∈ Σ∗ is said to be a dead
load .

Dead loads have received a great deal of attention in the literature, but
they are actually very difficult to realize. In fact, taking into account the
condition that follows from (1.8) and (1.10)

t∗(X) =
dσ

dσ∗
t(x),

we see that the traction t at the boundary Σ must be given in such a way
that t∗ depends on X but not on the deformation. For instance, we could
apply a specific force to a part of the boundary of the Eulerian equilibrium
configuration given by

t =
dp
dσ
,

where the force dp that acts on the elementary boundary area dσ is con-
stant. Clearly, it is not an easy task to achieve such a load experimentally.
Even in the case of a uniform deformation (F = const) under the action
of a constant traction t, the corresponding Lagrangian traction does not
correspond to a dead load.

Remark A uniqueness theorem cannot hold for a BVP associated with
nonlinear elasticity. Three classic examples illustrate this statement.

• There are deformations that coincide at the boundary but assume
different values inside the body. For instance, John noted that if either
the external or internal boundary of a spherical shell S is rotated by



6 Chapter 1. Nonlinear Elasticity

a multiple of 2π about an axis passing through its center without
modifying the other boundary, the whole boundary of S will assume
the same position but the internal state will be greatly modified.

• u = 0 is an equilibrium solution of a thin hemispherical shell with zero
surface traction. However, there is a second solution corresponding to
the everted shell.

• Ericksen noted that in a pure traction problem with dead loads, a bar
S that is subjected to equal and opposite axial forces at its ends should
have at least two equilibrium configurations. In one of these, the forces
are tractions; in the other, the bar is subjected to compressions after
a rotation of π. Moreover, let S be at equilibrium in the Eulerian
configuration C under the action of traction forces t acting at its
ends σ1 and σ2 (see Fig. 1.2). If t∗ is the traction per unit area in
the reference configuration C∗, then it is easy to verify that S is
still at equilibrium in the rotated configuration C′ under the action
of the compression t′ = t. Let C′′ denote the Eulerian equilibrium
configuration corresponding to the Lagrangian equilibrium problem
starting from the reference configuration C′.

F

Q

F’

C*
C

C’ C’’

��

��

��

�� ��

��

��

��

t*

t’

t

t’’

Fig. 1.2 Two possible
equilibrium solutions of the

same boundary problem

By applying the objectivity principle, and recalling that the loads
are dead, we can easily prove that C′′ is another possible equilibrium
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configuration corresponding to the Lagrangian boundary problem as-
sociated with C∗.

Remark The local equilibrium of any elementary volume dc of S is de-
scribed by conditions (1.1)–(1.3), which do not imply the global equilibrium
of S. If we denote by Φ and MO, respectively, the total force and torque of
the reactions due to the constraints necessary to satisfy the displacement
datum (1.14), then the following global equilibrium conditions hold:∫

C∗
ρ∗b dc∗ +

∫
Σ∗

t∗ dσ∗ + Φ = 0, (1.15)∫
C∗
ρ∗r × b dc∗ +

∫
Σ∗

r × t∗ dσ∗ + MO = 0. (1.16)

These conditions state that the resultant and the total torque (with respect
to the pole O) of all of the forces acting on S vanish. It is clear that, if
∂C∗−Σ∗ �= ∅, the reaction fields Φ and MO satisfy (1.15)–(1.16). However,
in a traction BVP, conditions (1.15) and (1.16) become∫

C∗
ρ∗b dc∗ +

∫
∂C∗

t∗ dσ∗ = 0, (1.17)∫
C∗
ρ∗r × b dc∗ +

∫
∂C∗

r × t∗ dσ∗ = 0, (1.18)

so that, due to the presence of t∗ and r = x(X) − x0, they depend on the
deformation. Consequently, it is no longer possible to establish whether they
are satisfied a priori. In other words, (1.17) and (1.18) represent equilibrium
compatibility conditions for the data that can only be verified a posteriori.

1.4 Variational Formulation of Equilibrium

The equilibrium BVPs of an elastic system can also be formulated in
variational terms. This means that the equilibrium solutions of the BVPs
minimize suitable functionals. In this section, the deformation functions
are assumed to be of class C2(C∗), since they must satisfy (1.4)–(1.6).
However, if a weak solution is searched for,3 then the deformation functions
are assumed to belong to suitable Sobolev spaces.

