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PREFACE

Stem cells have been gaining a lot of attention in recent years. Their unique potential 
to self-renew and differentiate has turned them into an attractive model for the study 
of basic biological questions such as cell division, replication, transcription, cell fate 
decisions, and more. With embryonic stem (ES) cells that can generate each cell type in the 
mammalian body and adult stem cells that are able to give rise to the cells within a given 
lineage, basic questions at different developmental stages can be addressed. Importantly, 
both adult and embryonic stem cells provide an excellent tool for cell therapy, making 
stem cell research ever more pertinent to regenerative medicine.

As the title The Cell Biology of Stem Cells suggests, our book deals with multiple 
aspects of stem cell biology, ranging from their basic molecular characteristics to the 
in vivo stem cell trafficking of adult stem cells and the adult stem-cell niche, and ends 
with a visit to regeneration and cell fate reprogramming. In the first chapter, “Early 
embryonic cell fate decisions in the mouse”, Amy Ralson and Yojiro Yamanaka describe 
the mechanisms that support early developmental decisions in the mouse pre-implantation 
embryo and the current understanding of the source of the most immature stem cell types, 
which includes ES cells, trophoblast stem (TS) cells and extraembryonic endoderm stem 
(XEN) cells. From the derivation of these stem cell types, we turn to examining the 
nuclear architecture and genome organization of pluripotent ES cells in the second chapter 
“Nuclear architecture in stem cells” by Kelly Morris, Mita Chotalia and Ana Pombo. The 
chapter addresses the structure and function of the three-dimensional space of the nucleus 
in ES cells, emphasising the unique properties of chromatin, nuclear bodies and gene 
positioning in these cells. ES cell epigenetics is analyzed in more depth in the third chapter 
“Epigenetic regulation of pluripotency” by Eleni Tomazou and Alexander Meissner. The 
authors describe the epigenetic profiles of key chromatin modifications, including DNA 
methylation and histone modifications, and discuss functional aspects of these epigenetic 
marks. Remaining at the DNA level, the fourth chapter, “Autosomal lyonization of 
replication domains during early mammalian development”, by Ichiro Hiratani and David 
Gilbert, illustrates the dynamics and regulation of DNA replication in ES cells by taking 
us through 50 years of research history of this exciting field, reviving the old concept of 
‘autosomal lyonization’ to explain the process of heterochromatinization. 
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Genomic DNA, the fundamental unit of life, is constantly being damaged and 
repaired. Peter Stambrook and Elisia Tichy discuss mutation rates, signaling pathways and 
the mechanisms of DNA damage and repair in ES cells in their chapter, “Preservation of 
genomic integrity in mouse embryonic stem cells”. Having talked about DNA packaging, 
replication and damage, the book now turns to focus on RNA with the sixth chapter, 
“Transcriptional regulation in embryonic stem cells”, by Jian-Chien Dominic Heng and 
Huck-Hui Ng. This chapter discusses the transcriptional networks that are at the heart 
of the pluripotent state and describes the recent technological advances that allow a 
systemic look at transcriptional regulation in ES cells and during their differentiation. 
From transcriptional control, we continue to RNA splicing. David Nelles and Gene Yeo 
authored the seventh chapter entitled “Alternative splicing in stem cell self-renewal 
and differentiation”, in which they review the recent literature on splicing, highlighting 
several key examples of alternatively spliced genes in ES cells, and address novel 
genome-wide approaches to analyze splicing and alternative splicing patterns at a global 
scale. Chapter eight, “MicroRNA regulation of embryonic stem cell self-renewal and 
differentiation” by Collin Melton and Robert Blelloch, elucidates microRNA regulation 
in ES cells, emphasizing several prominent examples of microRNAs, including Let-7, 
Lin-28, miR-134, miR-296 and others, that regulate self-renewal and/or pluripotency 
of ES cells. Chapter 9, “Telomeres and telomerase in adult stem cells & pluripotent 
embryonic stem cells” by Rosa Marión and Maria Blasco gives an overview of telomere 
biology and telomerase regulation in multipotent and pluripotent cells, discussing the 
potential mechanisms enabling the remodeling of telomeric chromatin during nuclear 
reprogramming from somatic cells to pluripotency. In the mouse, nuclear reprogramming 
to pluripotency also entails the reactivation of the somatically silenced X chromosome in 
female cells. The next chapter, “X chromosome inactivation and embryonic stem cells” 
by Tahsin Stefan Barakat and Joost Gribnau discusses the regulation of X chromosome 
inactivation (XCI) as female ES cells are induced to differentiate and explains the cis-and 
trans-acting mechanisms that act in concert to precisely orchestrate this transcriptional 
silencing of an entire chromosome, while presenting hypotheses for why this intriguing 
process occurs in female cells only.

