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Discrete mechanics is a primitive vision of Newton’s 2nd
Law, the fundamental principle of dynamics, as stated in his
Philosophiæ Naturalis Principia Mathematica in 1686. The
original path chosen to derive the mechanical equations is
based on basic concepts of differential geometry where the
conservation of the flows is expressed on a segment of the
discrete topology. It thus discards the concept of continuous
medium.  

This book presents the fundamental principle of dynamics,
fused together with the conservation of mass equation,
which is written formally as the sum of an irrotational
contribution and a solenoid contribution following a
Hodge−Helmholtz decomposition. The gradient of the scalar
potential is associated with pressure forces whereas the
rotational of the vector potential corresponds to viscous
forces. The discrete equation of the motion thus obtained
brings together, at the first order, phenomena such as the
diffusion of the quantity of motion, wave propagation,
viscous or wave dissipation, etc. The single formulation for
fluids and solids is exempt from any constitutive law.

Jean-Paul Caltagirone is Professor at the University of
Bordeaux in France. He conducts research into fluid
mechanics, heat transfers and porous media in which he
develops original numerical methodologies to resolve
equations.
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Preface

The law of dynamics stated by Isaac Newton in 1686 in his treatise

Philosophiæ Naturalis Principia Mathematica [NEW 87] introduces

the vectorial nature of both sides of that law: the force and the quantity

of acceleration. For Newton and his contemporaries, the concepts of

vectors and scalars applied to rectilinear trajectories were not so

different. The composition of the motions helps to extend those

motions along their plane or in space, and Newton himself adds forces

to them (see Corollaries I and II of the Principia).

The establishment of the equations of general motions in around

1740 by Euler, Lagrange and MacLaurin, introduced the concept of

fixed directions in space, where the vectors, velocity and acceleration

could be expressed in the form of coordinates. In the field of

Mechanics today, we still use the fundamental bases introduced by

these concepts. The work of Truesdell illustrates the rise and trajectory

of this discipline, to which Truesdell himself contributed greatly during

the last century, bringing together the concepts of mechanics with

those of thermodynamics; up until that point, the two disciplines had

developed in parallel, independently of one another.

Newton’s vision, which some might consider to be restrictive, is, in

fact, remarkable. He considered a vector as an oriented bipoint – i.e.

two points connected by an edge, with its direction being clearly

defined. The intensity of the velocity vector can then be calculated, if

we introduce the concept of time. A more commonplace and
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contemporary view can be constructed by considering a road, running

between two roundabouts. The driver of a vehicle traveling on that

road does not need to know the direction of the journey at a large

scale – the local direction of travel is clearly determined by the road

itself. Until the driver reaches the next roundabout, his/her direction of

travel will be the direction of that particular road, and his/her speed can

be calculated as being the distance between the two roundabouts over

the travel time. When the next roundabout is reached, the driver will

need to continue the journey in a particular direction by choosing the

most appropriate exit. Hence, the vehicle’s speed on the portion of road

between the two roundabouts can be considered to be the component

of the velocity vector, projected along the direction of the piece of

road. The mean velocity along that portion of road can be calculated as

the integral of the vehicle’s acceleration over that stretch of road.

Furthermore, the journeys made over several successive stretches of

road can be added together in the same way that vectors can. Based on

these elementary considerations, it is possible to construct a discrete

theory of motion, based on Newton’s law.

In a Galilean frame of reference, a single material point is at rest or

has uniform rectilinear motion, and the laws of mechanics are

invariant, regardless of whether the frame of reference changes. The

motion of uniform rotation is, a priori, a particular case, set apart from

the category of Galilean frames of reference, in that an additional force

of inertia, stemming from the centrifugal acceleration, is also present.

Yet the fundamental law of dynamics still remains valid and applicable

to this type of motion. As is the case with gravity, the centrifugal forces

derive from a scalar potential which, at all times and at all points,

compensates for these purely kinematic effects. Such is the case for an

object or person on a carousel, subject simultaneously to centrifugal

and centripetal forces, which balance one another out exactly to keep

the subject stationary within a rotating frame of reference. An isolated

observer on Earth’s surface does not feel the effects of the planet’s

rotation. Hence, in the presence of a force deriving from a scalar

potential, a Galilean frame of reference can be deemed to be inertial;

such is the case with gravity if density is constant. Other types of force

do not contribute directly to acceleration; for instance, a spherical drop
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subject to capillary forces deriving from a potential (the capillary

pressure) will not be subject to acceleration, and will remain in a state

of static equilibrium. Hence, not all the forces contribute to the

modification of the state of a system; some of them – those which

derive from a scalar potential – are counteracted exactly by that

potential, and the resulting acceleration is null. Generally speaking, a

force derives from two potentials: one scalar and the other vectorial.

The vectorial potential alone is responsible for the acceleration of the

medium. For a closed system, animated with a uniform translational or

rotational motion, the total energy contained in the system must be

conserved as that system evolves. In particular, if the system were

stationary to begin with, it could not spontaneously begin to move.

