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PREFACE

Since the discovery nearly 20 years ago that pathogenic bacteria and viruses intimately

associate with autophagosomal membranes, scientists have determined that autophagy is a

critical component of innate and acquired immunity. Of course, as with all aspects of the

host immune response, some pathogens have turned autophagy to their advantage. For this

volume, experts in the fields of bacteriology, virology, mycology, parasitology, immunol-

ogy, and cell biology describe the cellular mechanisms of autophagosome formation and

maturation, its contribution to host defenses, and themechanisms pathogenic microbes have

acquired to overcome and subvert this formidable barrier to infection. In addition, spe-

cialists discuss current efforts to exploit knowledge of the autophagy pathway to improve

vaccine design. Accordingly, this thorough examination of an extraordinary cellular bat-

tleground between host and pathogen can stimulate ongoing research to understand and to

manipulate autophagy to improve human health.

William T. Jackson

Michele S. Swanson
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1

AUTOPHAGY AND IMMUNITY
Xu Liu and Daniel J. Klionsky

Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology,
University of Michigan, Ann Arbor, Michigan, USA

1.1 INTRODUCTION

Autophagy is a highly controlled process in which cellular components are self-degraded

and subsequently recycled. This pathway in part plays a “house cleaning” role in the

cell, directing numerous cargoes to the lysosome (or the vacuole in yeast and plants) for

degradation. Depending on the specific conditions, the cargoes include random portions of

cytoplasm, protein aggregates, and damaged or superfluous organelles such as mitochon-

dria and peroxisomes. Dysfunction of autophagy is linkedwithmany pathologies, including

cancer, diabetes, myopathies, heart, liver and lung diseases, and certain types of neurode-

generative disease (Castets et al., 2013; Gonzalez et al., 2011; Klionsky and Codogno,

2013; Murrow and Debnath, 2013; Rubinsztein et al., 2012; Yang and Klionsky, 2010).

Emerging studies have revealed that autophagy plays important roles in immunity.

In 2004, independent studies demonstrated for the first time that invading pathogens can

be cargoes for autophagy (Gutierrez et al., 2004; Nakagawa et al., 2004). Today it is well

accepted that autophagy can directly eliminate intracellular pathogens, including bacteria,

fungal parasites, and viruses. Autophagy can also activate innate immune signaling cas-

cades such as Toll-like receptor (TLR) signaling to attack invading pathogens (Lee et al.,

2007; Xu et al., 2007). However, microbes constantly undergo strong selective pressure

to develop strategies to block host defense mechanisms. Indeed, studies indicate that

some adaptations that confer pathogenicity involve microbial inactivation or subversion of

Autophagy, Infection, and the Immune Response, First Edition.
Edited by William T. Jackson and Michele S. Swanson.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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2 AUTOPHAGY AND IMMUNITY

autophagy through distinct mechanisms (Deretic and Levine, 2009; Kuballa et al., 2012;

Levine et al., 2011; Yuk et al., 2012; Zhou and Zhang, 2012).

Autophagy’s role in immunity is not limited to controlling infection by direct elim-

ination of pathogens. For example, autophagy facilitates MHC (major histocompatibil-

ity complex) antigen presentation, indicating that autophagy is involved in adaptive as

well as innate immunity (English et al., 2009; Paludan et al., 2005). Moreover, defects in

autophagy are associated with autoimmune diseases such as Crohn disease (Levine et al.,

2011; Schroder and Tschopp, 2010; Shi et al., 2012). Thus, autophagy is an integral part of

our response to infection and plays a key role in immunity. A comprehensive understand-

ing of autophagy as it pertains to microbial infection and the molecular mechanisms that

underlie the interplay between autophagy and immune signaling pathways may enable us

to unravel the pathogenesis of many infectious and immune diseases, and develop more

effective therapeutic strategies for their treatment.