Having covered the molecular biology in the nucleus of pluripotent ES cells, the 
next three chapters deal with somatic or adult stem cells. While pluripotent cells only 
exist during a brief phase in early embryonic development, adult stem cell populations 
are maintained throughout the entire lifespan of the organism until they are required 
for tissue homeostasis and/or repair. The signals that keep adult stem cells in check 
and regulate their differentiation versus self-renewal are thought to be controlled by 
interactions with the cells and extracellular matrix that constitute the stem cell niche. In 
Chapter 11, “Adult stem cells and their niches”, Francesca Ferraro, Cristina Celso and 
David Scadden explain the niche concept, discuss the signaling pathways that operate 
at different mammalian niches, and link the current understanding of niche biology to 
carcinogenesis and aging. In Chapter 12 “Adult stem cell differentiation and trafficking 
and their implications in disease”, Ying Zhuge, Zhao-Jun Liu and Omaida Velazquez 
present trafficking of hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), 
and endothelial progenitor cells (EPCs) and discuss the mechanisms that control their 
regulated movement in mammals. Zhuge et al. also explain how understanding these 
fundamental processes may translate into therapeutic applications. 



viiPREFACE

In the next chapter, “Vertebrates that regenerate as models for guiding stem cells”, 
Christopher Antos and Elly Tanaka focus on the mechanisms of regeneration in several 
vertebrate animal models such as frog, fish and salamander. They describe the extensive 
cellular plasticity involved in the regeneration of several structures: the eye, heart, 
nervous system and appendages, and they summarize some of the molecules that underlie 
transdifferentiation and dedifferentiation in select tissues. The final chapter of the book 
“Reprogramming of somatic cells to pluripotency” by Masato Nakagawa and Shinya 
Yamanaka comes to the most recent exciting development in stem cell biology: cellular 
reprogramming to pluripotency. The authors give a brief history of somatic cell nuclear 
transfer experiments conducted in frog oocytes in the ’50s and ’60s, discuss cell fusion 
experiments leading to reprogrammed cells, albeit tetraploid, and describe their lab’s 
own seminal contribution to the reprogramming field—the generation of pluripotent cells 
from somatic cells upon expression of a specific set of transcription factors—leading to 
the new thriving field of induced pluripotent stem (iPS) cells.

Human adult and embryonic stem cells, and now induced pluripotent stem cells, 
could be used for the generation of cells and tissues for cell-based therapies. With iPS 
cells, one is now able to generate patient-specific pluripotent cells with tremendous 
potential for disease studies and drug screenings. To be able to take full advantage of 
the huge capacity of stem cells, our knowledge of the underlying biology still needs to 
grow. In its 14 chapters, The Cell Biology of Stem Cells provides much of the current 
understanding of the cell biology of stem cells and discusses many of the open questions 
that remain to be answered.

Eran Meshorer, PhD
Department of Genetics, Institute of Life Sciences, The Hebrew University  

of Jerusalem, Jerusalem, Israel

Kathrin Plath, PhD
UCLA School of Medicine, Department of Biological Chemistry,  

Los Angeles, California, USA
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CHAPTER 1

EARLY EMBRYONIC CELL FATE 
DECISIONS IN THE MOUSE

Yojiro Yamanaka* and Amy Ralston*

Abstract: During development, initially totipotent cells of the embryo specialize to form 
�����	�	������	�
��	��	�����	������
��	��	���������������	�����	���	���	�	����	���������
tissues. Meanwhile, cells that do not become extraembryonic retain a pluripotent 
fate since they can give rise to all the germ layers of the fetus. Pluripotent stem cell 
lines have been derived from the fetal lineage at several stages of development. 
Interestingly, multipotent stem cell lines have been derived from the extraembryonic 
lineages around the same time. Examining the regulation of early embryonic cell 
fate decisions is therefore a rare opportunity to examine establishment of stem cell 
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lineages during mouse development.

