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Preface

Because of the increasing complexity and growth of real-world networks, their
analysis by using classical graph-theoretic methods is oftentimes a difficult pro-
cedure. Thus, there is a strong need to combine graph-theoretic methods with
mathematical techniques from other scientific disciplines, such as machine learning,
statistics, and information theory, for analyzing complex networks more adequately.

The book Structural Analysis of Complex Networks presents theoretical as well
as practice-oriented results for structurally exploring complex networks. Hence, the
book does not only focus on classical graph-theoretical methods, it also shows the
usefulness and potential of structural graph theory as a tool for solving interdis-
ciplinary problems. Special emphasis is given to methods and areas which can be
roughly summarized as follows:

� Graph-theoretical applications in, e.g., structural biology, computational biology,
mathematical chemistry, and computational linguistics;

� Graph classes;
� General structural properties of networks;
� Graph colorings;
� Graph polynomials;
� Information measures for graphs, e.g., graph entropies;
� Metrical properties of graphs;
� Partitions and decompositions;
� Quantitative graph measures.

This book is intended for an interdisciplinary audience, covering topics from
artificial intelligence, computer science, computational and systems biology, cog-
nitive science, computational linguistics, discrete mathematics, machine learning,
mathematical chemistry, and statistics, and it contains nineteen chapters that have
been peer-reviewed according to the standards of international journals in applied
mathematics. The chapters and some of their interrelations can be briefly described
as follows.

Emmert-Streib starts the volume by surveying basic structural properties of com-
plex networks, important graph classes, and graph measures used when performing
network analysis quantitatively. The latter relates to determining the structural sim-
ilarity between graphs and their structural complexity using entropic measures.
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vi Preface

Further concepts used to explore networks structurally are provided by the next
chapters authored by Borowiecki, Goddard et al., and Ananchuen et al. In partic-
ular, these chapters present techniques of graph partitioning, distances in graphs,
and domination in graphs, respectively. The chapter written by Fujii also discusses
entropy measures, but for infinite directed graphs. However, these measures are ob-
tained by using operator theory and, hence, are differently defined than the ones
presented in the chapter by Emmert-Streib; those are derived based on Shannon’s
entropy and can be interpreted as the structural information content of a graph. Then,
the chapters authored by Matsumoto, Kovář, and Brešar et al. investigate multi-
faceted problems, like exploring infinite labeled graphs to study presentations of
symbolic dynamical systems, special graph decompositions, and the examination
of geodetic sets in graphs, which represents an important problem using metrical
properties of graphs. Ellis-Monaghan et al. provide two chapters in this volume on
graph polynomials: The first one emphasizes the Tutte polynomial and some closely
related graph polynomials. The second chapter by Ellis-Monaghan et al. sheds light
on interpretations of concrete polynomials and on interrelations between other graph
polynomials and the Tutte polynomial. The problem of reconstructing graphs by
examining specific properties of polynomials, here, the zeros of Krawtchouk poly-
nomials, is tackled in the next chapter by Stoll. Quantitative methods to calculate the
structural similarity or distance between two graphs have already been mentioned
in Emmert-Streib’s chapter. In particular, classical measures based on determining
isomorphic subgraphs have already been mentioned there. The chapter written by
Lauri treats the graph similarity problem in a similar manner, namely based on the
number of common vertex-deleted subgraphs, and examines aspects of the com-
putational complexity for calculating the mentioned graph similarity measure. The
idea of defining structural distances between graphs is tackled in the next chapter,
written by Benadé. More precisely, a chromatic metric is defined, and, remarkably,
by applying this metric, the maximum distance between any two graphs is at most
three.

