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Preface

The law of dynamics stated by Isaac Newton in 1686 in his

treatise Philosophiæ Naturalis Principia Mathematica [NEW

87] introduces the vectorial nature of both sides of that law:

the force and the quantity of acceleration. For Newton and

his contemporaries, the concepts of vectors and scalars

applied to rectilinear trajectories were not so different. The

composition of the motions helps to extend those motions

along their plane or in space, and Newton himself adds

forces to them (see Corollaries I and II of the Principia).

The establishment of the equations of general motions in

around 1740 by Euler, Lagrange and MacLaurin, introduced

the concept of fixed directions in space, where the vectors,

velocity and acceleration could be expressed in the form of

coordinates. In the field of Mechanics today, we still use the

fundamental bases introduced by these concepts. The work

of Truesdell illustrates the rise and trajectory of this

discipline, to which Truesdell himself contributed greatly

during the last century, bringing together the concepts of

mechanics with those of thermodynamics; up until that

point, the two disciplines had developed in parallel,

independently of one another.

Newton’s vision, which some might consider to be

restrictive, is, in fact, remarkable. He considered a vector as

an oriented bipoint – i.e. two points connected by an edge,

with its direction being clearly defined. The intensity of the

velocity vector can then be calculated, if we introduce the

concept of time. A more commonplace and contemporary

view can be constructed by considering a road, running

between two roundabouts. The driver of a vehicle traveling

on that road does not need to know the direction of the

journey at a large scale – the local direction of travel is

clearly determined by the road itself. Until the driver



reaches the next roundabout, his/her direction of travel will

be the direction of that particular road, and his/her speed

can be calculated as being the distance between the two

roundabouts over the travel time. When the next

roundabout is reached, the driver will need to continue the

journey in a particular direction by choosing the most

appropriate exit. Hence, the vehicle’s speed on the portion

of road between the two roundabouts can be considered to

be the component of the velocity vector, projected along

the direction of the piece of road. The mean velocity along

that portion of road can be calculated as the integral of the

vehicle’s acceleration over that stretch of road.

Furthermore, the journeys made over several successive

stretches of road can be added together in the same way

that vectors can. Based on these elementary considerations,

it is possible to construct a discrete theory of motion, based

on Newton’s law.

In a Galilean frame of reference, a single material point is

at rest or has uniform rectilinear motion, and the laws of

mechanics are invariant, regardless of whether the frame of

reference changes. The motion of uniform rotation is, a

priori, a particular case, set apart from the category of

Galilean frames of reference, in that an additional force of

inertia, stemming from the centrifugal acceleration, is also

present. Yet the fundamental law of dynamics still remains

valid and applicable to this type of motion. As is the case

with gravity, the centrifugal forces derive from a scalar

potential which, at all times and at all points, compensates

for these purely kinematic effects. Such is the case for an

object or person on a carousel, subject simultaneously to

centrifugal and centripetal forces, which balance one

another out exactly to keep the subject stationary within a

rotating frame of reference. An isolated observer on Earth’s

surface does not feel the effects of the planet’s rotation.

Hence, in the presence of a force deriving from a scalar



potential, a Galilean frame of reference can be deemed to

be inertial; such is the case with gravity if density is

constant. Other types of force do not contribute directly to

acceleration; for instance, a spherical drop subject to

capillary forces deriving from a potential (the capillary

pressure) will not be subject to acceleration, and will remain

in a state of static equilibrium. Hence, not all the forces

contribute to the modification of the state of a system;

some of them – those which derive from a scalar potential –

are counteracted exactly by that potential, and the resulting

acceleration is null. Generally speaking, a force derives from

two potentials: one scalar and the other vectorial. The

vectorial potential alone is responsible for the acceleration

of the medium. For a closed system, animated with a

uniform translational or rotational motion, the total energy

contained in the system must be conserved as that system

evolves. In particular, if the system were stationary to begin

with, it could not spontaneously begin to move. This

physical principle is, at once, a curse and a blessing:

uniform motions defy any description by Newton’s law of

dynamics, but by that token, we are able to “forget” about

the kinematic history of the system; in particular, we do not

need to know where a particle has come from if we know its

current position. It is, however, important to know the

history of the stresses undergone by the system during the

course of its motion, so as to be able to predict the

restitution of any energy that has been accumulated. The

immediate consequence of this is that these uniform

motions do not contribute to the accumulation of the

aforementioned stresses.