INTRODUCTION

During the earliest days of mouse development, initially totipotent cells become 
�	������	�������	����	�	
�
�	���
�
��	����
�������	����	������	������
��	��	�������	�����	��
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��	��	��	������������������
�	��
	�������������
��	���"����������	��������
�����	�����
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�����	����	��������������	�
��	��	�����
���	����	������
two lineage decisions (Fig. 1) and precedes establishment of the germ layers (ectoderm, 
mesoderm, endoderm) and the germline by several days. This uniquely mammalian 
developmental strategy involves unique cell types that can be isolated and expanded 
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in culture as stable stem cell lines. Understanding the origins of the extraembryonic 
tissues therefore illuminates our understanding of establishment and differentiation 
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Three days after fertilization, the mouse embryo, or blastocyst contains three tissue 
lineages: epiblast (EPI), trophectoderm (TE) and primitive endoderm (PE). Isolation and 
study of stem cell lines from these lineages has reinforced and extended our understanding 
of early embryonic cell fate decisions. Three types of stem cell lines have been derived 
from the blastocyst: embryonic, trophoblast and extraembryonic endoderm stem cells 
(ES, TS and XEN cells). Each of these exhibits stem cell properties, such as the ability 
to either self-renew or to differentiate into multiple mature cell types. Yet each stem 
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developmental potential, morphology, transcription factor expression and growth factor 
requirements.1 These stem cell lines not only provide an expandable source of pure cell 
populations for studies requiring large amounts of starting material, but they provide an 
opportunity to understand where stem cells come from.

Studies performed in ES cells have enabled deeper molecular analysis of the role of 
genes in cell fate selection. Manipulation of levels of certain lineage-regulating genes 
causes corresponding changes in stem cell fate. For example, the trophoblast transcription 
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��2 These kinds of observations 
demonstrate the remarkable plasticity of ES cells, as well as the central role of genes 
such as Cdx2 as lineage-determining factors. ES cells also provide an opportunity to 
examine molecular interactions between lineage-determining genes and thus serve as a 
model for understanding cell fate selection in the embryo. However, examination of the 
role of lineage-determining genes in the embryo has revealed that lineage-determining 
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including cell position, shape, polarization, signaling and division plane. A new paradigm 
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blastocyst forms. Later, around the time of implantation and thereafter, cell fates are 
maintained by a program that is active in stem cell lines (Fig. 2).

LINEAGE ESTABLISHMENT AND THE PRE-STEM CELL PROGRAM: 

FORMATION OF THE BLASTOCYST
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the TE and inner cell mass (ICM) as the blastocyst forms. The TE will give rise to 
placenta, while the ICM contains a mixture of fetal and primitive endoderm progenitors. 
In the blastocyst, the TE surrounds the ICM and hollow blastocoel and lineage-tracing 
experiments have shown that TE and ICM populations begin as the outside and inside 
cell populations of the embryo.3 That is, as cell cleavage partitions the zygote into two, 
four, eight and sixteen cells, a small number of cells become enclosed by outside cells. 
Continued cleavages increase numbers of inside and outside cells, the TE epithelializes 
and the blastocoel expands, forming the blastocyst structure. The mechanism by which 
topology becomes linked to cell fate has been elusive. Several models have been put 
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zygote develops to the blastocyst, which contains three lineages: EPI (blue), TE (red, crosshatched) and PE 
(yellow, lined). These lineages will give rise to the fetus, the placenta and a portion of the yolk sac at later 
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early mouse development. The Tead4/Yap complex selects TE fates (red, crosshatched) from initially 
totipotent cells (grey). Cells that do not become TE, then adopt a mixture of EPI (blue) and PE (yellow, 
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forward. For example, cell fate could be a consequence of cell position (Fig. 3A). 
Alternatively, predetermined cell fates could drive cells into appropriate topological 
positions (Fig. 3B). This latter mechanism predicts that pre-inside and pre-outside cells 
would be detectable prior to formation of overt inside and outside cell populations. 
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predetermination mechanism.

