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Preface

This contribution to the useR! series by Springer is designed to show newcomers
how to do functional data analysis in the two popular languages, Matlab and R. We
hope that this book will substantially reduce the time and effort required to use these
techniques to gain valuable insights in a wide variety of applications.

We also hope that the practical examples in this book will make this learning
process fun, interesting and memorable. We have tried to choose rich, real-world
problems where the optimal analysis has yet to be performed. We have found that
applying a spectrum of methods provides more insight than any single approach by
itself. Experimenting with graphics and other displays of results is essential.

To support the acquisition of expertise, the “scripts” subdirectory of the com-
panion fda package for R includes files with names like “fdarm-ch01.R”, which
contain commands in R to reproduce virtually all of the examples (and figures)
in the book. This can be found on any computer with R and fda installed using
system.file(’scripts’, package=’fda’). The Matlab code is pro-
vides as part of the fda package for R. From within R, it can be found us-
ing system.file( ’Matlab’, package=’fda’). It also can obtained by
downloading the .tar.gz version of the fda package for R from the Compre-
hensive R Archive Network (CRAN, www.r-project.org), unzipping it and
looking for the inst/Matlab subdirectory.

The contents of a book are fixed by schedules for editing and printing. These
script files are not similarly constrained. Thus, in some cases, the script files may
perform a particular analysis differently from how it is described in the book. Such
differences will reflect improvements in our understanding of preferred ways of
performing the analysis described in the book. The web site www.functionaldata.org
is a resource for ongoing developments of software, new tools and current events.

The support for two languages is perhaps a bit unusual in this series, but there
are good reasons for this. Matlab is expensive for most users, but its for capacity
modeling dynamical systems and other engineering applications has been critical in
the development of today’s fda package, especially in areas such chemical engineer-
ing where functional data are the rule rather than the exception and where Matlab is
widely used. On the other hand, the extendibility of R, the easy interface with lower-
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level languages, and above all its cost explain its popularity in many fields served
by statisticians, students and new researchers. We hope that we can help many of
our readers to appreciate the strengths of each language, so as to invest wisely later
on. Secondarily, we hope that any user of either language wanting to learn the other
can benefit from seeing the same analyses done in both languages.

As with most books in this useR! series, this is not the place to gain enough
technical knowledge to claim expertise in functional data analysis nor to develop
new tools. But we do hope that some readers will find enough of value here to
want to turn to monographs on functional data analysis already published, such as
Ramsay and Silverman (2005), and to even newer works.

We wish to end this preface by thanking our families, friends, students, employ-
ers, clients and others who have helped make us what we are today and thereby
contributed to this book and to our earlier efforts. In particular, we wish to thank
John Kimmel of Springer for organizing this series and inviting us to create this
book.

James Ramsay, McGill University
Giles Hooker, Cornell University
Spencer Graves, San Jose, CA
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Chapter 1
Introduction to Functional Data Analysis

The main characteristics of functional data and of functional models are introduced.
Data on the growth of girls illustrate samples of functional observations, and data
on the US nondurable goods manufacturing index are an example of a single long
multilayered functional observation. Data on the gait of children and handwriting
are multivariate functional observations. Functional data analysis also involves esti-
mating functional parameters describing data that are not themselves functional, and
estimating a probability density function for rainfall data is an example. A theme in
functional data analysis is the use of information in derivatives, and examples are
drawn from growth and weather data. The chapter also introduces the important
problem of registration: aligning functional features.

The use of code is not taken up in this chapter, but R code to reproduce virtually
all of the examples (and figures) appears in files ”fdarm-ch01.R” in the ”scripts”
subdirectory of the companion ”fda” package for R, but without extensive explana-
tion in this chapter of why we used a specific command sequence.

1.1 What Are Functional Data?

1.1.1 Data on the Growth of Girls

Figure 1.1 provides a prototype for the type of data that we shall consider. It shows
the heights of 10 girls measured at a set of 31 ages in the Berkeley Growth Study
(Tuddenham and Snyder, 1954). The ages are not equally spaced; there are four
measurements while the child is one year old, annual measurements from two to
eight years, followed by heights measured biannually. Although great care was taken
in the measurement process, there is an average uncertainty in height values of at
least three millimeters. Even though each record is a finite set of numbers, their
values reflect a smooth variation in height that could be assessed, in principle, as

1J.O. Ramsay et al., Functional Data Analysis with R and MATLAB, Use R, 
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2 1 Introduction to Functional Data Analysis

often as desired, and is therefore a height function. Thus, the data consist of a sample
of 10 functional observations Heighti(t).
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Fig. 1.1 The heights of 10 girls measured at 31 ages. The circles indicate the unequally spaced
ages of measurement.