The last six chapters of this volume use graph-theoretic techniques to solve
challenging problems in, e.g., applied mathematics, computer science, quantum
chemistry, electrical engineering, computational linguistics, structural biology and
RNA structure analysis, computational biology, and mathematical chemistry. The
chapter authored by Cioabă gives a broad overview on results for relating important
structural properties of a graph to its eigenvalues. Also, Cioabă surveys impor-
tant applications of graph spectra in subfields of the just-mentioned disciplines. To
demonstrate the great potential of novel graph classes within computational lin-
guistics, Mehler introduces a graph class consisting of hierarchical graphs called
Minimum Spanning Markovian Trees and shows its usefulness by outlining con-
crete applications within semiotic network analysis. The chapter contributed by
Scripps et al. starts by reviewing techniques to mine general complex networks,
but mainly focuses on link-based classification, which often appears as an impor-
tant problem in Web mining. The next two chapters, authored by Washietl et al. and
Mason et al., explore graph-based problems in structural and computational biology,
respectively. In particular, Washietl et al. investigate RNA structures represented by
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graphs and review graph-theoretical methods for describing and comparing such
structures. A problem that is currently of considerable interest in biological network
analysis is addressed by Mason et al. and deals with surveying methods for pre-
dicting protein function based on complex interaction networks. An area in which
graph-theoretical models and techniques have been intensely applied so far is math-
ematical chemistry. The volume concludes by presenting a chapter about a graph
class that is meaningful in mathematical chemistry: Vukičević presents techniques
for determining the existence and enumeration of what are called perfect match-
ings that correspond to Kekulé structures, which are well known in mathematical
chemistry.

Many colleagues, whether consciously or unconsciously, provided input,
help, and support before and during the formation of this book. In particular,
I would like to thank Hamid Arabnia, Alireza Ashrafi, Alexandru T. Balaban,
Subhash Basak, Igor Bass, Agnieszka Bergel, David Bialy, Danail Bonchev, Ste-
fan Borgert, Mieczysław Borowiecki, Monique Borusiak, Ulrike Brandt, Mathieu
Dutour, Michael Drmota, Abdol-Hossein Esfahanian, Maria Fonoberova, Bernhard
Gittenberger, Arno Homburg, Jürgen Kilian, Elena Konstantinova, Reinhard Kutzel-
nigg, Dmitrii Lozovanu, Alexander Mehler, Tomás Madaras, Abbe Mowshowitz,
Marina Popovscaia, Fred Sobik, Stefan Shetschew, Doru Stefanescu, Thomas Stoll,
Kurt Varmuza, Ilona Wesarg, Bohdan Zelinka, Dongxiao Zhu, and all authors and
co-authors of this book. I apologize to any who inadvertently have not been named.

I am deeply grateful to Armin Graber from UMIT for his strong support and for
providing such a stimulating working atmosphere. Many thanks to Isabella Fritz,
Bernd Haas, Gerd Lorünser, Brigitte Senn-Kircher, and Klaus Weinberger for their
help and fruitful discussions. Moreover, I thank Frank Emmert-Streib for the ex-
tremely fruitful collaboration and many stimulating discussions we had over several
years. Frank also provided the figures used to design the front cover of this book.

In addition, I would like to thank editors Tom Grasso, Rebecca Biega, and Regina
Gorenshteyn from Birkhäuser Publishing (Boston), who have always been available
and helpful. Last but not least, I would like to thank my wife Jana and my family
— Marion Dehmer-Sehn and Werner Dehmer — for their unfailing support and
encouragement.

Finally, I hope that this book will help to extend the enthusiasm and joy that
I feel for this field to others, and that it will inspire people to apply graph the-
ory to different scientific areas for the solution of challenging and interdisciplinary
problems.

Hall in Tirol, April 2010 Matthias Dehmer
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8 Geodetic Sets in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
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Damir Vukičević Faculty of Mathematics and Natural Sciences, University
of Split, Nikole Tesle 12, HR-21000 Split, Croatia, vukicevi@pmfst.hr

Stefan Washietl EMBL-European Bioinformatics Institute, Wellcome Trust
Genome Campus, Hinxton, Cambridge CB10 1SD, UK
and
Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17,
A-1090 Vienna, Austria, washietl@ebi.ac.uk

ptan@cse.msu.edu
aleksandra.tepeh@uni-mb.si
mark.verwoerd@nuim.ie
vukicevi@pmfst.hr
washietl@ebi.ac.uk




Chapter 1
A Brief Introduction to Complex Networks
and Their Analysis

Frank Emmert-Streib

Abstract In this chapter we present a brief introduction to complex networks and
their analysis. We review important network classes and properties thereof as well
as general analysis methods. The focus of this chapter is on the structural analysis
of networks, however, information-theoretic methods are also discussed.