Two main strategies have been used to look for evidence of predetermination among 
cells prior to the blastocyst stage: lineage tracing and molecular analysis. In terms of 
lineage tracing, reports of biased developmental potential among cells at the two-cell 
stage4-13 are not relevant to the TE/ICM lineage decision since these studies demonstrate 
contribution of both cells to the TE and ICM. Likewise, all cells of four and eight-cell 
embryos can also contribute to both TE and ICM lineages.14,15 Although one group 
reported restricted lineage potential from the four-cell stage,7 extraembryonic lineages 
were incompletely scored. Thus there is no evidence from lineage tracing experiments 
to suggest that cells are predetermined to make TE or ICM prior to formation of inside 
and outside groups. In terms of molecular analyses, no protein has been detected within 
a subset of cells prior to the 16-cell stage that instructs the TE/ICM lineage decision. 
The level of one type of histone methylation is reported to exhibit uneven distribution 
among blastomeres at the 4-cell stage and correlates with reduced potential to contribute 
to viable mice in chimeras.16 The functional importance of these observations in TE/
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supports the existence of pre-TE or pre-ICM cells prior to formation of inside and 
outside cell populations. Rather, inside and outside cells could acquire fates once they 
have acquired their positions within the embryo.

If cell position acts upstream of cell fate, mechanisms must exist for cells to sense their 
position within the embryo. Longstanding evidence that cells polarize around the 8-cell 
stage17 supports the claim that there are differences along the inside/outside axis at the 
cellular level. Polarization by conserved polarity proteins such as atypical PKC (aPKC), 

Figure 3.� ���� 
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or outer portions of cells, adopt TE cell fate (red, crosshatched). B) TE fate is predetermined and a 
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Par3 and Par6 is required for maintaining cell position8 and cell contact has been shown 
to be required for cell polarization.17 However the link between position, polarization and 
cell fate has not been examined at the molecular level. This area is challenging to study 
using conventional knockout techniques. Many of the proteins involved in cell position 
and cell contact, such as aPKC, are members of large gene families, suggesting that genetic 
redundancy may mask their requirements in single gene knockout studies. In addition, 
this early developmental stage may be regulated in part by maternally supplied protein, 
requiring germline gene deletion to detect a phenotype. Finally, many of these proteins 
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their effects during development. On the other hand, overexpression of dominant-negative 
or siRNA constructs leads to only short-term or partial loss of function, which can also 
impede phenotype resolution.

Ultimately, to convert inside/outside differences into changes in gene expression, a 
differentially localized transcription factor is needed. Several strategies have led to the 
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development, followed by in situ hybridization to screen for those with restricted expression 
in the blastocyst.18�>
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of blastocyst-derived stem cell lines.19 Advances have also come from fortuitous discovery 
of an unexpectedly early lethal phenotype in knockouts,20-22�������
	�������	�����������
of Cdx2 and Tead4.

While required for TE development, Cdx2 probably does not play an instructive role 
in TE formation.23,24 Nevertheless, Cdx2 mRNA,25 but not protein,24,26 has been reported 
to localize to the outside surface of cells at the 8-cell stage. Since Cdx2 is not required 
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23,24 or molecular levels, evidenced by the 
continued expression of the TE marker Gata3 in Cdx2 null embryos,19�������������
�����
imagine that localized Cdx2 mRNA plays an instructive role in lineage establishment. 
Recently, a new pathway, involving Tead4 and cofactors, has been shown to play an 
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protein Taz, exhibit cell position-sensitive changes in activation of Cdx2 expression.27 
Prior to the blastocyst stage, Yap/Taz localize to nuclei of outside cells and cytoplasms 
of inside cells. This localization is regulated by phosphorylation by the Hippo signaling 
pathway members Lats1/2. In addition, manipulation of cell position led to corresponding 
changes in Yap localization: outside cells embedded inside an aggregate of cells lost nuclear 
Yap, while inside cells stripped of surrounding outer cells acquired nuclear Yap. Yap/Taz 
interact directly with Tead4 a DNA binding protein required for expression of Cdx221,22 and 
other trophectoderm markers.19 The identity or nature of Yap/Taz-regulating signals that 
can sense cell position are unknown, but probably involve the Hippo signaling pathway 
and possibly proteins involved in cell contact such as cadherins. This will undoubtedly 
be an exciting area of research to follow in the future.