1.2 AUTOPHAGY

1.2.1 Types of autophagy

There are three main types of autophagy: chaperone-mediated autophagy (CMA), microau-

tophagy, and macroautophagy (Figure 1.1). CMA is a process where a cytosolic chaperone

protein, HSPA8/HSC70, specifically recognizes its cargo proteins through a KFERQ-like

Phagophore

Late endosome

Vesicle expansion

Hydrolases

Hydrolases

Lysosome

Amphisome

Autolysosome

Lysosome

Autophagosome

Vesicle
maturation

Figure 1.1. Schematic model of mammalian autophagy. Cargoes including cytosolic proteins,

protein aggregates, and damaged organelles are sequestered by a phagophore, whichwill expand

and mature to form a complete autophagosome. The outer membrane of the autophagosome

fuses with either a late endosome (forming an amphisome, which then fuses with a lysosome) or

lysosome, forming an autolysosome. Finally, the cargoes together with the inner membrane are

degraded and the breakdown products are released back into the cytosol for reuse.



1.2 AUTOPHAGY 3

motif and facilitates their translocation directly across the lysosomal membrane for

degradation (Dice, 2007; Kaushik and Cuervo, 2012). Microautophagy involves the uptake

of portions of cytoplasm by the direct invagination or protrusion of the lysosomal or

vacuolar membrane (Mijaljica et al., 2011). The third process, macroautophagy, hereafter

referred to as autophagy, is the best characterized and will be the focus of this chapter.

1.2.2 Morphology

The morphological hallmark of autophagy involves the de novo formation of a double-

membrane organelle named the autophagosome; however, this structure is essentially an

end product of the sequestration process and as such is not really the primary functional

unit of autophagy. Rather, the precursor to the autophagosome, the phagophore, is the

dynamic membrane structure that is responsible for sequestering the cargos such as

damaged organelles and invading pathogens (Figure 1.1). The phagophore expands with

the addition of membrane, the sources of which are suggested to include almost every

intracellular organelle. Upon completion, the phagophore seals and becomes a completed

autophagosome. The autophagosome may fuse directly with a lysosome or, first, with a

late endosome to form an intermediate amphisome. The subsequent fusion of the outer

membrane of the autophagosome or the amphisome limiting membrane with a lysosome

generates an autolysosome and exposes the cargoes to the degradative lysosomal enzymes.

The degradation products, especially amino acids, are subsequently released back into the

cytosol and are used in generating energy or as substrates for biosynthetic pathways.

1.2.3 Molecular machinery

Even though autophagosomes have been observed by electron microscopy as early as the

1950s, the molecular mechanisms of autophagy have been poorly studied until the past

two decades (Stromhaug and Klionsky, 2001). The molecular machinery was first identi-

fied through studies in budding yeast, Saccharomyces cerevisiae, and to date more than 30

autophagy-related (ATG) genes have been identified as being involved in this process (Hard-
ing et al., 1995; Klionsky et al., 2003; Thumm et al., 1994; Tsukada and Ohsumi, 1993).

Subsequent work with mammalian cells has revealed homologs of the core autophagy

machinery (Xie and Klionsky, 2007), supporting the notion that autophagy is evolution-

arily conserved. At the same time, there are also increasing numbers of ATG proteins being

identified in mammals and other model systems such as Caenorhabditis elegans that lack
yeast homologs, suggesting an increased complexity and diversity of function in higher

eukaryotes (Klionsky and Codogno, 2013). For ease of discussion, the protein machinery

of autophagy is subdivided into four major complexes in the following sections, and we

focus on the mammalian autophagy machinery.

ULK1/ULK2 complex Autophagy occurs at a basal level in cells under normal condi-

tions. Upon stress or other stimuli, autophagy can be induced, and defects in regulation that

prevent proper induction can lead to aberrant cell physiology; however, toomuch autophagy

activity can also be detrimental to the cell. Thus, the level of autophagy must be tightly con-

trolled. Accordingly, there are various factors that regulate autophagy induction, and studies

have shown that the ULK1/ULK2 (unc-51 like autophagy activating kinase 1/2) complex

functions in part in an early stage of autophagy regulation.

