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Preface

A continuous process requires the ability to think laterally and have a proactive
mindset across the entire team from lab development through to production.
Continuous manufacturing process is not new. It has been in use by the chemical,
food, and beverage industries successfully. The biopharmaceutical industries are
reluctant to engage in applying advanced technology on continuous processes,
and are still using the batch process, which has been is use since the nineteenth
century. The batch process is an archaic process that progresses sequentially step
by step, creating a specified and fixed amount of therapeutic product, which in
modern times is not state-of-the art. Several reviews and articles have shown that
considerable advances have been made by technologist in offering systems for
continuous processes. It has been established that continuous processing prom-
ises efficiency because it is a well controlled and flexible process, and there is less
waste and produces higher quality products. There is considerable economic ben-
efit in applying the continuous process in manufacturing.

Momentum is gathering pace behind the implementation of continuous manu-
facturing in the pharmaceutical industry. The regulatory bodies are now encour-
aging companies to move toward continuous manufacturing. Consequently,
leading biopharma industries seem to be in the mend of thinking that the time
is right for a major effort in the development of continuous processes in their
organizations. As more companies look at the practical evidence from pilot and
demonstration units, the adoption and commercialization of the new technology
is picking up speed and currently several leading global biopharmaceutical indus-
tries are moving to implement continuous manufacturing processes in collabora-
tion with technologist and suppliers. It will not be far away that industries will
apply the continuous manufacturing process and thus we are setting up a Gold
standard for the future, maybe in 10 years or more.

This book presents the most recent scientific and technological advances of
continuous processing, as well as methods and applications in the field of bioma-
nufacturing. Each chapter provides introductory material with an overview of the
topic of interest; a description of the technology and methods, protocols, instru-
mentation, and application, and a collection of published data with an extensive
list of references for further details.
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It is our hope that this book will stimulate a greater appreciation of the useful-
ness, efficiency, and the potential of single-use systems in continuous processing
of biopharmaceuticals, and that it will stimulate further progress and advances in
the field of continuous processing to meet the ever-increasing demands and
challenges in the manufacturing of therapeutic products.

The completion of this book has been made possible with the help and
encouragements of many friends and colleagues. It is a great pleasure for me to
acknowledge, with deep gratitude, the contribution of 19 authors of the chapters
in this book. Their outstanding work and thoughtful advice throughout the proj-
ect have been important in achieving the breadth and depth of this book.

I would be most grateful for any suggestions that could serve to improve
future editions of this volume.

Finally, my deep appreciation to Dr Frank Weinreich of Wiley-VCH for invit-
ing me to edit the volume and also to Lesley Fenske and her colleagues for their
sustained encouragement and help.

Maidenhead, UK G. Subramanian
June 2014
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1
Proteins Separation and Purification by Expanded Bed
Adsorption and Simulated Moving Bed Technology
Ping Li, Pedro Ferreira Gomes, José M. Loureiro, and Alirio E. Rodrigues

1.1
Introduction

Proteins not only play an important role in biology, but also have large
potential applications in pharmaceuticals and therapeutics, food processing,
textiles and leather goods, detergents, and paper manufacturing. With the
development of molecular biology technologies, various kinds of proteins can
be prepared from upstream processes and from biological raw materials.
However, there exist various proteins and contaminants in these source feed-
stocks, and the key issue is that proteins can be separated and purified effi-
ciently from the source materials, in order to reduce the production cost of
the high-purity protein. The development of techniques and methods for
proteins separation and purification has been an essential prerequisite for
many of the advancements made in biotechnology.

Most separation and purification protocols require more than one step to
achieve the desired level of protein purity. Usually, a three-step separation
and purification strategy is presented, which includes capture, intermediate
separation and purification, and final polishing during a downstream protein
separation and purification process. In the capture step the objectives are to
isolate, concentrate, and stabilize the target proteins. During the intermediate
separation and purification step the objectives are to remove most of the
bulk impurities, such as other proteins and nucleic acids, endotoxins, and
viruses. In the polishing step most impurities have already been removed
except for trace amounts or closely related substances. The objective is to
achieve final purity of protein.