3See Appendix A.
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In order to apply this approach to the equilibrium problems, we introduce
the Banach space

W = {u(X) ∈ C2(C∗) : u(X) = 0, on∂C∗ − Σ∗} (1.19)

with the norm

‖u(·)‖ = MaxX∈C∗

{∣∣ui(X)
∣∣ , ∣∣∣∣∂ui(X)

∂XL

∣∣∣∣ , ∣∣∣∣ ∂2ui(X)
∂XL∂XM

∣∣∣∣} . (1.20)

If we denote the elastic energy functional defined on W by

Ψ[u(·)] =
∫

C∗
ρ∗ψ(H) dc∗, (1.21)

then the following theorem holds.

Theorem 1.1
The displacement u0(X) is an equilibrium displacement—i.e., it is a solu-
tion of the BVP (1.4)–(1.6)—if and only if it obeys the variational equality4

DΨ [u0(·)|h(·)] =
∫

C∗
ρ∗b · h(X) dc∗ +

∫
Σ∗

t∗ · h(X) dσ∗, ∀h(·) ∈ W,

(1.22)
where DΨ is the Frechét differential of the functional (1.21).

PROOF We have

Ψ[u(·) + h(·)] − Ψ[u(·)] =
∫

C∗
ρ∗

∂ψ

∂HiL

∂hi

∂XL
dc∗ +O(‖h(·)‖),

so that, considering (1.11) and recalling that h = 0 on C∗ − Σ∗, we find
that

DΨ[u0(·)|h(·)] =
∫

C∗
ρ∗

∂ψ

∂HiL

∂hi

∂XL
dc∗

4The operator F : F −→ F ′ between two Banach spaces F and F ′ is Fréchet differen-

tiable at u ∈ F if
F(u + h) = F(u) + DF(u | h) + O(‖ h ‖)

∀h ∈ F , where

DF(u | ·) : F −→ F ′

is a linear continuous operator called the Fréchet differential of F . The notation

DF(u | ·) = DuF · h,

defines the Fréchet derivative of F at u.
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= −
∫

C∗

∂

∂XL

(
ρ∗

∂ψ

∂HiL

)
hi dc∗ +

∫
Σ∗
ρ∗

∂ψ

∂HiL
hiN∗L dσ∗

= −
∫

C∗
h · ∇X ·T∗ dc∗ +

∫
Σ∗

h · T∗N∗ dσ∗.

It is now straightforward to show that (1.22) is equivalent to the equilibrium
conditions (1.4)–(1.7).

Theorem 1.2
If b = b(X) and t∗ = t∗(X), then a displacement u0(X) ∈ W is an equi-
librium displacement if and only if it is an extremal of the functional

F [u(·)] =
∫

C∗
ρ∗ψ[H] dc∗ −

∫
C∗
ρ∗b(X) · u(X) dc∗ −

∫
Σ∗

t∗(X) · u(X) dσ∗;

(1.23)
i.e., if and only if the following condition holds:

DF [u0(·)|h(·)] = 0, ∀h(X) ∈W. (1.24)

PROOF If we note that

D

(∫
C∗
ρ∗b · u(X) dc∗ +

∫
Σ∗

t∗·u(X) dσ∗

)
=
∫

C∗
ρ∗b · h(X) dc∗ +

∫
Σ∗

t∗ · h(X) dσ∗,

then the proof follows from Theorem 1.1.

Theorem 1.3
If b = −∇xϕ(x) and the body is subjected to a uniform pressure pe, then
u0(X) ∈ W is an equilibrium displacement if and only if it is an extremal
of the functional

F̄ [u(·)] =
∫

C∗
(ρ∗ψ(H) + ρ∗ϕ(u) + peJ) dc∗

=
∫

C

ρ

(
ψ(H) + ϕ(u) +

pe

ρ

)
dc; (1.25)

i.e., if and only if

DF̄ [u0(·)|h(·)] = 0, ∀h(X) ∈W. (1.26)

PROOF First, taking into account the results of Theorem 1.1, we have

D

∫
C∗

(ρ∗ψ(H) + ρ∗ϕ(u)) dc∗
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= −
∫

C∗
h · (∇XT∗ − ρ∗∇xϕ) dc∗ +

∫
Σ∗

h ·T∗Ndσ∗

= −
∫

C∗
h · (∇XT∗ + ρ∗b) dc∗ +

∫
Σ∗

h ·T∗N∗ dσ∗.