There are features in these data too subtle to see in this type of plot. Figure 1.2
displays the acceleration curves D2Heighti estimated from these data by Ramsay
et al. (1995a) using a technique discussed in Chapter 5. We use the notation D for
differentiation, as in

D2Height=
d2Height

dt2 .

The pubertal growth spurt shows up as a pulse of strong positive acceleration
followed by sharp negative deceleration. But most records also show a bump at
around six years that is termed the midspurt. We therefore conclude that some of
the variation from curve to curve can be explained at the level of certain derivatives.
The fact that derivatives are of interest is further reason to think of the records as
functions rather than vectors of observations in discrete time.

The ages are not equally spaced, and this affects many of the analyses that might
come to mind if they were. For example, although it might be mildly interesting to
correlate heights at ages 9, 10 and 10.5, this would not take account of the fact that
we expect the correlation for two ages separated by only half a year to be higher
than that for a separation of one year. Indeed, although in this particular example
the ages at which the observations are taken are nominally the same for each girl,
there is no real need for this to be so. In general, the points at which the functions
are observed may well vary from one record to another.
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Fig. 1.2 The estimated accelerations of height for 10 girls, measured in centimeters per year per
year. The heavy dashed line is the cross-sectional mean and is a rather poor summary of the curves.

The replication of these height curves invites an exploration of the ways in which
the curves vary. This is potentially complex. For example, the rapid growth during
puberty is visible in all curves, but both the timing and the intensity of pubertal
growth differ from girl to girl. Some type of principal components analysis would
undoubtedly be helpful, but we must adapt the procedure to take account of the
unequal age spacing and the smoothness of the underlying height functions.

It can be important to separate variation in timing of significant growth events,
such as the pubertal growth spurt, from variation in the intensity of growth. We will
look at this in detail in Chapter 8 where we consider curve registration.

1.1.2 Data on US Manufacturing

Not all functional data involve independent replications; we often have to work
with a single long record. Figure 1.3 shows an important economic indicator: the
nondurable goods manufacturing index for the United States. Data like these often
show variation as multiple levels.

There is a tendency for the index to show geometric or exponential increase over
the whole century, and plotting the logarithm of the data in Figure 1.4 makes this
trend appear linear while giving us a better picture of other types of variation. At
a finer scale, we see departures from this trend due to the depression, World War
II, the end of the Vietnam War and other more localized events. Moreover, at an
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Fig. 1.3 The monthly nondurable goods manufacturing index for the United States.

even finer scale, there is a marked annual variation, and we can wonder whether
this seasonal trend itself shows some longer-term changes. Although there are no
independent replications here, there is still a lot of repetition of information that we
can exploit to obtain stable estimates of interesting curve features.

1.1.3 Input/Output Data for an Oil Refinery

Functional data also arise as input/output pairs, such as in the data in Figure 1.5
collected at an oil refinery in Texas. The amount of a petroleum product at a certain
level in a distillation column or cracking tower, shown in the top panel, reacts to
the change in the flow of a vapor into the tray, shown in the bottom panel, at that
level. How can we characterize this dependency? More generally, what tools can we
devise that will show how a system responds to changes in critical input functions
as well as other covariates?
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Fig. 1.4 The logarithm of the monthly nondurable goods manufacturing index for the United
States. The dashed line indicates the linear trend over the whole time period.

1.2 Multivariate Functional Data

1.2.1 Data on How Children Walk

Functional data are often multivariate. Our third example is in Figure 1.6. The Mo-
tion Analysis Laboratory at Children’s Hospital, San Diego, CA, collected these
data, which consist of the angles formed by the hip and knee of each of 39 children
over each child’s gait cycle. See Olshen et al. (1989) for full details. Time is mea-
sured in terms of the individual gait cycle, which we have translated into values of
t in [0,1]. The cycle begins and ends at the point where the heel of the limb under
observation strikes the ground. Both sets of functions are periodic and are plotted as
dotted curves somewhat beyond the interval for clarity. We see that the knee shows
a two-phase process, while the hip motion is single-phase. It is harder to see how
the two joints interact: The figure does not indicate which hip curve is paired with
which knee curve. This example demonstrates the need for graphical ingenuity in
functional data analysis.

