


Progress in Mathematics
Volume 266

Series Editors

H. Bass
J. Oesterlé
A. Weinstein



Stefano Pigola
Marco Rigoli
Alberto G. Setti

Vanishing and 
Finiteness Results
in Geometric Analysis
A Generalization of the Bochner 
Technique

Birkhäuser
Basel · Boston · Berlin



2000 Mathematics Subject Classification: primary 53C21; secondary 35J60, 35R45, 
53C42, 53C43, 53C55, 58J50

Library of Congress Control Number: 2007941340

Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Biblio-
thek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic 
data is available in the Internet at http://dnb.ddb.de

ISBN 978-3-7643-8641-2 Birkhäuser Verlag AG, Basel · Boston · Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, re-use of 
illustrations, broadcasting, reproduction on microfilms or in other ways, and storage 
in data banks. For any kind of use whatsoever, permission from the copyright owner 
must be obtained. 

© 2008 Birkhäuser Verlag AG 
Basel · Boston · Berlin 
P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Printed on acid-free paper produced from chlorine-free pulp. TCF ∞
Printed in Germany

ISBN 978-3-7643-8641-2    e-ISBN 978-3-7643-8642-9

9 8 7 6 5 4 3 2 1     www.birkhauser.ch

Authors:

Stefano Pigola    Marco Rigoli
Alberto G. Setti    Dipartimento di Matematica
Dipartimento di Fisica e Matematica  Università di Milano
Università dell’Insubria – Como  Via Saldini 50
via Valleggio 11    20133 Milano
22100 Como     Italy
Italy     e-mail: rigoli@mat.unimi.it
e-mail: stefano.pigola@uninsubria.it
              alberto.setti@uninsubria.it



Contents

Introduction vii

1 Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and
Kählerian geometry 1

1.1 The general setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The complex case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hermitian bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Complex geometry via moving frames . . . . . . . . . . . . . . . . 12
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Introduction

This book originated from a graduate course given during the Spring of 2005 at the
University of Milan. Our goal was to present an extension of the original Bochner
technique describing a selection of results recently obtained by the authors, in non-
compact settings where in addition one didn’t assume that the relevant curvature
operators satisfied signum conditions. To make the course accessible to a wider
audience it was decided to introduce many of the more advanced analytical and
geometrical tools along the way.

The initial project has grown past the original plan, and we now aim at
treating in a unified and detailed way a variety of problems whose common thread
is the validity of Weitzenböck formulae.

As is well illustrated in the elegant work by H.H. Wu, [165], typically, one
is given a Riemannian (Hermitian) vector bundle E with compatible fiber metric
and considers a geometric Laplacian L on E which is related to the connection
(Bochner) Laplacian −tr(D∗D) via a fiber bundle endomorphism R which is in
turn related to the curvature of the base manifold M . Because of this relationship,
the space of L-harmonic sections of E reflects the geometric properties of M .

To illustrate the method, let us consider the original Bochner argument to es-
timate the first real Betti number b1(M) of a closed oriented Riemannian manifold
(M, 〈 , 〉).

By the Hodge–de Rham theory, b1(M) equals the dimension of the space of
harmonic 1-forms H1 (M). A formula of Weitzenböck, independently rediscovered
by Bochner, states that for every harmonic 1-form ω,

1
2
∆ |ω|2 = |Dω|2 + Ric

(
ω#, ω#

)
, (0.1)

where ∆ and Ric are the Laplace–Beltrami operator (with the sign convention
+d2/dx2) and the Ricci curvature of M, respectively, D denotes the extension
to 1-forms of the Levi–Civita connection, and ω# is the vector field dual to ω,
defined by 〈ω#, X〉 = ω(X) for all vector fields X . In particular |ω|2 satisfies the
differential inequality

∆ |ω|2 − q(x) |ω|2 ≥ 0,

where q(x)/2 is the lowest eigenvalue of the Ricci tensor at x. Thus, if Ric ≥ 0,
then |ω| is subharmonic. Since M is closed, we easily conclude that |ω| =const.
This can be done using two different viewpoints, (i) the L∞ and (ii) the Lp<+∞

one. As for (i), note that the smooth function |ω| attains its maximum at some
point and, therefore, by the Hopf maximum principle we conclude that |ω| =const.
In case (ii) we use the divergence theorem to deduce

0 =
∫

M

div
(
|ω|2∇|ω|2

)
=
∫

M

∣∣∣∇|ω|2∣∣∣2 +
∫

M

|ω|2 ∆ |ω|2 ≥
∫

M

∣∣∣∇|ω|2∣∣∣2 ≥ 0.
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This again implies |ω| =const.
Now, since Ric ≥ 0, using this information in formula (0.1) shows that ω is

parallel, i.e., Dω = 0. As a consequence, ω is completely determined by its value at
a given point, say p ∈ M . The evaluation map εp : H1 (M) → Λ1

(
T ∗

p M
)

defined
by

εp (ω) = ωp

is an injective homomorphism, proving that, in general,

b1(M) = dimH1 (M) ≤ m.