Keywords Complex networks � Centrality measures � Comparative network
analysis � Module detection � Information-theoretic measures

MSC2000: Primary 05C90; Secondary 65C60, 46N60, 94A17

1.1 Introduction

Discrete objects representing graphs have been studied for a long time. Among the
first who studied graphs are Euler [56] and Cayley [30]. Interestingly, the origin of
the term graph dates back to König in the 1930s [81], less than 100 years ago. The
interest in graphs and their analysis is manifold. From a theoretical point of view
the categorization and the analysis of properties of graphs [20, 44, 54, 70] as well
as the development of graph algorithms [37, 57] are important problems that have
been studied extensively. From an applied point of view it has been realized that
graphs can represent physical [70], biological [51, 78, 101], or sociological objects
[68, 104], e.g., a crystal or protein structure or the acquaintance network among a
group of people. Recently, networks have been also employed in data analysis and
machine learning [3, 51, 99]. In the following we use the terms graph and network
interchangeably although they do not mean precisely the same thing. Usually,
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2 F. Emmert-Streib

a graph refers first of all to a mathematical object regardless of its realization in,
e.g., nature, whereas a network represents a “real-world” object rather than a pure
mathematical one. Because we want to focus on applied aspects of graphs most of
the time we prefer the expression network.

In this chapter we provide a brief introduction to complex networks and their
analysis. In Sect. 1.2 we review some important network classes. In Sect. 1.3 we
present some methods for the structural analysis of networks that help, e.g., to
characterize them as a whole or allow us to identify specific nodes in the network
with certain properties. In Sect. 1.3.5 we present important methods to analyze net-
works comparatively. This means that means these measures always compare two
graphs with each other and provide, hence, similarity or dissimilarity measures
for this comparison. Such methods are especially useful for data analysis or ma-
chine learning because they allow a combination with, e.g., clustering methods to
extract regularities from the obtained, e.g., similarity values for corpora of networks.
Section 1.3.6 presents a method for the identification of community or module struc-
ture of networks as important, e.g., for the analysis of communication networks.
In Sect. 1.4 we discuss information-theoretic measures and this chapter finishes in
Sect. 1.5 with a short summary and conclusions.

1.2 Important Network Classes

We begin this chapter by reviewing well-known network classes. In the following
we mainly restrict ourselves to undirected unweighted networks, however, most of
the presented networks can be generalized easily.

1.2.1 Simple Networks

A simple network consists of regular connections among the nodes. One of the most
prominent examples therefore is the two-dimensional lattice as shown in Fig. 1.1.
Here each node is connected to its nearest neighbors. Despite its simplicity, such
networks have been used extensively, e.g., in physics to study phenomena like ferro-
magnetism with the Ising model [32]. Other examples of this class are linear chains
or nonrectangular lattices as used, e.g., in the context of protein structure prediction
to model protein folding [74].

1.2.2 Random Networks

Random networks have been extensively studied by Erdös and Rényi [54, 55].
A random graph with N nodes is obtained by connecting every pair of nodes with
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Fig. 1.1 Left: Regular two-dimensional lattice. Right: Linear, regular chain

probabilityp. The expected number of edges for a (undirected) network constructed
this way is

E.N/ D pN.N � 1/
2

: (1.1)

1.2.3 Degree Distribution

The degree distribution of a node i in a random network is binomial

P.ki D k/ D
 
N � 1
k

!
pk.1 � p/N�1�k ; (1.2)

because the maximal degree of node i is N � 1, the probability that the vertex has
k links is pk.1� p/N�1�k and there are

�
N�1
k

�
possibilities to choose k links from

N � 1 nodes. In the limit N !1 (1.2) becomes

P.ki D k/ D zk exp.�z/

kŠ
: (1.3)

Here z D p.N � 1/ is the expected number of links for a node. This means that
the degree distribution of a node in a random network can be approximated by the
Poisson distribution for large N . For this reason random networks are also called
Poisson random networks [96].

Furthermore one can show that the degree distribution of a random network
(instead of just a node) also approximately follows a Poisson distribution

P.Xk D r/ D zr exp.�z/

rŠ
; (1.4)

meaning that there are Xk D r nodes in the network having degree k [2].
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1.2.4 Clustering Coefficient

In general the clustering coefficient of a node i is defined as the fraction Ei of
existing connections among its ki nearest neighbors divided by the total number of
possible connections,

Ci D 2Ei

ki .ki � 1/ : (1.5)

This corresponds to the probability that two nearest neighbors of i are connected
with each other. However, the probability in a random graph that two nodes are
connected with each other is Ci D p. This can be approximated by

Ci � z

N
; (1.6)

because the mean degree of a node is z D p.N � 1/ � pN .