In the capture step, as the primary recovery of proteins, the expanded bed
adsorption (EBA) technology has been widely applied to capture proteins
directly from crude unclarified source materials, such as, Escherichia coli
homogenate, yeast, fermentation, mammalian cell culture, milk, and animal tis-
sue extracts [1,2]. The expanded bed is designed in a way that the suspended
adsorbent particles capture target protein molecules, while cells, cell debris,
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particulate matter, and contaminants pass through the column unhindered.
After loading and washing, the bound proteins can be eluted by elution buffer
and be concentrated in a small amount of elution solution, apart from the bulk
impurities and contaminants in source materials. With specially designed
adsorbents and columns, the adsorption behavior in expanded beds is compara-
ble to that in fixed beds. Various applications of EBA technology have been
reported from laboratory-scale to pilot-plant and large-scale production [1–9].

During the intermediate purification and final polishing steps, the tech-
niques of the conventional elution chromatography have been applied suc-
cessfully. A new challenge should be the application of simulated moving
bed (SMB) to the separation and purification of proteins. SMB chromatogra-
phy is a continuous process, which for preparative purposes can replace the
discontinuous regime of elution chromatography. Furthermore, the counter-
current contact between fluid and solid phases used in SMB chromatography
maximizes the mass transfer driving force, leading to a significant reduction
in mobile and stationary phase consumption when compared with elution
chromatography [10–14]. Examples of products that are considered for SMB
separation and purification are therapeutic proteins, antibodies, nucleosides,
and plasmid DNA [15–23].

When the binding capacities of proteins on adsorbent are close to each other,
an isocratic SMB mode may be used to separate and purify the proteins, where
the adsorbents have the same affinity capacity to proteins in all sections in SMB
chromatography. However, usually the binding capacities of proteins are so dif-
ferent that we cannot separate them by the isocratic mode with a reasonable
retention time. In conventional elution chromatography, a gradient mode should
be used for the separation of proteins. It is most commonly applied in reversed-
phase and ion exchange chromatography (IEC), by changing the concentration
of the organic solvent and salt in a stepwise gradient or with a linear gradient,
respectively. For SMB chromatography, only a stepwise gradient can be formed
by introducing a solvent mixture with a lower strength at the feed inlet port
compared with the solvent mixture introduced at the desorbent port; then the
adsorbents have a lower binding capacity to proteins in sections I and II to
improve the desorption, and have a stronger binding capacity in sections III and
IV to increase adsorption in SMB chromatography. Some authors state that the
solvent consumption by gradient mode can be decreased significantly when
compared with isocratic SMB chromatography [17–19,24–29]. Moreover, when
a given feed is applied to gradient SMB chromatography, the protein obtained
from the extract stream can be enriched if protein has a medium or high solubil-
ity in the solution with the stronger solvent strength, while the raffinate protein
is not diluted at all [24].

In this chapter, we shall describe the developments made at the Laboratory of
Separation and Reaction Engineering (LSRE) for proteins separation and purifi-
cation by expanded bed chromatography and salt gradient ion exchange simu-
lated moving bed technology.
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1.2
Protein Capture by Expanded Bed Technology

1.2.1
Adsorbent Materials

The design of a special adsorbent is a key factor to enhance the efficiency of
expanded bed adsorption. The EBA process will be more effective for those
adsorbents that have both high-density base matrix and salt-tolerant ligand. The
high-density matrix means minimizing dilution arising from biomass or viscosity
in feedstock and reducing dilution buffer consumption; the lack of sensitivity
of the ligand to ionic strength and salt concentration means there is no need for
dilution of feedstock [30–32].
“Homemade” adsorbents are commonly used for research purposes. Agarose

and cellulose are the major components utilized on the tailoring of the adsorb-
ents. Table 1.1 shows a list of such adsorbents.

Table 1.1 “Homemade” adsorbents.