This physical principle is, at once, a curse and a blessing: uniform

motions defy any description by Newton’s law of dynamics, but by that

token, we are able to “forget” about the kinematic history of the

system; in particular, we do not need to know where a particle has

come from if we know its current position. It is, however, important to

know the history of the stresses undergone by the system during the

course of its motion, so as to be able to predict the restitution of any

energy that has been accumulated. The immediate consequence of this

is that these uniform motions do not contribute to the accumulation of

the aforementioned stresses.

Thus, here, the idea of using a fixed, absolute frame of reference to

construct a vectorial representation is no longer useful. The velocity

and acceleration are, at once, directed vectors and scalars, which

represent the measurement of the vectors. The question then arises of

which frame of reference to choose; strictly speaking, in that the scalar

product is the same regardless of the chosen base, the choice of the

frame of reference is unimportant. It is possible to express all the

forces involved in the fundamental law of dynamics using solely the

velocity components defined on each edge. Hence, even if the velocity

vector exists in a particular frame of reference, there is absolutely no

need to represent it. Similarly, the acceleration will only be observed

by way of its projection onto the edge in question. Stokes’ theorem

leads us to expect such a possibility; indeed, the rotational of a vector

on a surface is equal to the circulation of that same vector, projected
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onto the path underlying the surface, i.e. the circulation of its

components. Those components can be considered to be the geometric

projection of the velocity, which it is not necessary to know.

The differential nature of the law of dynamics precludes any

representation of the uniform rectilinear motion. Similarly, a uniform

block rotation of a body around an axis must not give rise to any

acceleration other than that corresponding to the centrifugal

acceleration. These uniform motions therefore must not come into play

when establishing the conservation of momentum equation. This is one

of the rules from which it is possible to derive the motion equation. For

these states of rest or of uniform translational or rotational motion

(with the exception of a scalar potential), the acceleration is zero. The

definition of mechanical equilibrium adopted will be associated with

any motion which obeys the fundamental law of dynamics, where the

acceleration is equal to the sum of the forces.

In Continuum Mechanics, all values, be they vectorial or tensorial,

are reduced to a single point once they have been evaluated for an

elementary control volume. This reduction entails a loss of information

about the concept of direction; thus, in order to define a single-point

vector or tensor, it is necessary to introduce a frame of reference so as

to be able to express their components. This hypothesis of a continuum

is abandoned when we switch back to the idea of a bipoint and an edge.

The consequence is that the notion of a tensor vanishes, as do the

plethora of approximations and hypotheses which go along with that

notion, such as the principle of material frame indifference, which is

closely linked to the constitutive equation.

The strong link established (notably by Truesdell) between

Mechanics and Thermodynamics can also be called into question. The

constitutive equation defining the links between the applied stresses

and the mechanical or thermal alterations undergone by the body is not

useful as an entirely separate law in its own right. The confusion which

exists between conservation laws, physical properties and

phenomenological relations can be alleviated; there are the laws of

vectorial conservation on the one hand, and the thermophysical

properties on the other. These properties are assumed to be known as a
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function of the variables of the problem, but the state laws and

rheological constitutive equations are not used to calculate one of these

physical characteristics.

This vision of Mechanics, which is similar to the concepts

introduced by Newton using Geometry, is known as “Discrete

Mechanics”. It corresponds simply to an attempt to revisit the

equations of Mechanics using elementary concepts from differential

geometry.

Jean-Paul CALTAGIRONE

November 2014
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Introduction

I.1. General points

The concept of a discrete body sets aside the notion of a continuum

to establish the conservation laws of Mechanics. All of the theorems

and mathematical properties are applied directly to objects of finite

dimensions. Discrete Mechanics essentially takes elementary results

from differential geometry to establish the laws of conservation along

an edge. The Fundamental Law of Dynamics is the starting point for

establishing the conservation of momentum equation.

A certain number of the concepts used in Continuum Mechanics

will be abandoned; thus, the very notion of a continuum is not

necessary in order to obtain discrete equations. Similarly, the

hypothesis of Local Thermodynamic Equilibrium is set aside, because

within the elementary volume, it is not necessary for a state equation to

be satisfied. The concept of a tensor is replaced by the concepts of

differential geometry and elementary operators, gradient, rotational

and divergence, using which we are able to establish the link between

single-point values, oriented vectors, oriented surfaces and volumes,

and vice versa. Similarly, the projection onto an orthonormal axis

system is not necessary to establish the conservation equations.

Although this formalism gives us a momentum balance equation

which is different to the Navier–Stokes equation, their application to

simple flows yields identical results. The Hodge–Helmholtz
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decomposition will play an essential role in showing how the

momentum balance equation can be employed to separate any of the

terms in this equation into a solenoidal part and an irrotational part.