1.2.5 Small-World Networks

Small-world networks were introduced by Watts and Strogatz [115]. They can be
obtained via the following algorithm. First, arrange all nodes on a ring and connect
each node with its k=2 nearest neighbors. Second, start with an arbitrary node i and
rewire its connection to its nearest neighbor on, e.g., the left side with probability
prw to any other node j in the network. If node i and j are already connected reject
this selection and change nothing. Then choose the next node in the ring in a, e.g.,
clockwise direction and repeat this procedure. Third, after all next neighbor con-
nections have been checked repeat this procedure for the second and all higher next
neighbors successively. This algorithm guarantees that each connection occurring in
the network is chosen exactly once to test for a rewiring with probability prw. The
rewiring probability prw controls the disorder of the resulting topology. For prw D 0
the regular topology is conserved, whereas prw D 1:0 leads to a random network.
Intermediate values 0 < prw < 1 give a topological structure that is between regular
and random.

1.2.6 Scale-Free Networks

Neither random nor small-world networks have a property frequently observed in
real-world networks, namely a scale-free behavior of the degrees

P.k/ � k�� : (1.7)
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which means that there is no “top” or “bottom”
1: t D 0

2: Start with N0 unconnected nodes
3: repeat
4: Add one new node to the existing network consisting thus far of Nt

nodes.
5: Connect the new node to e (� N0) nodes from the existing network.

A node is chosen based on the degree distribution of the node,

pi D kiP
j kj

;

6: t D t C 1
7: Nt D Nt�1 C 1
8: until Nt D N

Algorithm 1.1: Generation of a scale-free network (preferential attachment)

To explain this feature Barabasi and Albert introduced a model [4] now known as
the Barabasi–Albert (BA) or preferential attachment model [96] that results in so-
called scale-free networks which have a degree distribution following a power law
[4]. The major difference between the preferential attachment model and the other
algorithms described above to generate random or small-world networks is that the
preferential attachment model does not assume a fixed number of nodes N and
then start to rewire them with fixed probability with other nodes but N grows and
is connected with a certain probability (is not constant) to other nodes depending
on their degree. In Algorithm 1.1 we provide a principle algorithm to generate a
scale-free network.

1.2.7 Trees

A graph G is a tree if it has no loops (cycles) in G. This means that a tree is an
acyclic graph. Alternatively, upon removal of an edge a connected tree becomes
unconnected. Trees were first studied by Cayley [30, 31] and are, in addition to
their importance for graph theory, an important data structure in computer science
which appears in many different algorithms. Figure 1.2 shows two trees. We want
to emphasize that a tree does not represent a hierarchy, in the graph of a tree.
This is in contrast to rooted trees. A rooted tree is obtained, e.g., from a tree by
the identification of a so-called root node which forms the start of a hierarchy. In
Fig. 1.3 we show two rooted trees obtained from the tree on the right-hand side
of Fig. 1.2. The important difference is that rooted trees are ordered; they have
a “top” corresponding to the root node and a “bottom” corresponding to the leaf
nodes having no children. It is interesting to note that there is no restriction to the
degree a node can have. Apparently, the minimal number is one because otherwise
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Fig. 1.2 Trees

Fig. 1.3 Rooted trees obtained from the tree on the right-hand side in Fig. 1.2. Left: Root node is
the third node from the top. Right: Root node is the leftmost node at the top

Fig. 1.4 Rooted binary trees

the tree would be unconnected, however, other than that it is arbitrary. This brings
us to the next subclass of trees, rooted binary trees.

A special case of a rooted tree is a rooted binary tree. A node in a binary tree
has at most two children. Figure 1.4 shows two examples of rooted binary trees,
frequently just called binary trees. In Fig. 1.4 one can see that a node has at most
two children (maximal degree of a node is three). Intermediate nodes can have only
one child. This holds also for the root nodes as the right figure shows. Finally, we
want to mention that a disjoint union of trees is called a forest.