Thus, here, the idea of using a fixed, absolute frame of

reference to construct a vectorial representation is no longer

useful. The velocity and acceleration are, at once, directed

vectors and scalars, which represent the measurement of

the vectors. The question then arises of which frame of



reference to choose; strictly speaking, in that the scalar

product is the same regardless of the chosen base, the

choice of the frame of reference is unimportant. It is

possible to express all the forces involved in the

fundamental law of dynamics using solely the velocity

components defined on each edge. Hence, even if the

velocity vector exists in a particular frame of reference,

there is absolutely no need to represent it. Similarly, the

acceleration will only be observed by way of its projection

onto the edge in question. Stokes’ theorem leads us to

expect such a possibility; indeed, the rotational of a vector

on a surface is equal to the circulation of that same vector,

projected onto the path underlying the surface, i.e. the

circulation of its components. Those components can be

considered to be the geometric projection of the velocity,

which it is not necessary to know.

The differential nature of the law of dynamics precludes

any representation of the uniform rectilinear motion.

Similarly, a uniform block rotation of a body around an axis

must not give rise to any acceleration other than that

corresponding to the centrifugal acceleration. These uniform

motions therefore must not come into play when

establishing the conservation of momentum equation. This

is one of the rules from which it is possible to derive the

motion equation. For these states of rest or of uniform

translational or rotational motion (with the exception of a

scalar potential), the acceleration is zero. The definition of

mechanical equilibrium adopted will be associated with any

motion which obeys the fundamental law of dynamics,

where the acceleration is equal to the sum of the forces.

In Continuum Mechanics, all values, be they vectorial or

tensorial, are reduced to a single point once they have been

evaluated for an elementary control volume. This reduction

entails a loss of information about the concept of direction;

thus, in order to define a single-point vector or tensor, it is



necessary to introduce a frame of reference so as to be able

to express their components. This hypothesis of a

continuum is abandoned when we switch back to the idea of

a bipoint and an edge. The consequence is that the notion

of a tensor vanishes, as do the plethora of approximations

and hypotheses which go along with that notion, such as the

principle of material frame indifference, which is closely

linked to the constitutive equation.

The strong link established (notably by Truesdell) between

Mechanics and Thermodynamics can also be called into

question. The constitutive equation defining the links

between the applied stresses and the mechanical or thermal

alterations undergone by the body is not useful as an

entirely separate law in its own right. The confusion which

exists between conservation laws, physical properties and

phenomenological relations can be alleviated; there are the

laws of vectorial conservation on the one hand, and the

thermophysical properties on the other. These properties

are assumed to be known as a function of the variables of

the problem, but the state laws and rheological constitutive

equations are not used to calculate one of these physical

characteristics.

This vision of Mechanics, which is similar to the concepts

introduced by Newton using Geometry, is known as

“Discrete Mechanics”. It corresponds simply to an attempt

to revisit the equations of Mechanics using elementary

concepts from differential geometry.