In Fluid Mechanics, the pressure in the momentum balance

equation cannot be reduced to the role of mechanical pressure. This

equation represents an instantaneous equilibrium and the

thermodynamic pressure, which plays the role of a stress accumulator,

depends not only on properties such as the temperature or density, but

also on the heat flux and the velocity. If we limit our discussion to

mechanical and thermal effects, the role of the divergences of the flux

and velocity in reading the thermodynamic pressure will become

apparent.

The elements deriving from differential geometry, differential

algebra, exterior calculus, and so on, will be omitted in the interests of

a presentation which is as simple as possible, using the classic

theorems such as those of Ostrogradski and Stokes, etc., and the

properties of the standard differential operators.

I.2. Introduction

The laws of conservation in mechanics were established over two

centuries ago, and have evolved very little since. The important

contributions made by C. Truesdell and W. Noll [TRU 74, TRU 92] to

integrate the laws of thermodynamics and the constitutive laws into the

conservation of momentum- and energy laws, however, led to the

establishment of the Navier–Stokes equations, which offer a very

accurate representation of the physical reality of the phenomena being

observed. Many more important contributions have helped construct

the corpus of equations in Continuum Mechanics as it is taught today

[LAN 59, BAT 67, SAL 02, GER 95, COI 07, GUY 91].

However, there are a certain number of difficulties inherent to the

continuum theory which need to be taken into consideration:

– the concept of a continuum itself poses a significant problem:

the reduction of the elementary volume to a single point, in order to
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define scalars, vectors and tensors, does away with any reference to

the direction and orientation. In order to restore these concepts, it is

necessary to place the domain in a frame of reference – e.g. to define a

point velocity on the basis of its components;

– the introduction of the Cauchy tensor to express the local stress

T = σ · n, for an isotropic fluid, brings into play two viscosity

coefficients, μ and λ, which are interlinked by Stokes’ law 3λ+2μ ≥ 0;

we shall come back to this point in greater detail later on. The value of

λ is very difficult to measure for fluids in general, and varies greatly

depending on the authors and the measurement methods used. This law

is not valid, in gneral [GAD 95]. It should also be noted, though, that in

solids, the existence of this coefficient does not pose a problem;

– the concept of a tensor first appeared in the late 19th Century,

and was further developed, in the context of Continuum Mechanics,

before being used in other areas of physics. The absolute necessity of

using tensors in the field of mechanics to describe the relations between

the stresses and strains can, quite legitimately, be disputed. In fact, it

was the simplistic interpretation of certain experiments in fluids and

solids that guided this choice, which has remained the same ever since.

The components of the Cauchy stress tensor have only been able to

be reduced thanks to the principle of material frame indifference for an

isotropic medium [TRU 74, SAL 02, GER 95, COI 07]. In spite of these

reductions, the remaining coefficients are only linked by an inequality,

which is confirmed by a thermodynamic approach;

– the formal link between the conservation equations and the

Hodge–Helmholtz decomposition has not been established. Whilst

Helmholtz’s theorem ensures that any vectorial field can be decomposed

into an irrotational part and a solenoidal part in R3 for a decreasing field

at infinity, its application is limited to the vectorial fields themselves,

such as the velocity, for instance, which can be decomposed into two

terms: the scalar and vectorial potentials;

– the level of modeling of the effects of pressure and those of

viscosity is not the same in the Navier–Stokes equation [SAL 02].

Whilst particular attention has been paid to viscous effects, enabling
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us to describe the transfers of momentum within a fluid, the effects

of compression or decompression are only taken into account by

means of a scalar – the pressure – without any first-order link being

established between the pressure and the velocity. In order to make this

connection, we have to use other conservation laws: those relating to the

conservation of mass and energy;

– for a long time, thermodynamics has had an important role to play,

which Trusdell [TRU 74] integrated into the equations of mechanics

during the last century. It conferred the status of a law on the relation

between the different measurable values, such as the density, pressure

and temperature, for example. The structural coupling links between the

momentum equation, the conservation of mass equation and the state

law lead to confusion as to the role played by each of these relations.

For example, the conservation of mass must serve to set the density as

a function of the external actions, but not to calculate the pressure. In

addition, there is no condition sine qua non which means that the state

law has to be satisfied at all points and at all times;

– on its own, the conservation of energy carries the notion of flux

and of energy, and the conservation of flux is completely absent from

the classic formalism used in Continuum Mechanics. Although the

conservation of momentum equation is associated with the conservation

of mass, the heat flux can easily be introduced into this relation

by a simplistic law forming the link between the flux and the

temperature gradient: Fourier’s law. This is considered an experimental,

phenomenological law, serving to bring closure to the system of

equations;

– the boundary conditions between two immiscible fluids or on the

edge of a domain are written on the basis of the stresses defined by the

Cauchy tensor, and are difficult to apply in practical terms; they need to

be supplemented by compatibility relations – for instance in the case of

shockwaves. Also, they are strongly imposed – for example, for a fluid

flow entering into a domain, we impose the normal velocity, thereby

violating the equilibrium conditions described by the various terms in

the conservation equation.