1.2.8 Generalized Trees

The graph class of directed generalized trees was introduced in [39,90]. Generalized
trees are an important extension to trees maintaining their characteristic of having
a hierarchy but in addition allowing a richer connectivity among nodes. Before we
provide a formal definition we give a motivation for their introduction visualized by
Fig. 1.5. On the left side in Fig. 1.5, a (normal) tree is shown. The dotted horizontal
lines should remind the reader that a tree is a hierarchical graph and the dotted
lines explicitly represent the hierarchy levels. These lines are included for didactic
reasons only and are not actually part of the tree. On the right-hand side of Fig. 1.5
a generalized tree is shown obtained from the tree on the left side by including two
additional edges, labeled E2 and E3. In general, edges that connect nodes on the
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E3

E2

Fig. 1.5 Left: Tree. Right: Generalized tree

same hierarchical level are of type E2 and edges that connect nodes on different
hierarchical levels that are farther apart than one level are of type E3 (formally
defined below). From this, we note that every generalized tree will result in a tree
after deleting all edges of type E2 and E3 from the generalized tree. Vice versa,
starting from a tree and including edges of type E2 and/or type E3 results in a
generalized tree. A formal definition is given as follows [50].

Definition 1 (Generalized Tree). A generalized tree GTi is defined by a vertex set
V , an edge set E , a level set L, and a multilevel function Li . The vertex and edge
set define the connectivity and the level set and the multilevel function induce a
hierarchy between the nodes of GTi . The index i 2 V indicates the root.

The multilevel function is defined as follows.

Definition 2 (Multilevel Function). The function Li W V n fig ! L is called a
multilevel function.

The multilevel function Li assigns to all nodes except i an element l 2 L that
corresponds to the level it will be assigned. From these definitions it is immediately
clear that a generalized tree is similar to a graph but additionally equipped with a
level set L and a multilevel function Li introducing a node grouping corresponding
to the introduction of a hierarchy between nodes and sets thereof.

Definition 3 (Edge Types). A generalized tree GTi has three edge types:

� Edges with jLi .m/ � Li .n/j D 1 are called kernel edges (E1).
� Edges with jLi .m/ � Li .n/j D 0 are called cross edges (E2).
� Edges with jLi .m/ � Li .n/j > 1 are called up edges (E3).

We want to remark that for directed generalized trees edge typeE3 will be split into
two edge types: one for up and another for down links. Using Definition 1 a tree is
characterized by jLi .m/� Li .n/j D 1 for all node pairs .m; n/.

From the given definitions and the visualization in Fig. 1.5 it is apparent that a
generalized tree is between a tree and a graph. It is hierarchical like a tree, but can
contain cycles like a graph which is not hierarchical.
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1.3 Structural Network Analysis

In this section, we summarize measures to characterize structural properties of
networks.

1.3.1 Degree Distribution

Degree distributions [16, 88] can be calculated by

P.k/ WD jık.v/j
N

; (1.8)

where jık.v/j denotes the number of vertices in the network G of degree k and
N denotes the size of G (number of nodes). Equation (1.8) is just the proportion
of vertices in G having degree k. The degree ki of node i is the number of links
connected with node i . From this, it follows that (1.8) also has the meaning that a
randomly chosen node in the network has, with probability P.k/, k links to other
nodes.

It was an interesting and important finding that many real world networks like
the World Wide Web (WWW), the Internet, social networks, citation networks, or
food webs [1, 16, 19, 22, 29, 42] are not Poisson distributed but follow a power law

P.k/ � k�� ; � > 1: (1.9)

1.3.2 Clustering Coefficient

The clustering coefficientCi is a local measure defined for every node i . It is defined
as the fraction of connections (Ei ) between nearest neighbors of i among each other
divided by the maximum number of such connections

Ci D 2Ei

ki .ki � 1/ : (1.10)

The clustering coefficient can be interpreted as the probability that two nearest
neighbors of i are connected with each other.

1.3.3 Path-Based Measures

Graph-theoretical quantities or properties are often used to characterize special types
or classes of complex networks. For example, it turned out that average path lengths
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and diameters of certain biological networks are rather small compared to the size
of a network [86, 88, 98]. Related to this is the so-called “small-world” property
[115] that has been observed in a number of network types, e.g., social, metabolic,
and protein interaction networks in molecular biology [86, 88, 98]. We give a brief
overview of path-based network measures [17, 21, 23, 67, 71, 107].

Distance Matrix

.d.vi ; vj //vi ;vj2V . d.vi ; vj / denotes the shortest distance (path) between vi and vj
measured in the number of edges or nodes that are between start node vi and end
node vj .