Jean-Paul CALTAGIRONE

November 2014



List of Symbols

• scalar product

tensorial product

: contracted tensorial product

nabla operator, gradient 0

rotational

, Laplacian

tr trace of a tensor

material derivative

partial derivative in relation to time

α isothermal expansion coefficient

β thermal expansion coefficient

χT isothermal compressibility coefficient

γ specific heat ratio

δij Kronecker delta

εij components of the stress tensor

curvature of an interface

λ compression viscosity

dissipation function

φ heat flux density

μ shear viscosity

μsm subgrid viscosity

μt turbulent viscosity

ν kinematic viscosity

ρ density

σ surface tension, Poisson coefficient

stream function

γ acceleration

ε strain tensor



ω vector potential

ω
o

equilibrium vector potential

σ stress tensor

τ viscous stress tensor

Γ curvilinear contour

Φ scalar potential

Σ surface of a domain

Ω volume of a domain

Ω rotation rate tensor

(x, y, z) Cartesian coordinates

(r, θ) polar coordinates

(r, θ, z) cylindrical coordinates

(r, θ, φ) spherical coordinates

(e1,e2,e3) unit vectors

area of a surface

domain, control volume

linear operator

molar mass

nonlinear operator

power

volume

a heat diffusivity

cp specific heat at constant pressure

cv specific heat at constant volume

d distance

dij components of the strain rate tensor

e specific internal energy

f scalar function

k heat conductivity, turbulent kinetic energy

h specific enthalpy

m mass

p pressure, scalar potential

p
o

equilibrium scalar potential

p* driving pressure



pB Bernouilli pressure

q heat production per volume

qm mass flowrate

qυ volume flowrate

r perfect gas constant

s specific entropy, curvilinear abscissa

t time

υ specific volume

D flowrate

Dh hydraulic diameter

E Young’s modulus, total energy

J Jacobian of the transformation

R molar constant of gases

L reference distance

S entropy

T temperature

T
o

equilibrium temperature

T0 reference temperature

V0 reference velocity

f body volume force

g acceleration due to gravity

n outward normal

q momentum

t tangential unit vector

v′ fluctuation of velocity

v perturbation of velocity

D strain rate tensor

F force

I identity matrix or tensor

K permeability tensor

M mobility tensor

N outward normal to a free surface

T stress

V velocity component

|W| velocity modulus



W velocity

averaged velocity

Bi Biot number

Da Darcy number

M Mach number

Ma Marangoni number

Ra Rayleigh number

Re Reynolds number

We Weber number



Introduction

I.1. General points
The concept of a discrete body sets aside the notion of a

continuum to establish the conservation laws of Mechanics.

All of the theorems and mathematical properties are applied

directly to objects of finite dimensions. Discrete Mechanics

essentially takes elementary results from differential

geometry to establish the laws of conservation along an

edge. The Fundamental Law of Dynamics is the starting

point for establishing the conservation of momentum

equation.

A certain number of the concepts used in Continuum

Mechanics will be abandoned; thus, the very notion of a

continuum is not necessary in order to obtain discrete

equations. Similarly, the hypothesis of Local

Thermodynamic Equilibrium is set aside, because within the

elementary volume, it is not necessary for a state equation

to be satisfied. The concept of a tensor is replaced by the

concepts of differential geometry and elementary operators,

gradient, rotational and divergence, using which we are able

to establish the link between single-point values, oriented

vectors, oriented surfaces and volumes, and vice versa.

Similarly, the projection onto an orthonormal axis system is

not necessary to establish the conservation equations.

Although this formalism gives us a momentum balance

equation which is different to the Navier–Stokes equation,

their application to simple flows yields identical results. The

Hodge–Helmholtz decomposition will play an essential role

in showing how the momentum balance equation can be

employed to separate any of the terms in this equation into

a solenoidal part and an irrotational part.



In Fluid Mechanics, the pressure in the momentum balance

equation cannot be reduced to the role of mechanical

pressure. This equation represents an instantaneous

equilibrium and the thermodynamic pressure, which plays

the role of a stress accumulator, depends not only on

properties such as the temperature or density, but also on

the heat flux and the velocity. If we limit our discussion to

mechanical and thermal effects, the role of the divergences

of the flux and velocity in reading the thermodynamic

pressure will become apparent.

The elements deriving from differential geometry,

differential algebra, exterior calculus, and so on, will be

omitted in the interests of a presentation which is as simple

as possible, using the classic theorems such as those of

Ostrogradski and Stokes, etc., and the properties of the

standard differential operators.

I.2. Introduction
The laws of conservation in mechanics were established

over two centuries ago, and have evolved very little since.

The important contributions made by C. Truesdell and W.