Year Core Adsorbent Reference

1994 Crystalline quartz 6% Agarose [33]
1994 Perfluorocarbon Polyvinyl alcohol – perfluorodecalin [34]
1995 Crystalline quartz -

Red H-E7B
6% Agarose [35]

1995 Perfluorocarbon Polyvinyl alcohol – perfluoropolymer [36]
1996 Crystalline quartz -

Cibacron blue (3GA)
6% Agarose [37]

1997 Fluoride-modified porous
zirconium oxide

[38]

1999 Polyacrylamide gel Silica [39]
1999 Glass Agarose [40]
2000 Celbeadsa) Cellulose [41]
2000 Stainless steel Agarose [30]
2001 Celbeadsa) Cellulose [42]
2001 Nd–Fe–B alloy powder Agarose [43]
2002 Stainless steel 6% Agarose [44]
2002 Stainless steel 6% Agarose [45]
2002 Crystalline quartz 6% Agarose (Streamline DEAE) modified

with a layer of polyacrylic acid (PAA)
[46]

2002 Nd–Fe–B with Cibacron
Blue 3GA (CB)

4% Agarose [47]

2002 Zirconia-silica (ZSA) 4% Agarose [9]
ZSA - Cibracron Blue (CB) 4% Agarose

2003 Zirconia-silica (ZSA) Agarose [48]
2003 CB-6AS Cellulose [49]
2003 Titanium oxide Cellulose [50]

(continued)
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The drawback of agarose/cellulose-based adsorbents is their low density.
Therefore, EBA adsorbents were developed by incorporating a dense solid mate-
rial in the beads. Table 1.2 shows a list of commercial adsorbents.

Adsorbents used in EBA have been developed by some major companies as
shown in Table 1.3. The name of the adsorbents are influenced by the ligand
used, for example, diethylaminoethyl (DEAE), sulphopropyl (SP), quaternary
amine (Q), recombinant protein A (r-Protein A), imino diacetic acid (Chelating),
multimodal function (Direct CST I), carboxymethyl (CM), sulfopropyl (S) and
polyethyleneimine (PEI) [3,30,71].

The trend is to use a dense solid core material to allow processing of higher
flow rates and therefore reach a better productivity [30–32].

Streamline DEAE and Streamline SP (specially designed for an expanded
bed), are classical ion exchangers, in which binding proteins are primarily
based on interactions between charged amino acids on the protein surface and
oppositely charged immobilized ligands. Protein retention on an ionic surface
of adsorbent can be simply explained by the pI-value (isoelectric point) of a
protein. But in practical applications, it is found that these ion exchangers
have a lower binding capacity to proteins in high ionic strength and salt
concentration feedstock. Streamline Direct CST I is a cation exchanger with
multimodal functional groups, which not only takes advantage of electrostatic
interaction, but also takes advantage of hydrogen bond interaction and hydro-
phobic interaction to tightly bind proteins. In other words, the new type of

Table 1.1 (Continued)

Year Core Adsorbent Reference

2004 Glass 4% Agarose [51]
2005 Titanium oxide Cellulose [52]
2005 Stainless steel powder Cellulose [53]
2006 Stainless steel powder Cellulose [54]
2007 Nickel powder Cellulose [55]
2007 Tungsten carbide Cellulose [56]
2008 Tungsten carbide Cellulose [57]
2008 Stainless steel powder with

benzylamine (mixed mode)
Cellulose [58]

2008 Zirconia-silica Agarose [59]
2009 Zirconium dioxide Polyglycidyl methacrylate β-cyclodextrin [60]
2009 Tungsten carbide β-Cyclodextrin polymer [61]
2010 Tungsten carbide β-Cyclodextrin polymer [62]
2010 Tungsten carbide Agarose [63]
2011 Tungsten carbide Cellulose [64]
2012 Nickel (nanoporous) Agarose [31]
2012 Zinc (nanoporous) Agarose [32]
2013 Tungsten carbide 3% Agarose [65]
2013 Titanium dioxide Polyacrylamide-based Cryogel [66]

a) Celbeads: Rigid spherical macroporous adsorbent beads with surface hydroxyl groups.
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