Mean or Characteristic Distance

Nd.G/ WD 1�
N
2

� X
vi¤vj2V

d.vi ; vj /: (1.11)

E is the total number of edges in the network.

j -Sphere

The set
Sj .vi ; G/ WD fv 2 V j d.vi ; v/ D j; j � 1g; (1.12)

is called the j -sphere of vi regardingG. Starting from vi , the cardinality jSj .vi ; G/j
denotes the number of vertices that have a shortest distance equal to j .

Eccentricity, Diameter, and Radius

Let G D .V;E/ be a graph. Then,

�.v/ D max
u2V d.u; v/; (1.13)

is called the eccentricity of v 2 V .

�.G/ D max
v2V

�.v/; (1.14)

and
r.G/ D min

v2V �.v/; (1.15)

are called the diameter and radius of G, respectively.
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Degree, Degree Statistics, and Edge Density

For undirected graphsGD .V;E/, kv DPi Av;vi
equals the number of edges which

are adjacent to v 2 V . kv is called the degree of node v. From this, one obtains
straightforwardly the following degree measures for the whole network:

k D k.G/ WD
X
v2V

kv

N
; (1.16)

�k.G/ WD 1

N � 1
X
v2V

.kv � k/2; (1.17)

and

�k.G/ WD 1

N

X
v2V
jkv � kj: (1.18)

Equation (1.16) is the mean degree of the network, (1.17) is the variance of the
degree, and (1.18) is the mean of absolute distances between kv and k. Finally, the
edge density of G is defined as

ˇ.G/ WD E�
N
2

� : (1.19)

Further network statistics and advanced aspects can be found in, e.g., [21, 67,
71, 107].

1.3.4 Centrality Measures

Identifying important vertices in networks is an interesting problem that has gained
much attention especially in the context of communication networks. For example,
the communication among a group of humans forms a communication network.
Social scientists in the late 1940s developed graph-theoretical measures to detect
important vertices in networks. An important class of such measures is based on
the centrality concept [66, 69, 114] which intuitively tries to identify nodes that are
central to the communication within the network among all nodes. There are two
fundamentally different types of centrality measures [58,59]. The first type of mea-
sures evaluates the centrality of each node in a network and is called point centrality
measures where the word “point” refers to a node or vertex. The second type is
called graph centrality measures because it assigns a centrality value to the whole
network.
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Point Centrality

In the following we provide some examples of point centrality measures.

Degree Centrality

For an undirected graph GD .V;E/, the degree centrality of a vertex v 2 V is
simply defined as its degree; i.e.,

CD.v/ D kv: (1.20)

For a directed network, the degree centrality can be analogously defined by using
the definition of in-degree and out-degree.

Betweenness Centrality

The centrality index betweenness is based on shortest paths found in the network
[5, 6, 18, 58, 66, 83, 88, 103, 104, 114] and is defined by

CB.vk/ D
X

vi ;vj2V;vi¤vj

�vi vj
.vk/

�vi vj

: (1.21)

Here �vi vj
denotes the number of shortest paths from vi to vj and �vi vj

.vk/ the
number of shortest paths from vi to vj that include node vk . That means

�vi vj
.vk/

�vi vj

; (1.22)

is the probability that node vk lies on a shortest path connecting vi with vj . Hence,
CB.vk/ evaluates the appearance of node vk on all shortest paths in a network.

Closeness Centrality

The centrality index closeness tries to measure how close a node is to other nodes
in the network. This is done in terms of communication distance as measured by the
number of edges between two nodes if connected via the shortest path.

CC .vk/ D 1PN
iD1 d.vk; vi /

: (1.23)

Here d.vk; vi / is the number of edges on a shortest path between node vk and vi .
In the case where there are multiple shortest paths connecting vk with vi , d.vk; vi /
is unchanged.
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Graph Centrality

To evaluate the centrality of whole networks instead of single nodes in the network
graph centrality measures have been suggested which form extensions to the three
measures discussed above [59]. The basic idea is to use these individual measures
to obtain an average characteristic for the whole network. It has been suggested to
calculate

Cx D
PN
iD1Cx.vm/� Cx.vi /

Cmax
x

: (1.24)