ULK1 andULK2 are kinases and the other components of the complex include ATG13,

RB1CC1/FIP200 (RB1-inducible coiled-coil 1), and ATG101. ATG13 directly interacts
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with ULK1/ULK2 and RB1CC1 regardless of the nutrient availability (Hosokawa et al.,
2009; Jung et al., 2009); however, the phosphorylation status of these proteins changes
under different conditions. In nutrient-rich conditions, a key upstream negative regulator
of autophagy, the mechanistic target of rapamycin complex 1 (MTORC1) interacts with
the complex and phosphorylates ULK1/ULK2 and ATG13, inhibiting ULK1/ULK2 kinase
activity. Upon starvation,MTORC1 is released from the complex. ULK1/ULK2 andATG13
are then partially dephosphorylated, leading to activation of ULK1/ULK2 kinase activ-
ity, which in turn leads to phosphorylation of ATG13 (presumably on distinct sites from
those used byMTORC1) and RB1CC1 to induce autophagy (Chan, 2009; Hara et al., 2008;
Hosokawa et al., 2009). AMPK (AMP-activated protein kinase) also binds ULK1/ULK2
and positively regulates autophagy through phosphorylation upon glucose starvation; as
expected, AMPK and MTORC1 phosphorylate ULK1 at different sites (Kim et al., 2011;
Zhao and Klionsky, 2011).

Class III phosphatidylinositol 3-kinase complexes The class III phosphati-
dylinositol 3-kinase (PtdIns3K) is generally thought to act downstream of the ULK1/ULK2
complex, mediating formation of phosphatidylinositol-3-phosphate (PtdIns3P) on the
phagophore membrane, an event essential for autophagy. PtdIns3P serves to recruit
downstream factors such as WIPI1 (WD repeat domain, phosphoinositide interacting 1)
and WIPI2, which are involved in the trafficking of ATG9 and promote autophagosome
maturation (Polson et al., 2010). In mammals, there are multiple class III PtdIns3K com-
plexes with the core components being PIK3C3/VPS34 (phosphatidylinositol 3-kinase,
catalytic subunit type 3), BECN1/Beclin 1 (beclin 1, autophagy related), and PIK3R4/
VPS15/p150 (phosphoinositide-3-kinase, regulatory subunit 4). BECN1 can interact with
several proteins, including AMBRA1 (autophagy/beclin-1 regulator 1), ATG14/ATG14L/
Barkor, UVRAG (UV radiation resistance associated), KIAA0226/Rubicon and BCL2
(B-cell CLL/lymphoma 2) to form distinct complexes (Furuya et al., 2005; Itakura
et al., 2008; Matsunaga et al., 2009; Petiot, 2000). BECN1 was first identified as a
BCL2 binding protein. The interaction between BECN1 and BCL2 inhibits the bind-
ing of the former with PIK3C3, thus inhibiting autophagy. The ATG14–BECN1–
PIK3C3–PIK3R4–AMBRA1 complex is specific for autophagy; ATG14 may direct
this complex to the phagophore to promote autophagosome biogenesis (Itakura et al.,
2008; Matsunaga et al., 2009), whereas the SH3GLB1 (SH3-domain GRB2-like
endophilin B1)–UVRAG–BECN1–PIK3C3–PIK3R4 complex functions at a later
step to promote autophagosome maturation (Itakura et al., 2008). In contrast, the
KIAA0226–UVRAG–BECN1–PIK3C3–PIK3R4 complex localizes to late endosomes
and negatively regulates autophagosome maturation (Matsunaga et al., 2009).

