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Preface

Since the discovery nearly 20 years ago that pathogenic

bacteria and viruses intimately associate with

autophagosomal membranes, scientists have determined

that autophagy is a critical component of innate and

acquired immunity. Of course, as with all aspects of the

host immune response, some pathogens have turned

autophagy to their advantage. For this volume, experts in

the fields of bacteriology, virology, mycology, parasitology,

immunology, and cell biology describe the cellular

mechanisms of autophagosome formation and maturation,

its contribution to host defenses, and the mechanisms

pathogenic microbes have acquired to overcome and

subvert this formidable barrier to infection. In addition,

specialists discuss current efforts to exploit knowledge of

the autophagy pathway to improve vaccine design.

Accordingly, this thorough examination of an extraordinary

cellular battleground between host and pathogen can

stimulate ongoing research to understand and to

manipulate autophagy to improve human health.

William T. Jackson

Michele S. Swanson
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Chapter 1

Autophagy and Immunity

Xu Liu and Daniel J. Klionsky

Life Sciences Institute and Department of Molecular,

Cellular and Developmental Biology, University of

Michigan, Ann Arbor, Michigan, USA

1.1 Introduction

Autophagy is a highly controlled process in which cellular

components are self-degraded and subsequently recycled.

This pathway in part plays a “house cleaning” role in the

cell, directing numerous cargoes to the lysosome (or the

vacuole in yeast and plants) for degradation. Depending on

the specific conditions, the cargoes include random

portions of cytoplasm, protein aggregates, and damaged or

superfluous organelles such as mitochondria and

peroxisomes. Dysfunction of autophagy is linked with many

pathologies, including cancer, diabetes, myopathies, heart,

liver and lung diseases, and certain types of

neurodegenerative disease (Castets et al., 2013; Gonzalez

et al., 2011; Klionsky and Codogno, 2013; Murrow and

Debnath, 2013; Rubinsztein et al., 2012; Yang and Klionsky,

2010).

Emerging studies have revealed that autophagy plays

important roles in immunity. In 2004, independent studies

demonstrated for the first time that invading pathogens can

be cargoes for autophagy (Gutierrez et al., 2004;

Nakagawa et al., 2004). Today it is well accepted that

autophagy can directly eliminate intracellular pathogens,

including bacteria, fungal parasites, and viruses.

Autophagy can also activate innate immune signaling

cascades such as Toll-like receptor (TLR) signaling to



attack invading pathogens (Lee et al., 2007; Xu et al.,

2007). However, microbes constantly undergo strong

selective pressure to develop strategies to block host

defense mechanisms. Indeed, studies indicate that some

adaptations that confer pathogenicity involve microbial

inactivation or subversion of autophagy through distinct

mechanisms (Deretic and Levine, 2009; Kuballa et al.,

2012; Levine et al., 2011; Yuk et al., 2012; Zhou and Zhang,

2012).

Autophagy's role in immunity is not limited to controlling

infection by direct elimination of pathogens. For example,

autophagy facilitates MHC (major histocompatibility

complex) antigen presentation, indicating that autophagy is

involved in adaptive as well as innate immunity (English et

al., 2009; Paludan et al., 2005). Moreover, defects in

autophagy are associated with autoimmune diseases such

as Crohn disease (Levine et al., 2011; Schroder and

Tschopp, 2010; Shi et al., 2012). Thus, autophagy is an

integral part of our response to infection and plays a key

role in immunity. A comprehensive understanding of

autophagy as it pertains to microbial infection and the

molecular mechanisms that underlie the interplay between

autophagy and immune signaling pathways may enable us

to unravel the pathogenesis of many infectious and immune

diseases, and develop more effective therapeutic strategies

for their treatment.

1.2 Autophagy

1.2.1 Types of Autophagy

There are three main types of autophagy: chaperone-

mediated autophagy (CMA), microautophagy, and

macroautophagy (Figure 1.1). CMA is a process where a

cytosolic chaperone protein, HSPA8/HSC70, specifically



recognizes its cargo proteins through a KFERQ-like motif

and facilitates their translocation directly across the

lysosomal membrane for degradation (Dice, 2007; Kaushik

and Cuervo, 2012). Microautophagy involves the uptake of

portions of cytoplasm by the direct invagination or

protrusion of the lysosomal or vacuolar membrane

(Mijaljica et al., 2011). The third process, macroautophagy,

hereafter referred to as autophagy, is the best

characterized and will be the focus of this chapter.



Figure 1.1 Schematic model of mammalian autophagy.

Cargoes including cytosolic proteins, protein aggregates,

and damaged organelles are sequestered by a phagophore,

which will expand and mature to form a complete

autophagosome. The outer membrane of the

autophagosome fuses with either a late endosome (forming

an amphisome, which then fuses with a lysosome) or

lysosome, forming an autolysosome. Finally, the cargoes

together with the inner membrane are degraded and the

breakdown products are released back into the cytosol for

reuse.

1.2.2 Morphology

The morphological hallmark of autophagy involves the de

novo formation of a double-membrane organelle named the

autophagosome; however, this structure is essentially an

end product of the sequestration process and as such is not

really the primary functional unit of autophagy. Rather, the

precursor to the autophagosome, the phagophore, is the



dynamic membrane structure that is responsible for

sequestering the cargos such as damaged organelles and

invading pathogens (Figure 1.1). The phagophore expands

with the addition of membrane, the sources of which are

suggested to include almost every intracellular organelle.