Note that (0.1) yields

0 = Ric
(
ω#

p , ω#
p

)
at p.

Therefore, if Ric (p) > 0, we get ωp = 0 which, in turn, implies ω = 0. This shows
that, when Ric is positive somewhere,

b1(M) = dimH1 (M) = 0.

The example suggests that one can generalize the investigation in several
directions. One can relax the assumption on the signum of the coefficient q(x),
consider complete non-compact manifolds, or both.

Maintaining compacteness, one can sometimes allow negative values of q(x)
using versions of the generalized maximum principle, according to which if ψ ≥ 0
satisfies

∆ψ − q (x) ψ ≥ 0, (0.2)

and M supports a solution ϕ > 0 of

∆ϕ− q (x) ϕ ≤ 0, (0.3)

then the ratio u = ψ/ϕ is constant. Combining (0.2) and (0.3) shows that ψ

satisfies (0.2) with equality sign. In particular, according to (0.1), ψ = |ω|2 satisfies
(0.2), and therefore, if M supports a function ϕ satisfying (0.3), we conclude, once
again, that ω is parallel, thus extending the original Bochner vanishing result to
this situation.

It is worth noting that the existence of a function ϕ satisfying (0.3) is related
to spectral properties of the operator −∆ + q (x), and that the conclusion of the
generalized maximum principle is obtained by combining (0.2) and (0.3) to show
that the quotient u satisfies a differential inequality without zero-order terms; see
Section 2.5 in [133].

In the non-compact setting the relevant function may fail to be bounded, and
even if it is bounded, it may not attain its supremum. In the latter case, one may
use a version of the maximum principle at infinity introduced by H. Omori, [124]
and generalized by S.T. Yau, [167], and S.Y Cheng and Yau, [34], elaborating ideas
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of L.V. Ahlfors. An account and further generalizations of this technique, which
however works under the assumption that q(x) is non-negative, may be found in
[131].

Here we consider the case where the manifold is not compact and the func-
tion encoding the geometric problem is not necessarily bounded, but is assumed
to satisfy suitable Lp integrability conditions, and the coefficient q(x) in the dif-
ferential (in)equality which describes the geometric problem is not assumed to be
non-negative.

Referring to the previous example, the space of harmonic 1-forms in L2 de-
scribes the L2 co-homology of a complete manifold, and under suitable assump-
tions it has a topological content sensitive to the structure at infinity of the man-
ifold. It turns out to be a bi-Lipschitz invariant, and, for co-compact coverings, it
is in fact a rough isometry invariant.

As in the compact case described above, one replaces the condition that
the coefficient q(x) is pointwise positive, with the assumption that there exists a
function ϕ satisfying (0.3) on M or at least outside a compact set. Again, one uses
a Weitzenböck-type formula to show that the geometric function ψ = |ω| satisfies
a differential inequality of the form (0.2).

Combining (0.2) and (0.3) and using the integrability assumption, one con-
cludes that either ψ vanishes and therefore the space L2H1(M) of L2-harmonic
1-forms is trivial or that L2H1(M) is finite-dimensional.

The method extends to the case of Lp-harmonic k-forms, even with values in a
fibre bundle, and in particular to harmonic maps with Lp energy density, provided
we consider an appropriate multiple of q(x) in (0.3), and restrict the integrability
coefficient p to a suitable range. Harmonic maps in turn yield information, as in
the compact case, on the topological structure of the underlying domain manifold.

This relationship becomes even more stringent in the case where the domain
manifold carries a Kählerian structure. Indeed, for complex manifolds, the splitting
in types allows to consider, besides harmonic maps, also pluriharmonic and holo-
morphic maps. If, in addition, the manifold is Kähler, the relevant Weitzenböck
identity for pluriharmonic functions (which in the L2 energy case coincides with
a harmonic function with L2 energy) takes on a form which reflects the stronger
rigidity of the geometry and allows us to obtain stronger conclusions. Thus, on the
one hand one can enlarge the allowed range of the integrability coefficient p, and
on the other hand one may deduce structure theorems which have no analogue in
the purely Riemannian case.