ATG9 trafficking system The Atg9 trafficking system is best characterized in yeast,
although even in that model organism there are many questions that remain to be answered.
The current model is that the transmembrane protein Atg9 cycles between the phagophore
assembly site (PAS) and peripheral (i.e., non-PAS) sites, and that this process is needed
for the proper delivery of membrane from various donor organelles to the expanding
phagophore (Noda et al., 2000; Reggiori et al., 2005). Atg23 and Atg27 interact with
Atg9 and facilitate its anterograde traffic from the peripheral sites to the PAS, whereas
Atg2–Atg18 and the Atg1–Atg13 complex (yeast homolog of the ULK1/ULK2 complex)
are required for its retrograde transport from the PAS back to the peripheral sites (Guan
et al., 2001; Reggiori et al., 2004; Wang et al., 2001; Yen et al., 2007).
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In mammals, ATG9 localizes to the trans-Golgi network and endosomes in nutrient-

rich conditions. A pool of ATG9 translocates toMAP1LC3 (microtubule-associated protein

1 light chain 3)/LC3-positive compartments upon starvation. This translocation is depen-

dent on ULK1 and PIK3C3 kinase activity (Young et al., 2006). The dynamic movement

between ATG9 and the phagophore membrane during autophagy suggests a conserved role

for ATG9 in membrane movement during phagophore expansion. Similar to yeast, ATG9

retrieval from the phagophoremembrane is dependent onWIPI2, a homolog of yeast Atg18,

but movement in this direction is ULK1 kinase independent (Orsi et al., 2012).

Ubiquitin-like conjugation systems There are two ubiquitin-like (Ubl) conjugation

systems, which involve the Ubl proteins ATG12 and LC3. These systems are quite

well-studied, playing important roles in phagophore expansion and maturation (Ichimura

et al., 2000; Mizushima et al., 1998, 2001). ATG12 is conjugated with ATG5 in a

manner that is similar to canonical ubiquitination (Mizushima et al., 1998). The E1-like

enzyme ATG7 activates ATG12 via a thioester bond (Tanida et al., 2001). ATG12 is then

transferred to an E2-like enzyme, ATG10, before it is finally conjugated to an internal

lysine of ATG5. ATG5 then noncovalently binds ATG16L1 (autophagy related 16-like

1 (S. cerevisiae)), which subsequently dimerizes. During autophagy, ATG5 directs the

ATG12—ATG5–ATG16L1 complex to the phagophore (Mizushima, 2003).

The different isoforms of LC3 (and the related GABARAP (GABA(A) receptor-

associated protein) subfamily proteins) are conjugated to the lipid phosphatidylethanol-

amine (PE), and this modification is required for association with the phagophore

membrane (Kabeya et al., 2004; Tanida et al., 2003). Initially, the cysteine protease

ATG4B removes the C-terminal amino acids of pro-LC3 to reveal a glycine residue,

generating a cytosolic form named LC3-I. LC3-I is then sequentially activated by ATG7

and conjugated via the E2-like enzyme ATG3, resulting in the membrane-associated form,

LC3-II (Tanida et al., 2001, 2002). The PE group can ultimately be cleaved by ATG4B

in a deconjugation step, which is important for maintaining the proper level of autophagy

activity (Tanida et al., 2006).

1.2.4 Physiological roles

Autophagy has many physiological roles. First, autophagy is a protective mechanism

against cellular stress (Kuma et al., 2004; Yang and Klionsky, 2010). For example,

autophagy’s role in supplying essential building blocks or metabolic substrates such

as amino acids under conditions of nutrient deprivation is critical for maintaining cell

viability under adverse conditions; autophagic degradation and recycling enable cells to

maintain the synthesis of essential proteins and to generate ATP.

Recent studies indicate that autophagy is also indispensible during development. One

example of such a role is seen after oocyte fertilization in C. elegans, where autophagy

is involved in the elimination of maternal mitochondria (Al Rawi et al., 2011; Sato and