Besides what is working upstream of Yap/Tead4, it is not entirely clear what is 
working downstream. Tead4 is required for Cdx2 expression, but Tead4 null embryos 
die prior to blastocyst formation, while Cdx2 null embryos die after blastocyst formation. 
Tead4 is not required in the ICM,21,22 so additional genes must operate in parallel to 
Cdx2 in the TE. Some of these, such as Gata3���	��	������������	���	����	��19 It will be 
important to identify Tead4 targets that participate in promoting outside cell proliferation 
and construction of the blastocyst.
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LINEAGE MAINTENANCE AND THE STEM CELL 

PROGRAM: BEYOND THE BLASTOCYST

In the blastocyst, interactions between lineage-determining transcription factors 
reinforce TE and ICM fates established at earlier stages. Central players at this stage are 
Oct4 (Pou5f1) and Cdx2. Oct4 is required for maturation of the ICM,28 while Cdx2 is 
required for maturation of the TE.23 Mutual antagonism between these two factors was 
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��	��	��	��������Cdx2 is required for repression of 
Oct4 and other ICM genes in the TE of the blastocyst.23 But the TE still forms in Cdx2 
null embryos and other TE markers are still expressed.19 Similarly, Oct4 represses Cdx2 
in the ICM, but not until implantation, a full day after blastocyst formation.19 Thus lineage 
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maintain correct expression of lineage genes. Nevertheless, in spite of adoption of ICM 
gene expression, Cdx2 null TE does not fully adopt ICM fate. The TE marker Gata3 is 
still expressed in the TE of Cdx2 null embryos19 and Cdx2 null embryos exhibit higher 
levels of apoptosis in the TE than do wild type embryos.23 Cdx2 must therefore enable 
survival and/or proliferation of cells that are already committed to being TE. This is 
consistent with its continued expression in the proliferative region of the trophoblast at 
later stages.29 The reason for the lethality of Oct4 null embryos is currently unclear.

The antagonistic relationship between Oct4 and Cdx2 is borne out by stem cells from 
the blastocyst. ES cells cannot be derived from Oct4 null embryos and TS cells cannot 
be derived from Cdx2 null embryos.23,28 Loss of Oct4 from existing ES cell lines leads 
to upregulation of Cdx2 and formation of TS-like cells in the presence of TS cell culture 
medium.30 Similarly, overexpression of Cdx2 in ES cells leads to repression of Oct4 and 
formation of TS-like cells.2 Other trophoblast factors, such as Eomes and Gata3 can also 
induce trophoblast gene expression in ES cells2,19 and these also play relatively late roles 
in trophoblast maturation rather than allocation.23,31,32 Maintenance of the TE/ICM lineage 
restriction in stem cells therefore appears to use genetic programs that become active once 
the blastocyst has formed. This makes sense given that stem cell derivation requires culture 
beyond the blastocyst stage. Understanding the further development of the ICM, however, 
requires a look at the second lineage decision in development, discussed next.

THE SECOND LINEAGE DECISION: SUBDIVIDING THE ICM

Three days after fertilization, the ICM of the blastocyst contains two cell types: the 
epiblast (EPI) and the primitive endoderm (PE). Only the EPI gives rise to the fetus, whereas 
the PE is an extraembryonic lineage, which contributes to the yolk sac (Fig. 1).33-36 The 
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nutrients to the embryo and the second is that it serves as a signaling center that helps 
confer anterior-posterior polarity upon the gastrulating embryo.37 As for the TE lineage, 
a special stem cell line can be derived from the PE lineage. Multipotent stem cell lines, 
called XEN cells, have been derived from the PE lineage (Fig. 2).38 In addition, PE-like 
cells can be induced from ES cells by overexpression of PE transcription factors, such 
as Gata4 and Gata6.39 Yet Gata4/6 act relatively late in PE development,40,41 suggesting 
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signaling-based strategy.
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Heterogeneity and Progenitor Sorting

Four days after fertilization, the blastocyst implants. At this stage, the PE appears as 
a distinct monolayer on the blastocoel surface of the ICM. For this reason, the PE was 
originally assumed to arise from ICM cells directly facing the blastocoel around the time 
of implantation. Microenvironmental differences between blastocoel-facing and deeper 
�	

���	�	�
����
��	�����
������
��	����
��	��	��
	����������������������	��!��	�	����	�	���
studies have shown that EPI and PE progenitors can be detected in the blastocyst one 
full day before implantation.36,42,43 At this stage, the ICM appears as a mixed population 
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stage, Nanog and Gata6 are coexpressed in all cells of the ICM and expression gradually 
becomes mutually exclusive to specify the two progenitors in a position-independent 
manner during blastocyst expansion.36,44 Notably, there is no stereotyped pattern of 
distribution of the two progenitors within the ICM. Rather, they are sprinkled randomly 
throughout the ICM like salt and pepper.