Noll [TRU 74, TRU 92] to integrate the laws of

thermodynamics and the constitutive laws into the

conservation of momentum- and energy laws, however, led

to the establishment of the Navier–Stokes equations, which

offer a very accurate representation of the physical reality

of the phenomena being observed. Many more important

contributions have helped construct the corpus of equations

in Continuum Mechanics as it is taught today [LAN 59, BAT

67, SAL 02, GER 95, COI 07, GUY 91].

However, there are a certain number of difficulties

inherent to the continuum theory which need to be taken

into consideration:



– the concept of a continuum itself poses a significant

problem: the reduction of the elementary volume to a

single point, in order to define scalars, vectors and

tensors, does away with any reference to the direction

and orientation. In order to restore these concepts, it is

necessary to place the domain in a frame of reference –

e.g. to define a point velocity on the basis of its

components;

– the introduction of the Cauchy tensor to express the

local stress T = σ · n, for an isotropic fluid, brings into

play two viscosity coefficients, μ and λ, which are

interlinked by Stokes’ law 3λ + 2μ ≥ 0; we shall come

back to this point in greater detail later on. The value of

λ is very difficult to measure for fluids in general, and

varies greatly depending on the authors and the

measurement methods used. This law is not valid, in

gneral [GAD 95]. It should also be noted, though, that in

solids, the existence of this coefficient does not pose a

problem;

– the concept of a tensor first appeared in the late 19th

Century, and was further developed, in the context of

Continuum Mechanics, before being used in other areas

of physics. The absolute necessity of using tensors in the

field of mechanics to describe the relations between the

stresses and strains can, quite legitimately, be disputed.

In fact, it was the simplistic interpretation of certain

experiments in fluids and solids that guided this choice,

which has remained the same ever since. The

components of the Cauchy stress tensor have only been

able to be reduced thanks to the principle of material

frame indifference for an isotropic medium [TRU 74, SAL

02, GER 95, COI 07]. In spite of these reductions, the

remaining coefficients are only linked by an inequality,

which is confirmed by a thermodynamic approach;



– the formal link between the conservation equations

and the Hodge–Helmholtz decomposition has not been

established. Whilst Helmholtz’s theorem ensures that

any vectorial field can be decomposed into an

irrotational part and a solenoidal part in  for a

decreasing field at infinity, its application is limited to the

vectorial fields themselves, such as the velocity, for

instance, which can be decomposed into two terms: the

scalar and vectorial potentials;

– the level of modeling of the effects of pressure and

those of viscosity is not the same in the Navier–Stokes

equation [SAL 02]. Whilst particular attention has been

paid to viscous effects, enabling us to describe the

transfers of momentum within a fluid, the effects of

compression or decompression are only taken into

account by means of a scalar – the pressure – without

any first-order link being established between the

pressure and the velocity. In order to make this

connection, we have to use other conservation laws:

those relating to the conservation of mass and energy;

– for a long time, thermodynamics has had an important

role to play, which Trusdell [TRU 74] integrated into the

equations of mechanics during the last century. It

conferred the status of a law on the relation between the

different measurable values, such as the density,

pressure and temperature, for example. The structural

coupling links between the momentum equation, the

conservation of mass equation and the state law lead to

confusion as to the role played by each of these

relations. For example, the conservation of mass must

serve to set the density as a function of the external

actions, but not to calculate the pressure. In addition,

there is no condition sine qua non which means that the

state law has to be satisfied at all points and at all times;



– on its own, the conservation of energy carries the

notion of flux and of energy, and the conservation of flux

is completely absent from the classic formalism used in

Continuum Mechanics. Although the conservation of

momentum equation is associated with the conservation

of mass, the heat flux can easily be introduced into this

relation by a simplistic law forming the link between the

flux and the temperature gradient: Fourier’s law. This is

considered an experimental, phenomenological law,

serving to bring closure to the system of equations;

– the boundary conditions between two immiscible fluids

or on the edge of a domain are written on the basis of

the stresses defined by the Cauchy tensor, and are

difficult to apply in practical terms; they need to be

supplemented by compatibility relations – for instance in

the case of shockwaves. Also, they are strongly imposed

– for example, for a fluid flow entering into a domain, we

impose the normal velocity, thereby violating the

equilibrium conditions described by the various terms in

the conservation equation.