Sato, 2011); however, this does not appear to be the case in mammals (Luo et al., 2013). In

addition, during embryonic development, clearance of apoptotic cells is achieved through

autophagy (Qu et al., 2007). Autophagy is also implicated in life span extension; induction

of autophagy increases longevity in several model organisms (Rubinsztein et al., 2011) and

its role in clearing aggregate-prone proteins and damaged mitochondria might be relevant

to its antiaging effects.
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As autophagy acts to eliminate many harmful components in a cell, malfunction of

autophagy has also been suggested to correlate with or be the cause of a variety of diseases,

such as cancer, neurodegeneration, cardiovascular myopathies, and lysosomal storage dis-

orders (Klionsky and Codogno, 2013). For example, the selective degradation of damaged

mitochondria is suggested to underlie the tumor suppressive effects of autophagy, possibly

through reducing oxidative stress and preventing DNA damage (Narendra et al., 2008). Sev-

eral lines of evidence suggest that the role of autophagy in clearing toxic aggregate-prone

proteins is critical to prevent certain types of neurodegeneration, including those associ-

ated with Huntington, Alzheimer, and Parkinson diseases (Bjørkøy et al., 2005; Ravikumar

et al., 2002).

1.3 AUTOPHAGY AND IMMUNITY

1.3.1 Xenophagy: autophagic clearance of intracellular
microorganisms

For decades, scientists have explored how our body fights against invading pathogens. Even

though an understanding of our immune systems has steadily increased, a major problem,

how a cell breaks down an intracellular pathogen without harming itself, has been over-

looked or at least unanswered. Only recently have researchers realized that autophagy plays

a vital role in this process. This specific type of autophagy is termed “xenophagy.”

Autophagic degradation of bacteria and parasites Several independent stud-

ies have revealed that xenophagy acts to eliminate many different bacteria and other

microbes (Levine et al., 2011; Yuk et al., 2012). A good example of parasite clearance

is seen with Toxoplasma gondii (Andrade et al., 2006). This parasite is able to survive

within macrophages by residing in parasitophorous vacuoles that are modified to avoid

fusion with lysosomes. However, stimulation of T. gondii-infected macrophages with

CD40 (CD40 molecule, TNF receptor superfamily member 5), a member of the TNF

(tumor necrosis factor) receptor superfamily, causes colocalization of parasitophorous

vacuoles and LC3. Conversely, treatment of infected cells with the autophagy inhibitor

3-methyladenine (3-MA) or knockdown of BECN1 blocks the fusion of parasitophorous

vacuoles with lysosomal compartments (Andrade et al., 2006). Thus, these results suggest

that phagophores capture parasites that are residing within these vacuoles and direct them

to the lysosome for degradation.

As for bacterial clearance, evidence indicates that autophagosomes can sequester

both bacteria that reside within membranous compartments and those present free within

the cytosol, through mechanisms that are overlapping, but distinct (Figure 1.2) (Levine

and Deretic, 2007). The clearance of Mycobacterium tuberculosis is a good example of

engulfment of bacteria residing within phagosomes (Gutierrez et al., 2004). After entering

the cell through endocytosis, M. tuberculosis can actively survive in a host cell and evade

the host defense by inhibiting phagosomal maturation. However, if autophagy is induced

by either nitrogen starvation or rapamycin treatment, the inhibition of phagosomal matu-

ration by M. tuberculosis is suppressed and intracellular bacterial survival is significantly

decreased. Also, a substantial colocalization of M. tuberculosis-containing phagosomes

with autophagosomes is observed upon autophagy induction, supporting the idea that

phagophores capture bacteria residing within phagosomes and target them to lysosomal

compartments for degradation (Gutierrez et al., 2004).
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Figure 1.2. Models of autophagic elimination of invading pathogens. Intracellular virus pro-

teins are recognized by autophagy receptors and recruited to autophagosomes by interaction

between the receptors and LC3. Both bacteria within phagosomes and bacteria that have escaped

from phagosomes can be degraded through autophagy. Bacteria residing in a phagosome can be

engulfed by a phagophore; after completion of sequestration, the resulting autophagosome then

fuses with a lysosome forming an autophagolysome. (Note that we strongly recommend that this

term be reserved to describe the compartment that results from the fusion of lysosomes with

autophagosomes containing phagosomes, and not for the compartments that result from the

fusion of other autophagosomes with lysosomes, which are termed autolysosomes.) Some bacte-

ria are able to damage the phagosomal membrane and escape into the host cell cytoplasm. These

cytosolic bacteria are polyubiquitinated and recognized by autophagy receptor proteins, directing

their delivery to phagophores.
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With regard to cytosolic bacteria, a major problem/challenge is that these microbes

need to be specifically recognized and distinguished from other “self” endomem-

branes, including their endosymbiotic descendants, the mitochondria. Starvation-induced

autophagy is usually nonselective, but there are also selective types of autophagy. Recent

studies of selective autophagy reveal a common cargo–ligand–receptor–scaffold model