Here x stands for any of the three point centrality measures,

Cx.v
m/ D max

i
fCx.vi /g; (1.25)

for the maximal value of Cx.vi / that can be found in the network and Cmaxx for the
maximal value possible for a network with N nodes,

Cmaxx D max
G2G.N/

NX
iD1

Cx.v
m/� Cx.vi /: (1.26)

Degree Centrality

For the degree centrality of a network one obtains

Cd D
PN
iD1Cd .vm/� Cd .vi /
N 2 � 3N C 2 : (1.27)

Intuitively, the denominator is obtained by remembering that the maximal degree of
a node is N � 1, hence, Cx.vm/ � Cx.vi / D N � 2 because the minimal degree is
one. This number multiplied by N � 1 (one node needs to have degree one) gives
the denominator in (1.27).

Betweenness Centrality

For the betweenness centrality of a network [58] one obtains

Cb D
PN
iD1 Cd .vm/ � Cd .vi /
N 3 � 4N 2 C 5N � 2 : (1.28)
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Closeness Centrality

For the closeness centrality of a network one obtains

Cc D 2N � 3
N 3 � 4N 2 C 5N � 2

NX
iD1

Cd .v
m/ � Cd .vi /: (1.29)

Extended Centrality Measures

In addition to the classical centrality measures described above there are many
extensions. Here we present some of these.

Eigenvector Centrality

The eigenvector centrality, a point centrality measure, was introduced by
Bonacich [15]. The key idea of eigenvector centrality is to express that an important
vertex is connected to important neighbors. To define the eigenvector centrality
measures one needs to find the eigenvector of the adjacency matrix A of graph G
with the largest eigenvalue. Then eigenvector centrality is given by

Ce D xm D 1

�m
Axm: (1.30)

Here �m is the largest eigenvalue and xm the corresponding eigenvector solving the
equation

�mxm D Axm: (1.31)

Hence Ce is the principle eigenvector of A.
We want to emphasize that eigenvector centrality is a point centrality measure

because each vertex in the network obtains a value corresponding to the component
of Ce. In [83], advanced properties and further possibilities to compute eigenvector
centrality measures are presented.

Joint Betweenness Centrality

The centrality measures discussed above, including betweenness, form a family of
measures [58] that have been introduced with the purpose of analyzing communica-
tion networks. It is interesting to note that all point centrality measures focus solely
on one vertex in the network. In the context of gene networks, which also form
communication networks, the identification of a function of genes is an outstand-
ing problem. It has been suggested to identify the unknown function of a gene by
associating it with the known function of another gene. Because all measures from
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the centrality family are point measures they cannot be used for such studies. For
this reason it has been suggested that an extension involving more than one node
be called joint betweenness (JB) [47]. JB is a natural extension of the betweenness
centrality evaluating the joint occurrence of two nodes on shortest communication
paths in the network. Formally, it is defined as

Cjb.vm; vn/ D
X

vi ;vj2V;vi¤vj

�vi ;vj
.vm; vn/

�vi ;vj

: (1.32)

Here �vi ;vj
is the number of shortest paths connecting node vi with node vj and

�vi ;vj
.vm; vn/ is the number of shortest paths connecting vi with vj that contain the

nodes vm and vn. Similar to other measures of the centrality family, it is sometimes
more useful to use a different normalization. In fact, for the analysis conducted in
[47] the following modification has been used,

Cjb.vm; vn/ D
X

vi ;vj2V;vi¤vj

�vi ;vj
.vm; vn/

�max
: (1.33)

Here �max is defined as

�max D max
vi ;vj

f�vi ;vj
g: (1.34)

1.3.5 Comparative Network Analysis

In this section measures structurally comparing whole networks are reviewed.

Measures Based on Isomorphic Relations

Classical graph similarity or distance methods deal with finding appropriate mea-
sures which are based on isomorphic and subgraph relations [75–77,108,109,117].
A prominent example of such a measure is the Zelinka-distance [117], where this
graph distance is based on the principle that two graphs are more similar, the bigger
the common induced isomorphic subgraph is. First, Zelinka introduced this mea-
sure for unlabeled graphs with the same number of vertices. Later, Sobik [108,109]
and Kaden [75–77] generalized this measure for arbitrary graphs allowing them
to have even different order. It is known that the subgraph isomorphism problem
is NP-complete [113]. This implies for large graphs that these methods can be
computationally demanding. A key result for exact graph matching was found by
Zelinka [117].
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Theorem 1. Let G, QG be unlabeled graphs without loops and multiple edges.
Further, let jV j D j QV j D n: SUBm.G/ denotes the set of induced subgraphs of
orderm.G? denotes the isomorphism classes of such graphs in whichG lies and let