Figure 1.7 shows the gait cycle for a single child by plotting knee angle against
hip angle as time progresses round the cycle. The periodic nature of the process
implies that this forms a closed curve. Also shown for reference purposes is the
same relationship for the average across the 39 children. An interesting feature in
this plot is the cusp occurring at the heel strike as the knee momentarily reverses
its extension to absorb the shock. The angular velocity is clearly visible in terms
of the spacing between numbers, and it varies considerably as the cycle proceeds.
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Fig. 1.5 The top panel shows 193 measurements of the amount of petroleum product at tray level
47 in a distillation column in an oil refinery. The bottom panel shows the flow of a vapor into that
tray during an experiment.

H
ip

 a
ng

le
 (d

eg
re

es
)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

40
60

Time (proportion of gait cycle)

Kn
ee

 a
ng

le
 (d

eg
re

es
)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
20

40
60

80

Fig. 1.6 The angles in the sagittal plane formed by the hip and knee as 39 children go through a
gait cycle. The interval [0,1] is a single cycle, and the dotted curves show the periodic extension of
the data beyond either end of the cycle.



1.2 Multivariate Functional Data 7

The child whose gait is represented by the solid curve differs from the average in
two principal ways. First, the portion of the gait pattern in the C–D part of the cycle
shows an exaggeration of movement relative to the average. Second, in the part
of the cycle where the hip is most bent, this bend is markedly less than average;
interestingly, this is not accompanied by any strong effect on the knee angle. The
overall shape of the cycle for this particular child is rather different from the average.
The exploration of variability in these functional data must focus on features such
as these.
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Fig. 1.7 Solid line: The angles in the sagittal plane formed by the hip and knee for a single child
plotted against each other. Dotted line: The corresponding plot for the average across children. The
points indicate 20 equally spaced time points in the gait cycle. The letters are plotted at intervals
of one fifth of the cycle with A marking the heel strike.

1.2.2 Data on Handwriting

Multivariate functional data often arise from tracking the movements of points
through space, as illustrated in Figure 1.8, where the X-Y coordinates of 20 samples
of handwriting are superimposed. The role of time is lost in plots such as these, but
can be recovered to some extent by plotting points at regular time intervals.

Figure 1.9 shows the first sample of the writing of “statistical science” in sim-
plified Chinese with gaps corresponding to the pen being lifted off the paper. Also
plotted are points at 120-millisecond intervals; many of these points seem to coin-
cide with points of sharp curvature and the ends of strokes.
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Fig. 1.9 The first sample of writing “statistical science” in simplified Chinese. The plotted points
correspond to 120-millisecond time steps.
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Finally, in this introduction to types of functional data, we must not forget that
they may come to our attention as full-blown functions, so that each record may
consist of functions observed, for all practical purposes, everywhere. Sophisticated
online sensing and monitoring equipment now routinely used in research in fields
such as medicine, seismology, meteorology and physiology can record truly func-
tional data.

1.3 Functional Models for Nonfunctional Data

The data examples above seem to deserve the label “functional” since they so clearly
reflect the smooth curves that we assume generated them. Beyond this, functional
data analysis tools can be used for many data sets that are not so obviously func-
tional.

Consider the problem of estimating a probability density function p to describe
the distribution of a sample of observations x1, . . . ,xn. The classic approach to this
problem is to propose, after considering basic principles and closely studying the
data, a parametric model with values p(x|θ) defined by a fixed and usually small
number of parameters in the vector θ . For example, we might consider the normal
distribution as appropriate for the data, so that θ = (µ ,σ2)′. The parameters them-
selves are usually chosen to be descriptors of the shape of the density, as in location
and spread for the normal density, and are therefore the focus of the analysis.

But suppose that we do not want to assume in advance one of the many textbook
density functions. We may feel, for example, that the application cannot justify the
assumptions required for using any of the standard distributions. Or we may see
features in histograms and other graphical displays that seem not to be captured by
any of the most popular distributions. Nonparametric density estimation methods
assume only smoothness, and permit as much flexibility in the estimated p(x) as the
data require or the data analyst desires. To be sure, parameters are often involved,
as in the density estimation method of Chapter 5, but the number of parameters is
not fixed in advance of the data analysis, and our attention is focused on the density
function p itself, not on parameter estimates. Much of the technology for estimation
of smooth functional parameters was originally developed and honed in the density
estimation context, and Silverman (1986) can be consulted for further details.