If we prove that

D

∫
C∗
peJ dc∗ = −

∫
Σ∗
peJ(F)−1N∗ · h dσ∗,

then the condition DF̄ = 0 supplies the equilibrium equations and bound-
ary conditions in the Lagrangian form. To this end, we note that (see (3.50)
in [16])

D

∫
C∗
peJ dc∗ =

∫
C∗
pedJ dc∗ =

∫
C∗
pe

∂J

∂FiL

∂hi

∂XL
dc∗

=
∫

C∗
peJ(F−1)iL

∂hi

∂XL
dc∗

=
∫

C∗

∂

∂XL

[
peJ(F−1)iLhi

]
dc∗

−
∫

C∗

∂

∂XL

[
peJ(F−1)iL

]
hi dc∗ = −

∫
Σ∗

t∗ · h dσ∗,

since
∂

∂XL

(
J(F−1)iL

)
= 0. (1.27)

In fact, from the identity

0 =
∂

∂XM

[
J

J
FiL(F−1)Mj

]
,

when (3.49) of [16] is taken into account, we derive

0 = J(F−1)Mi
∂

∂XM

[
1
J
FiL

]
+
FiL

J

∂

∂XM
[J(F−1)Mi]

=
1
J
FiL

∂

∂XM
[J(F−1)Mi],

so that

0 = (F−1)LjFiL
∂

∂XM
[J(F−1)Mi]

= δij
∂

∂XM
[J(F−1)Mi] =

∂

∂XM
[J(F−1)Mj ],

and the theorem is proved.
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1.5 Isotropic Elastic Materials

Let S be an elastic body that is homogeneous and isotropic in the ref-
erence configuration C∗. In Sect. 7.2 of [16], it is shown that the elastic
potential ψ of S is a function of the principal invariants I, II, and III of
the left Cauchy–Green tensor B = FFT

ψ = ψ(I, II, III), (1.28)

and that the Cauchy stress tensor T can be written as follows:

T = f0I + f1B + f2B2, (1.29)

where

f0 = 2ρ III
∂ψ

∂III
, (1.30)

f1 = 2ρ
(
∂ψ

∂I
+ I

∂ψ

∂II

)
, (1.31)

f2 = −2ρ
∂ψ

∂II
. (1.32)

On the other hand, from the Cayley–Hamilton theorem,5

B3 − IB2 + IIB− IIII = 0. (1.33)

Multiplying by B−1 yields

B2 = IB − III + IIIB−1.

For this relation, we can write (1.29) in the equivalent form

T = ϕ0I + ϕ1B + ϕ2B−1, (1.34)

where

ϕ0 = f0 − II f2, (1.35)
ϕ1 = f1 + I f2, (1.36)
ϕ2 = III f2, (1.37)

and

ϕ0 = 2ρ
(
II

∂ψ

∂II
+ III

∂ψ

∂III

)
, (1.38)

ϕ1 = 2ρ
∂ψ

∂I
, (1.39)

ϕ2 = −2ρIII
∂ψ

∂II
. (1.40)

5See p. 92 of [16].
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For an incompressible elastic body, we have III = detB = 1, and the above
formulae become (see p. 165 of [16])

ψ = ψ(I, II), (1.41)

T = −pI + 2ρ
∂ψ

∂I
B − 2ρ

∂ψ

∂II
B−1, (1.42)

where p is an undetermined pressure that depends on the point x.
In view of some of the problems that we consider later, it is useful to

introduce the elastic energy per unit volume of the reference configuration

Ψ = ρ∗ψ, (1.43)

through which the relation (1.34) for an elastic compressible material be-
comes

T =
2
J

(
II
∂Ψ
∂II

+ III
∂Ψ
∂III

)
I +

2
J

∂Ψ
∂I

B − 2
∂Ψ
∂II

B−1, (1.44)

since ρJ = ρ
√
III = ρ∗. For an incompressible elastic material (III = 1),

(1.42) can be written as follows:

T = −pI + 2
∂Ψ
∂I

B− 2J
∂Ψ
∂II

B−1. (1.45)

1.6 Homogeneous Deformations

A deformation C∗ → C of the elastic body S is said to be a homogeneous
deformation if it has the form

x = FX + c, (1.46)

where the deformation gradient F and the vector c are constant.
When the material is compressible, the stress tensor T is given by (1.29).