These results suggest that the two randomly distributed lineage progenitors sort out to 
form two morphologically distinct layers by implantation. Indeed, support for this model 
has been provided by live imaging of blastocyst expansion in transgenic mice expressing 
~���	��	���
��	��	����=	����̀ ����	�PdgfraH2B-GFP mouse line histone H2B-GFP is expressed 
in the PE and revealed that separation of the two lineages involves both apoptosis and cell 
migration.36 Cells within the growing ICM appear to rearrange constantly,36,45 but once PE 
progenitors come to the ICM surface they stay there. Consistent with this, the maturation 
of the PE takes place progressively and this is correlated with position within the ICM.46 
One outstanding question is whether PE cells sort out by directional cell movement or a 
combination of random movement and position recognition.

Several mutants exhibit a defect in formation of a cohesive PE layer.47-51 In these 
mutants, Gata4-expressing, presumptive PE cells, are found clustered within the middle of 
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distinct surface layer. This contrasts with the TE, in which lineage allocation (position) 
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Understanding how PE fates are selected from within the ICM is therefore key to 
understanding PE/EPI lineage choice.

CELL SIGNALING REGULATES PE/EPI SPECIFICATION

Early heterogeneity in the ICM suggests that position-independent mechanisms 
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necessary for PE formation in vivo and in vitro.52-54 How extracellular signaling pathways, 
such as the FGF signaling pathway, could participate in the generation of a salt and pepper 
distribution of PE and EPI within the ICM is not clear. For example, certain pre-PE cells 
within the embryo could be predisposed to respond to signals, or cells could randomly 
receive signals and thereby become PE progenitors.

These possibilities are summarized in two models: the origin-dependent model and 
the signaling-dependent model (Fig. 4A,B).17,55 The origin-dependent model relies on 
understanding the process of inner cell generation during the cleavage stages.56 Inner 
cells of the morula, which will become the ICM of the blastocyst, are generated from 
two rounds of asymmetric divisions at 8-16 and 16-32 cell stages.20 According to the 
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origin-dependent model, the developmental origins of individual ICM cells determine their 
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preferentially adopt the EPI fate, whereas cells generated in the second round (secondary 
inner cells) would preferentially become PE (Fig. 4A).42,57 Secondary inner cells would 
be predisposed to become extraembryonic due to their prolonged external position since 
TE cells are also external.17 To test the origin-dependent model, generation of inner cells 
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EPI and PE lineages was analyzed at later stages.44 No difference in lineage potential was 
detected between primary and secondary inner cells since both primary and secondary 
inner cell progeny contributed to EPI and PE lineages without an obvious bias. These 
observations therefore suggest that the origin-dependent model is unlikely.

The second model is a signaling-dependent model, in which individual ICM cells 
stochastically respond to certain levels of FGF signaling to choose EPI or PE fates 
(Fig. 4B). As described above, FGF signaling is necessary for PE formation in the 
embryo.52-54 When FGF signaling is blocked, using either chemical inhibitors or by gene 
knockouts, all ICM cells adopt EPI fates.42,58 Interestingly, high doses of exogenous FGF4 
can induce the converse phenotype: all ICM cells adopt PE fates.44 This suggests that all 
early ICM cells have the potential to respond to FGF signaling and become PE. During 
normal development, however, limited amounts of endogenous FGFs would restrict the 
proportion of FGF-responding ICM cells (Fig. 5). Whether or not individual ICM cells 

Figure 4. Two models of PE/EPI formation in the mouse embryo. A) Origin-dependent model in 
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from two rounds of asymmetric divisions after the 8-cell stage. Primary inner cells (blue) give rise to 
the EPI lineage and secondary inner cells (yellow, lined) to the PE lineage. B) Signaling-dependent 
model in which no difference in lineage potential exists between primary and secondary inner cells. 
Each inner cell is stochastically capable of responding to FGF signaling. Responding cells become the 
PE lineage and nonresponding cells become the EPI lineage. After the PE/EPI lineage decision, EPI 
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randomly in the ICM of the blastocyst. These two progenitors then sort out to form the two distinct 
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