Psychometrics or mental test theory also relies heavily on functional models for
seemingly nonfunctional data. The data are usually zeros and ones indicating un-
successful and correct answers to test items, but the model consists of a set of item
response functions, one per test item, displaying the smooth relationship between
the probability of success on an item and a presumed latent ability continuum. Fig-
ure 1.10 shows three such functional parameters for a test of mathematics estimated
by the functional data analytic methods reported in Rossi et al. (2002).
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Fig. 1.10 Each panel shows an item response function relating an examinee’s position θ on a latent
ability continuum to the probability of a correct response to an item in a mathematics test.

1.4 Some Functional Data Analyses

Data in many fields come to us through a process naturally described as functional.
Consider Figure 1.11, where the mean temperatures for four Canadian weather sta-
tions are plotted as smooth curves. Montreal, with the warmest summer temper-
ature, has a temperature pattern that appears to be nicely sinusoidal. Edmonton,
with the next warmest summer temperature, seems to have some distinctive depar-
tures from sinusoidal variation that might call for explanation. The marine climate
of Prince Rupert is evident in the small amount of annual variation in temperature.
Resolute has bitterly cold but strongly sinusoidal temperatures.

One expects temperature to be periodic and primarily sinusoidal in character and
over the annual cycle. There is some variation in the timing of the seasons or phase,
because the coldest day of the year seems to be later in Montreal and Resolute than
in Edmonton and Prince Rupert. Consequently, a model of the form

Tempi(t)≈ ci1 + ci2 sin(πt/6)+ ci3 cos(πt/6) (1.1)

should do rather nicely for these data, where Tempi is the temperature function for
the ith weather station, and (ci1,ci2,ci3) is a vector of three parameters associated
with that station.

In fact, there are clear departures from sinusoidal or simple harmonic behavior.
One way to see this is to compute the function

LTemp= (π/6)2DTemp+D3Temp. (1.2)
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Fig. 1.11 Mean temperatures at four Canadian weather stations.

The notation DmTemp means “take the mth derivative of function Temp,” and the
notation LTemp stands for the function which results from applying the linear dif-
ferential operator L = (π/6)2D+D3 to the function Temp. The resulting function,
LTemp, is often called a forcing function. If a temperature function is truly sinu-
soidal, then LTemp should be exactly zero, as it would be for any function of the
form (1.1). That is, it would conform to the differential equation

LTemp= 0 or D3Temp=−(π/6)2DTemp.

But Figure 1.12 indicates that the functions LTempi display systematic features
that are especially strong in the summer and autumn months. Put another way, tem-
perature at a particular weather station can be described as the solution of the non-
homogeneous differential equation corresponding to LTemp= u, where the forcing
function u can be viewed as input from outside of the system, or as an exogenous
influence. Meteorologists suggest, for example, that these spring and autumn effects
are partly due to the change in the reflectance of land when snow or ice melts, and
this would be consistent with the fact that the least sinusoidal records are associated
with continental stations well separated from large bodies of water.

Here, the point is that we may often find it interesting to remove effects of a sim-
ple character by applying a differential operator, rather than by simply subtracting
them. This exploits the intrinsic smoothness in the process. Long experience in the
natural and engineering sciences suggests that this may get closer to the underlying
driving forces at work than just adding and subtracting effects, as is routinely done
in multivariate data analysis. We will consider this idea in depth in Chapter 11.
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Fig. 1.12 The result of applying the differential operator L = (π/6)2D+D3 to the estimated tem-
perature functions in Figure 1.11. If the variation in temperature were purely sinusoidal, these
curves would be exactly zero.

1.5 First Steps in a Functional Data Analysis

1.5.1 Data Representation: Smoothing and Interpolation

Assuming that a functional datum for replication i arrives as a finite set of mea-
sured values, yi1, . . . ,yin, the first task is to convert these values to a function xi with
values xi(t) computable for any desired argument value t. If these observations are
assumed to be errorless, then the process is interpolation, but if they have some
observational error that needs removing, then the conversion from (finite) data to
functions (which can theoretically be evaluated at an infinite number of points) may
involve smoothing.

Chapter 5 offers a survey of these procedures. The roughness penalty smoothing
method discussed there will be used much more broadly in many contexts through-
out the book, and not merely for the purpose of estimating a function from a set of
observed values. The daily precipitation data for Prince Rupert, one of the wettest
places on the continent, is shown in Figure 1.13. The curve in the figure, which
seems to capture the smooth variation in precipitation, was estimated by penaliz-
ing the squared deviations in harmonic acceleration as measured by the differential
operator (1.2).

The gait data in Figure 1.6 were converted to functions by the simplest of interpo-
lation schemes: joining each pair of adjacent observations by a straight line segment.
This approach would be inadequate if we required derivative information. However,