The continuum formalism is essentially linked to the

relations between stresses and strains (also known as

deformations), which are represented by a stress tensor, of

varying degrees of complexity. The most complete tensors,

such as the Green–Lagrange tensor, enable us to take

account of significant deformations, whilst certain tensors

found by linearization, such as the Cauchy tensor, are

limited to small transformations. The displacement field

gradient thus introduces the notion of a tensor which can be

decomposed into symmetric and antisymmetric parts. The

purpose of this operation is to filter out the rigid

translational motion which does not give rise to any force

within the material.

The issue that we tackle in the area of Discrete Mechanics

is based on the laying aside of the idea of a continuum,



where all the scalar and vectorial variables are defined at a

single point. In a discrete medium, the scalar values are

associated with a point, whereas the vectorial values are

defined on an edge which can be as short as it needs to be,

provided its direction is preserved. To begin with, we shall

work in the context of small displacements, and in order to

counter the disadvantages that come with that approach,

we shall introduce the principle of accumulation, whereby

each equilbrium state is conserved so as to represent the

evolution of the physical system.

There are a certain number of principles which seem

indispensable in order to model all the mechanical effects:

– the medium is at equilibrium in space if it is not subject

to any force, body or contact;

– the principle of action and reaction must be borne in

mind, although the surface stress does not have the

same meaning here as it does in Continuum Mechanics;

– the rigidifying overall translational and rotational

motions may lead to the inadequacy of the formulation

where rotation plays an important role. We shall suppose

that the rotation rate is zero at infinity, which is one of

the use conditions for the Stokes theorem. The only

essential condition is that any rigid or rigidifying

translational or rotational motion must not affect the

acceleration;

– the dissipation of the mechanical effects, wave

propagation and viscous effects must be positive.

The theory taking shape in this book is founded upon the

fundamental law of dynamics and on some elementary

experiments, using these as bases upon which to construct

coherent and balanced models of the observed effects – in

particular the diffusion of momentum and the propagation

of waves. It also draws on certain elements which were

established in a previous publication by this author on the

subject [CAL 01] to specify and supplement the derivation of



the scalar and vectorial conservation equations without

using tensors whose order is equal to or higher than two.

Next, we go on to discuss the general properties of these

equations. In particular, the differences between the Navier–

Stokes equation and the momentum balance equation

stemming from this theory will be illustrated; also, the two

forms of the dissipation term will be compared.



1

Framework of Discrete

Mechanics

1.1. Frames of reference

and uniform motions
Any change in the position of a particle defined by its

position x, at time t, depends on the frame of reference in

relation to which the motion is observed. As no absolute rest

state exists, it is possible to choose an inertial frame of

reference, wherein a body remains at rest or animated with

uniform rectilinear motion when not subjected to any

external force. In view of the principle of relativity, the

physical laws take the same form in all inertial frames of

reference. This principle holds true for velocity values which

are much lesser than the speed of light. Herein, we shall not

take account of the relativistic effects, and our discussion

fits into the context of mechanics at moderate velocities, far

lesser than the celerity of light. We are left with the

fundamental principles of restricted (special) relativity

theory or of general relativity in the presence of

gravitational forces, which apply for all velocity levels.

The case of a uniform rotational motion is similar in

nature: an observer at rest in the rotating frame of

reference is subject to a centripetal force which is equal and

opposite to the centrifugal force deriving from a scalar



potential Φ = ρ/2 (Ω × r)2, where Ω is the constant speed of

rotation of the frame of reference.

A uniform rectilinear motion “eludes” definition by the law

of Mechanics; the acceleration is zero and the sum of the

forces at work is also null. In the presence of an external

force, such as constant gravity, an observer is at rest in a

frame of reference linked to the Earth when a different force

is exerted upon him/her – in this case, the gravitational pull

of the ground; the body forces, in this scenario, derive from

a scalar potential Φ. The fundamental law of dynamics

therefore becomes , which is the equation of

static of fluids.