Upon completion, the phagophore seals and becomes a

completed autophagosome. The autophagosome may fuse

directly with a lysosome or, first, with a late endosome to

form an intermediate amphisome. The subsequent fusion of

the outer membrane of the autophagosome or the

amphisome limiting membrane with a lysosome generates

an autolysosome and exposes the cargoes to the

degradative lysosomal enzymes. The degradation products,

especially amino acids, are subsequently released back into

the cytosol and are used in generating energy or as

substrates for biosynthetic pathways.

1.2.3 Molecular Machinery

Even though autophagosomes have been observed by

electron microscopy as early as the 1950s, the molecular

mechanisms of autophagy have been poorly studied until

the past two decades (Stromhaug and Klionsky, 2001). The

molecular machinery was first identified through studies in

budding yeast, Saccharomyces cerevisiae, and to date more

than 30 autophagy-related (ATG) genes have been

identified as being involved in this process (Harding et al.,

1995; Klionsky et al., 2003; Thumm et al., 1994; Tsukada

and Ohsumi, 1993). Subsequent work with mammalian

cells has revealed homologs of the core autophagy

machinery (Xie and Klionsky, 2007), supporting the notion

that autophagy is evolutionarily conserved. At the same

time, there are also increasing numbers of ATG proteins

being identified in mammals and other model systems such

as Caenorhabditis elegans that lack yeast homologs,

suggesting an increased complexity and diversity of



function in higher eukaryotes (Klionsky and Codogno,

2013). For ease of discussion, the protein machinery of

autophagy is subdivided into four major complexes in the

following sections, and we focus on the mammalian

autophagy machinery.

ULK1/ULK2 complex

Autophagy occurs at a basal level in cells under normal

conditions. Upon stress or other stimuli, autophagy can be

induced, and defects in regulation that prevent proper

induction can lead to aberrant cell physiology; however, too

much autophagy activity can also be detrimental to the cell.

Thus, the level of autophagy must be tightly controlled.

Accordingly, there are various factors that regulate

autophagy induction, and studies have shown that the

ULK1/ULK2 (unc-51 like autophagy activating kinase 1/2)

complex functions in part in an early stage of autophagy

regulation.

ULK1 and ULK2 are kinases and the other components of

the complex include ATG13, RB1CC1/FIP200 (RB1-

inducible coiled-coil 1), and ATG101. ATG13 directly

interacts with ULK1/ULK2 and RB1CC1 regardless of the

nutrient availability (Hosokawa et al., 2009; Jung et al.,

2009); however, the phosphorylation status of these

proteins changes under different conditions. In nutrient-

rich conditions, a key upstream negative regulator of

autophagy, the mechanistic target of rapamycin complex 1

(MTORC1) interacts with the complex and phosphorylates

ULK1/ULK2 and ATG13, inhibiting ULK1/ULK2 kinase

activity. Upon starvation, MTORC1 is released from the

complex. ULK1/ULK2 and ATG13 are then partially

dephosphorylated, leading to activation of ULK1/ULK2

kinase activity, which in turn leads to phosphorylation of

ATG13 (presumably on distinct sites from those used by

MTORC1) and RB1CC1 to induce autophagy (Chan, 2009;



Hara et al., 2008; Hosokawa et al., 2009). AMPK (AMP-

activated protein kinase) also binds ULK1/ULK2 and

positively regulates autophagy through phosphorylation

upon glucose starvation; as expected, AMPK and MTORC1

phosphorylate ULK1 at different sites (Kim et al., 2011;

Zhao and Klionsky, 2011).

Class III phosphatidylinositol 3-kinase complexes

The class III phosphatidylinositol 3-kinase (PtdIns3K) is

generally thought to act downstream of the ULK1/ULK2

complex, mediating formation of phosphatidylinositol-3-

phosphate (PtdIns3P) on the phagophore membrane, an

event essential for autophagy. PtdIns3P serves to recruit

downstream factors such as WIPI1 (WD repeat domain,

phosphoinositide interacting 1) and WIPI2, which are

involved in the trafficking of ATG9 and promote

autophagosome maturation (Polson et al., 2010). In

mammals, there are multiple class III PtdIns3K complexes

with the core components being PIK3C3/VPS34

(phosphatidylinositol 3-kinase, catalytic subunit type 3),

BECN1/Beclin 1 (beclin 1, autophagy related), and

PIK3R4/VPS15/p150 (phosphoinositide-3-kinase, regulatory

subunit 4). BECN1 can interact with several proteins,

including AMBRA1 (autophagy/beclin-1 regulator 1),

ATG14/ATG14L/Barkor, UVRAG (UV radiation resistance

associated), KIAA0226/Rubicon and BCL2 (B-cell

CLL/lymphoma 2) to form distinct complexes (Furuya et al.,

2005; Itakura et al., 2008; Matsunaga et al., 2009; Petiot,

2000). BECN1 was first identified as a BCL2 binding

protein. The interaction between BECN1 and BCL2 inhibits

the binding of the former with PIK3C3, thus inhibiting

autophagy. The ATG14–BECN1–PIK3C3–PIK3R4–AMBRA1

complex is specific for autophagy; ATG14 may direct this

complex to the phagophore to promote autophagosome

biogenesis (Itakura et al., 2008; Matsunaga et al., 2009),