(Mijaljica et al., 2012). A receptor protein recognizes ligands on cargoes and at the same

time binds the scaffold protein of the autophagy machinery, selectively targeting cargoes

into the autophagy pathway. Specific receptors have been identified that recognize intracel-

lular bacteria during xenophagy, including SQSTM1/p62 (sequestome 1), NBR1 (neighbor

of BRCA1 gene 1), CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2) and

OPTN (optineurin) (Kraft et al., 2010; Thurston et al., 2009; Wild et al., 2011; Zheng

et al., 2009). Usually, cytosolic intracellular bacteria are coated with polyubiquitin, and

these receptors are able to simultaneously bind the ubiquitinated bacteria and LC3, linking

the cargo with the autophagy machinery. In this way, intracellular bacteria are specifically

targeted for degradation.

Despite the utility of xenophagy in degrading intracellular bacteria, certain pathogens

have been successful in developing strategies for evading autophagy. One example of such

evasion is seen with Listeria monocytogenes (Birmingham et al., 2007). After infection

of its host macrophages, a population of L. monocytogenes damages phagosomes and is

released into the cytosol, where they will ultimately be recognized by autophagy. However,

the expression of the virulence factor ActA triggers host cell actin polymerization. This pro-

vides the bacteria with actin-based motility, which allows cell-to-cell spread and avoidance

of autophagic degradation.

Autophagic elimination of viruses The cargo of xenophagy is not restricted to pro-

tozoan parasites and bacteria; autophagy can also capture invading viruses. In general, the

mechanism involved in the recognition of viruses and their sequestration by phagophores

is conceptually similar to that of cytosolic bacteria (Figure 1.2). For example, after Sindbis

virus infects the mouse central nervous system, SQSTM1 interacts with Sindbis virus cap-

sid proteins, mediating their further degradation through autophagy (Orvedahl et al., 2010).

This action significantly reduces virally-induced cell death.

Similar to bacteria, many viruses also act to inhibit autophagy to confer virulence. First,

numerous viruses can either inhibit antiviral signaling pathways that induce autophagy or

they can activate an autophagy inhibitory pathway. EIF2AK2/PKR (eukaryotic translation

initiation factor 2-alpha kinase 2) is an interferon-inducible double-stranded RNA sensor

that mediates overall downregulation of translation in host cells via phosphorylation of

EIF2A (eukaryotic translation initiation factor 2A, 65 kDa). This signaling pathway also

positively regulates virus-induced autophagy (Levine and Deretic, 2007). Viruses develop

multiple strategies to block the EIF2AK2 pathway. For example, during infection herpes

simplex virus type 1 (HSV-1) expresses the US11 protein to antagonize EIF2AK2-mediated

phosphorylation of EIF2A by binding to the kinase, thus preventing autophagy induc-

tion (Lussignol et al., 2013). As discussed above, MTOR signaling is a negative regulator

of autophagy. Upon infecting dendritic cells, human immunodeficiency virus-1 (HIV-1)

downregulates autophagy by inducing MTOR and RPS6KB/p70 S6 kinase (ribosomal pro-

tein S6 kinase, 70 kDa) activation, thus promoting viral proliferation in host cells (Blanchet

et al., 2010).

In addition, a virulence factor may also directly target the autophagy machinery to neg-

atively regulate autophagy. For example, the HSV-1 protein ICP34.5 binds BECN1 to block

autophagy, possibly through inhibiting PIK3C3 kinase activity (Orvedahl et al., 2007).