SUBm.G/ WD fG?jG 2 SUBm.G/g: (1.35)

SUBm.G/ is just the set of isomorphism classes in which the induced subgraphs of
G with orderm lie. Then,

dZ.G; QG/ WD n � SIM.G; QG/; (1.36)

is a graph metric, where

SIM.G; QG/ WD maxfmjSUBm.G/\ SUBm. QG/ 6D ;g; (1.37)

holds.

Sobik [108,109] and Kaden [75–77] generalized this theorem by considering labeled
graphs with a different number of vertices.

Theorem 2. Let G WD .V;E; fV ; fE ; AV ; AE / be a finite, labeled, and di-
rected graph. AV ; AE denote finite, nonempty vertex and edge alphabets and
fV W V !AV , fE W E!AE the associated vertex and edge labeling functions.
Now, let G and QG be finite labeled graphs of arbitrary orders. Then,

dS .G; QG/ WD max fjGj; j QGjg � SIM.G; QG/; (1.38)

is a graph metric.

Another classical graph distance measure based on the maximum common sub-
graph of two graphs has been found by Bunke et al. [25, 26, 28].

Theorem 3. Let G and QG be graphs and let GMCS be their maximum common sub-
graph. Then, the distance measure

dMCS.G; QG/ WD 1 � jV jMCS

max.jV j; j QV j/ ; (1.39)

is a graph metric.

Measures Based on Graph Transformations

In contrast to graph similarity measures from the exact graph matching paradigm,
i.e., those based on isomorphic relations, a well-known class of graph similarity
measures from inexact graph matching is based on graph transformations. The main
idea behind this concept is not to match graphs exactly because one often wants to
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take structural errors of the underlying graphs into account. Therefore, this concept
is often referred to as error-tolerant graph matching [25, 26, 28, 91]. For example,
the so-called graph edit distance (GED) [24, 27, 28, 91] is a prominent example
of such a graph similarity measure. The definition of GED is based on weighted
transformation steps, e.g., deletions, substitutions, and insertions of vertices and
edges, and, hence, the distance of two graphs is defined as the minimum cost of
graph transformations that transform (map) one graph into another graph. The key
result of error-tolerant graph matching, originally stated by Bunke [24], can be ex-
pressed as follows.

Theorem 4. Let d.G; QG/ be the costs for determining the optimal inexact match
between G and QG where an optimal inexact match is a sequence of graph transfor-
mations that transforms a graph G to QG by producing minimal edit costs. Then, it
holds that d.G; QG/ is a graph metric.

Regarding the computational complexity of GED, we want to remark that for un-
labeled graphs there is no algorithm to compute GED efficiently [28, 91, 118]. For
uniquely labeled graphs, it has been proven [43] that the computational complexity
to compute GED is O.jV j2/.

Measures Based on Graph Grammars

Methods to determine the similarity or distance between graphs based on graph
grammars also belong to the paradigm of inexact graph matching. A classical con-
tribution in this field has been made by Gernert [63, 64]. We want to note that the
application of grammar-based measures is complex because the underlying graph
grammar is quite often difficult to obtain.

Methods Based on Machine Learning Techniques

Machine learning techniques can be divided into two major categories: supervised
and unsupervised learning methods [38,72]. A newly developed supervised learning
method, based on support vector machines [38], to measure the structural similar-
ity of graphs is based on using so-called graph kernels [62, 73]. A graph kernel is
a function K W G � G �! IR, for G 2 G, that maps the data implicitly into a
high-dimensional feature space. For example, some graph kernels are based on the
principle to determine the frequency of certain subgraph patterns of the given graph
set and then to apply a proper kernel function to the obtained subgraphs. Following
this principle Horváth et al. [73] proposed a graph kernel that is based on map-
ping graphs into cyclic graph patterns. Besides cycle-based graph kernels, so-called
random-walk-based kernels [62,80] are also often used to define graph kernels [36].

Another method to detect the structural similarity of graphs is based on dynamic
programming [7]. In the following we just give an outline of the main construction