Consequently, it is constant in any homogeneous deformation, and the equi-
librium equation (1.4) is obeyed if and only if there is no body force. In
other words, in the absence of body forces, any homogeneous deformation
obeys the equilibrium equation (1.4) for any isotropic elastic material. How-
ever, the boundary condition (1.6) depends on both the material and the
chosen homogeneous deformation.

When the material is incompressible, a homogeneous deformation obeys
the equilibrium equation (1.4), even in the presence of body forces, due to
the presence of the undetermined function p(x). If, in particular, b = 0,
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then the pressure p is constant. Again, the boundary condition depends on
the material and the homogeneous deformation chosen.

We derive a very important conclusion from these remarks. At least in
principle, it is possible to determine the constitutive relations (1.44) and
(1.45) using homogeneous deformations and surface forces.

In the following sections we describe some important homogeneous de-
formations as well as some famous experiments to determine the forms of
the constitutive equations of the stress tensor for particular isotropic elastic
materials.

1.7 Homothetic Deformation

A homothetic deformation of an elastic system S is expressed by the
equations

xi = λiXi, i = 1, 2, 3, (1.47)

where the constants λi are nonzero. If λi > 1, then the system S exhibits
an extension along the axis Xi; if 0 < λi < 1, then the system S exhibits a
compression along the axis xi. The deformation gradient of (1.47) is given
by the matrix

F =

⎛⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ (1.48)

so that the coordinate axes are the principal axes of deformation. From
(1.48), we derive

J ≡ detF = λ1λ2λ3; (1.49)

moreover, the left Cauchy–Green tensor B = FFT and its inverse can, re-
spectively, be written as

B =

⎛⎝λ2
1 0
0 λ2

2 0
0 0 λ2

3

⎞⎠ , B−1 =

⎛⎜⎝
1
λ2
1

0
0 1

λ2
2

0
0 0 1

λ2
3

⎞⎟⎠ . (1.50)

Finally, the principal invariants of B are

I = trB = λ2
1 + λ2

2 + λ2
3, (1.51)

II = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, (1.52)

III = λ2
1λ

2
2λ

2
3. (1.53)
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Starting from (1.50)–(1.53) and (1.44), we derive the following expressions
for the Cauchy stress tensor components in a compressible elastic material:

T11 = 2λ1

{
1

λ2λ3

[
∂Ψ
∂I

+ (λ2
2 + λ2

3)
∂Ψ
∂II

]
+ λ2λ3

∂Ψ
∂III

}
, (1.54)

T22 = 2λ2

{
1

λ1λ3

[
∂Ψ
∂I

+ (λ2
1 + λ2

3)
∂Ψ
∂II

]
+ λ1λ3

∂Ψ
∂III

}
, (1.55)

T33 = 2λ3

{
1

λ1λ2

[
∂Ψ
∂I

+ (λ2
1 + λ2

2)
∂Ψ
∂II

]
+ λ1λ2

∂Ψ
∂III

}
, (1.56)

Tij = 0, i �= j. (1.57)

These relations prove that the state of tension inside the body S is uniform,
so the equilibrium equations are obeyed.

Let us denote the parametric equations of the boundary of S in the
reference configuration C∗ by

X = X(u1, u2).

The parametric equations of the boundary ∂C in the deformed equilibrium
configuration C are then

x = λiX(u1, u2). (1.58)

It remains to evaluate the surface force

t = T · N (1.59)

that must be applied to the unit surface of ∂C in order to make the defor-
mation (1.47) possible. In the above equation, N denotes the unit vector
normal to the known boundary surface (1.58).

We now apply the above considerations to the parallelepiped S shown in
Fig. 1.3. We note that the faces of S remain parallel to each other under
the deformation (1.47). Therefore, the unit vector N orthogonal to the face
ABCD after the deformation becomes

N = (0, 1, 0),

whereas the unit vector ν tangent to the same face ABCD has the compo-
nents

ν = (α, 0, β),

where
α2 + β2 = 1.
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X1

X2

X3

n

�

A

B

C

D
d

Fig. 1.3 Homothetic
deformation of a
parallelepiped

Consequently, the normal and tangential forces acting on this face are

tn = (n ·Tn)n = T22n, tν = (ν · Tn)ν = 0, (1.60)

respectively. Applying the same considerations to the other faces, we con-
clude that the forces are orthogonal to the faces of the parallelepiped on
which they act.