In both cases, the acceleration due to gravity and the

centripetal acceleration are compensated by the gradient of

a scalar potential. If the corresponding forces could no

longer be described on the basis of true potentials, the

medium would be subject to acceleration, and therefore

would lose the state of relative rest. These two examples

illustrate that forces which derive from a scalar potential do

not give rise to motion: they simply contribute to a

modification of the definition of the potential. The Hodge–

Helmholtz decomposition, which separates the two

components of a vector into a gradient of scalar potential

and a rotational of a vector potential, suggests that for a

medium at rest, the acceleration vector is null, and

therefore, with the exception of the sign, the gradient of the

scalar potential is equal to the rotational of the vector

potential. The Hodge–Helmholtz theorem predicts, for a

simply-connected domain, that a field such that 

is a constant. This constant is, simultaneously, the gradient

of a scalar potential and the rotational of a vector potential;

it is a harmonic field which corresponds to a decomposition

into three Hodge–Helmholtz terms. Generally speaking, the

third term Vh is practically impossible to extract directly,



and its existence probably needs to be linked to the uniform

motions.

A constant introduced on the right-hand side of the motion

balance equation can be interpreted as a gradient of a

scalar potential, or as the rotational of a vector potential; in

both cases, all that changes is the definition of the existing

potentials. The directional aspect of the gradient operator

suggests that the uniform rectilinear motions will be carried

by a scalar potential, whilst the uniform rotational motions

will be contained in a vector potential.

The Law of Dynamics formulated by Newton cannot be

used to find the uniform motions – be they rectilinear or

rotational. The model of the physical phenomena

constructed here in order to take account of the numerous

effects observed for a continuum – e.g. viscosity, capillarity,

rotation, dissipation, etc. – will therefore not take account of

these uniform motions. However, if they are present, it is

essential that they do not give rise to any artifact for the

model; such is the case of the rotational motion, which must

be prevented from engendering mechanical dissipation.

Note that, at a small timescale, a uniform rotational motion

can be considered to be a uniform rectilinear motion.

If we cannot find out the acceleration, why then are we

interested in the position of a point of the medium as a

function of time? In any case, our knowledge of the

particle’s absolute position at a later moment in time will be

altered by errors, because we can always superimpose a

uniform velocity field V′ to calculate it using the formula x =

xo +(V+ V′) dt. In solid mechanics, the problem can be

resolved by adopting a Lagrangian approach using a

reference state. As for fluid mechanics, where we are only

interested in the velocities and their variations, the question

simply does not arise. A more unified approach to

mechanics – both fluid and solid – would lead us to consider

only the velocities; the displacements would then be



deduced by an incremental process based on the evolution

from one state of mechanical equilibrium to another.

Another important question merits particular attention: do

we actually need a frame of reference? If we consider that

the velocity is a vector W, then it is necessary to perform

elementary operations such as the scalar product, which

uses the components of the vector. In this case, we

introduce a frame of reference anchored to a given system

of coordinates. If we now consider that the velocity is an

oriented scalar, following a fixed direction Γ, it can be

considered either as a new vector V = (W · t) t or as a

scalar V = (W · t), where t is the unit vector over Γ.

Evidently, merely knowing V and t is insufficient to find the

local vector W, but is it really necessary to do so? If we

replace the scalar product with a geometric projection, and

differential geometry can be used to write all the operators

on the basis of the components of V alone, then knowing

the velocity vector W is no longer useful, in the same way

as a frame of reference is no longer needed. It is the

concept of a continuum, where all the values are defined at

a single point, which creates the need for a frame of

reference. Certainly, the lengths, surface areas, volumes,

normals, etc. of the topologies need to be known, and

therefore calculated previously, in order to be able to apply

the differential operators.

Based on this observation, it is possible to do away with

the notion of a vector and that of a tensor, instead using the

concept of a component associated with elementary

topology – that of the oriented bipoint. Hence, by simply

knowing the scalars V on all of the oriented edges Γ, we are

able to define a motion on a discrete topology made up of

edges and points. The aim of Discrete Mechanics is to

construct physical models on that basis. To find the starting

point for this theory, we need to go back to the primary