When S is incompressible J = λ1λ2λ3 = 1, and, in view of (1.45) and
(1.50), we can state that the stress tensor has the following components:

Tii = −p+ 2
∂Ψ
∂I

λ2
i − 2

∂Ψ
∂II

1
λ2

i

, i = 1, 2, 3, (1.61)

Tij = 0, i �= j. (1.62)

In the absence of body force, equilibrium equation (1.1) is verified if the
undetermined pressure p satisfies the equation

∂p

∂xi
= 0; (1.63)

i.e., if it is equal to a constant p0.
Finally, since λ1λ2λ3 = 1, we have the following for an incompressible

material:

Tii = −p0 + 2
∂Ψ
∂I

λ2
i − 2

∂Ψ
∂II

1
λ2

i

, i = 1, 2, (1.64)

T33 = −p0 + 2
∂Ψ
∂I

1
λ2

1λ
2
2

− 2
∂Ψ
∂II

λ2
1λ

2
2, (1.65)

Tij = 0, i �= j, (1.66)
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and the principal invariants of B become:

I = λ2
1 + λ2

2 +
1

λ2
1λ

2
2

, (1.67)

II = λ2
1λ

2
2 +

1
λ2

1

+
1
λ2

2

, (1.68)

III = 1. (1.69)

We conclude this section by noting that, if there is no surface force on the
face X3 = 0 or on the face X3 = d, T33 = 0 and (1.65) gives the following
value for the pressure p0:

p0 = 2
∂Ψ
∂I

1
λ2

1λ
2
2

− 2
∂Ψ
∂II

λ2
1λ

2
2. (1.70)

Introducing this value of p0 into (1.64), we obtain

T11 = 2
(
λ2

1 −
1

λ2
1λ

2
2

)(
∂Ψ
∂I

+ λ2
2

∂Ψ
∂II

)
, (1.71)

T22 = 2
(
λ2

2 −
1

λ2
1λ

2
2

)(
∂Ψ
∂I

+ λ2
1

∂Ψ
∂II

)
. (1.72)

1.8 Simple Extension of a Rectangular Block

The particular homothetic deformation

x1 = αX1, x2 = βX2, x3 = βX3, (1.73)

where α and β are positive real numbers, is termed a simple extension. The
tensors B and B−1 that correspond to this deformation are

B =

⎛⎝α2 0 0
0 β2 0
0 0 β2

⎞⎠ , B−1 =

⎛⎜⎜⎜⎜⎝
1
α2

0 0

0
1
β2

0

0 0
1
β2

⎞⎟⎟⎟⎟⎠ . (1.74)

If S is compressible, the stress tensor is given by (1.54)–(1.57):

T11 = 2α
(

1
β2

∂Ψ
∂I

+ 2
∂Ψ
∂II

+ β2 ∂Ψ
∂III

)
, (1.75)

T22 = T33 = 2
[

1
α

(
∂Ψ
∂I

+ (α2 + β2)
∂Ψ
∂II

)
+ αβ2 ∂Ψ

∂III

]
, (1.76)

Tij = 0, i �= j. (1.77)
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Let S be a rectangular block with edges that are parallel to the coordinate
axes. Also let ui, i = 1, 2, 3, be the unit vectors along these axes. If ∂Si is
the face with ui as its unit normal vector, and ∂S′

i is the face with −ui as
its unit normal vector, then the surface forces ti and t′i that must be applied
to ∂Si and ∂S′

i, respectively, in order to achieve the above deformation are

ti = Tiiui, t′i = −Tiiui. (1.78)

It is quite natural to wonder if a simple extension can be obtained by the
action of normal forces on the faces ∂S1 and ∂S′

1. In order to achieve this,
we first apply the forces t1 and t′1 obtained from (1.78) for i = 1 to these
faces; moreover, due to (1.77), we must satisfy the following condition if
the forces acting on the other faces are to be eliminated:

T22 =
1
αβ

∂Ψ
∂I

+
(
α

β
+
β

α

)
∂Ψ
∂II

+ αβ
∂Ψ
∂III

= 0. (1.79)

For a given α (i.e., for an assigned extension or contraction along u1),
the following three cases are possible:

1. Equation 1.79 allows a unique real positive solution β and the re-
quested extension can be achieved.

2. Equation 1.79 does not permit real solutions, and so the assigned
extension cannot be achieved in this material.

3. Equation 1.79 allows a number of real positive solutions (β1, β2, . . .).
Then, by substituting the pairs (α, β1), (α, β2), . . . into (1.75), we can
derive the different forces that can be applied to ∂S1 and ∂S′

1 to give
the same extension.

The last case could not be verified for linear elasticity. In fact, in this
approximation, when we denote Lamé’s coefficients (see p. 176 of [16]) by
λ and μ, (1.79) reduces to the condition

λα+ 2β(λ+ μ) − 3λ− 2μ = 0,

which is a first-degree equation. Consequently, for a given α, it allows one
positive real solution β at most.

Again, we refer this deformation to an incompressible elastic parallelepiped
S. For a simple extension that preserves the volume, we have β2 = 1/α,
and the matrices F, B, and B−1 (see 1.74) become

F =

⎛⎜⎜⎜⎝
α 0 0

0
1√
α

0

0 0
1√
α

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎝
α2 0 0

0
1
α

0

0 0
1
α

⎞⎟⎟⎠ , B−1 =

⎛⎜⎜⎝
1
α2

0 0

0 α 0
0 0 α

⎞⎟⎟⎠ . (1.80)
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From (1.45), which defines the Cauchy stress tensor for such a material,
and from (1.80), we obtain

T11 = −p+ 2
∂Ψ
∂I

α2 − 2
∂Ψ
∂II

1
α2
, (1.81)

T22 = T33 = −p+ 2
∂Ψ
∂I

1
α
− 2

∂Ψ
∂II

α, (1.82)

Tij = 0, i �= j. (1.83)

Now, in the absence of body forces, it is possible to achieve the simple
extension without any surface forces on the faces parallel to the coordinate
planes Ox1x2 and Ox1x3. According to these conditions we have T22 =
T33 = 0, so the uniform pressure is given by the relation

p =
2
α

∂Ψ
∂I

− 2α
∂Ψ
∂II

. (1.84)

Substituting this expression into (1.81), we finally obtain

T11 = 2
(
α2 − 1

α

)
∂Ψ
∂I

+ 2
(
α− 1

α2

)
∂Ψ
∂II

. (1.85)

1.9 Simple Shear of a Rectangular Block

Let S be a rectangular block. The deformation

x1 = X1 +KX2, x2 = X2, x3 = X3 (1.86)

is called a simple shear of S. In this deformation, each plane X2 = const.
slides on itself. Any plane X3 = const. undergoes a similar deformation.
Finally, each plane X1 = const. rotates by the shear angle α, and K =
arctanα (see Fig. 1.4) is said to be the amount of shear .

The deformation gradient F and the left Cauchy–Green tensor are given
by the matrices

F =

⎛⎝1 K 0
0 1 0
0 0 1

⎞⎠ , B =

⎛⎝1 +K2 K 0
K 1 0
0 0 1

⎞⎠ . (1.87)

Since

detF = 1, (1.88)
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the deformation preserves the volume.

O
X1

X2

X
3

S

�
N1

�1

Fig. 1.4 Simple shear of a
parallelepiped

The principal invariants of B are

I = 3 +K2, (1.89)
II = 3 +K2, (1.90)
III = 1, (1.91)

and the matrix B−1 is

B−1 =

⎛⎝ 1 −K 0
−K 1 +K2 0
0 0 1

⎞⎠ . (1.92)

Using the equations of the two bent faces π1 and π2 of S,

x1 +Kx2 = 0, x1 −Kx2 = a, (1.93)

where a is the length of the edge between π1 and π2, we can derive the unit
vectors normal to them:

N1,2 =
(
± 1√

1 +K2
,± K√

1 +K2
, 0
)
. (1.94)

Consequently, the vectors tangent to π1 and π2 and parallel to the plane
Ox1x2 are

ν1,2 =
(
± K√

1 +K2
,± 1√

1 +K2
, 0
)
. (1.95)

Introducing (1.87)–(1.92) into (1.29)–(1.40), we derive

T11 = 2
(

(1 +K2)
∂Ψ
∂I

+ (2 +K2)
∂Ψ
∂II

+
∂Ψ
∂III

)
, (1.96)

T22 = 2
(
∂Ψ
∂I

+ 2
∂Ψ
∂II

+
∂Ψ
∂III

)
, (1.97)