The extension to the non-compact case introduces several additional technical
difficulties, which require specific methods and tools. The description of these is
in fact a substantial part of the book, and while most, but not all, of the results
are well known, in many instances our approach is somewhat original. Further, in
some cases, one needs results in a form which is not easily found, if at all, in the
literature.

When we feel that these ancillary parts are important enough, or the ap-
proach sufficiently different from the mainstream treatment, a fairly detailed
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description is given. Thus we provide, for instance, a rather comprehensive treat-
ment of comparison methods in Riemannian geometry or of the spectral theory
of Schrödinger operators on manifolds. In other situations, the relevant tools are
introduced when needed. For instance this is the case of the Poincaré inequalities
or of the Moser iteration procedure.

The material is organized as follows.
In Chapter 1, after a quick review of harmonic maps between Riemannian

manifolds, where in particular we describe the Weitzenböck formula and derive a
sharp version of Kato’s inequality, we introduce the basic facts on the geometry
of complex manifolds, and Hermitian bundles, concentrating on the Kähler case.
Our approach is inspired by work of S.S. Chern, and is based on analyzing the
Riemannian counterpart of the Kähler structure.

The same line of arguments allows us to extend a result of J.H. Sampson,
[143], concerning the pluriharmonicity of a harmonic map from a compact Kähler
manifold into a Riemannian target with negative Hermitian curvature to the case
of a non-compact domain. This in turn yields a sharp version of a result of P. Li,
[96], for pluriharmonic real-valued functions. The chapter ends with a derivation
of Weitzenböck-type formulas for pluriharmonic and holomorphic maps.

Chapter 2 is devoted to a detailed description of comparison theorems in
Riemannian Geometry under curvature conditions, both pointwise and integral,
which will be extensively used throughout the book. We begin with general com-
parison results for the Laplacian and the Hessian of the distance function. The
approach, which is indebted to P. Petersen’s treatment, [128], is analytic in that
it only uses comparison results for ODEs avoiding the use of Jacobi fields, and it
is not limited to the case where the bound on the relevant curvature is a constant,
but is given in terms of a suitable function G of the distance from a reference point.
Some effort is also made to describe explicit bounds in a number of geometrically
significant situations, namely when G(r) = −B(1 + r2)α/2, or when G(t) satisfies
the integrability condition tG(t) ∈ L1([0, +∞)) considered, among others, by U.
Abresch, [1], and by S.H. Zhu, [171].

These estimates are then applied to obtain volume comparisons. Even though
the method works both for upper and lower estimates, we concentrate on upper
bounds, which hold under less stringent assumptions on the manifold, and in par-
ticular depend on lower bounds for the Ricci curvature alone, and do not require
topological restrictions. We also describe volume estimates under integral Ricci
curvature conditions which extend previous work of S. Gallot, [57], and, more
recently, by Petersen and G. Wei, [129]. We then describe remarkable lower esti-
mates for the volume of large balls on manifolds with almost non-negative Ricci
curvature obtained by P. Li and R. Schoen, [95] and Li and M. Ramachandran,
[98], elaborating on ideas of J. Cheeger M. Gromov and M. Taylor, [33]. These es-
timates in particular imply that such manifolds have infinite volume. We conclude
the chapter with a version of the monotonicity formula for minimal submanifolds
valid for the volume of intrinsic (as opposed to extrinsic) balls in bi-lipschitz har-
monic immersions.
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Chapter 3 begins with a quick review of spectral theory of self-adjoint opera-
tors on Hilbert spaces modelled after E.B. Davies’ monograph, [41]. In particular,
we define the essential spectrum and index of a (semibounded) operator, and apply
the minimax principle to describe some of their properties and their mutual rela-
tionships. We then concentrate on the spectral theory of Schrödinger operators on
manifolds, in terms of which many of the crucial assumptions of our geometrical
results are formulated.

After having defined Schrödinger operators on domains and on the whole
manifold, we describe variants of classical results by D. Fisher-Colbrie, [53], and
Fisher-Colbrie and Schoen, [54], which relate the non-negativity of the bottom of
the spectrum of a Schrödinger operator L on a domain Ω to the existence of a
positive solution of the differential inequality Lϕ ≤ 0 on Ω.

Since, as already mentioned above, the existence of such a solution is the
assumption on which the analytic results depend, this relationship allows us to
interpret such hypothesis as a spectral condition on the relevant Schrödinger op-
erator. This is indeed a classical and natural feature in minimal surfaces theory
where the stability, and the finiteness of the index of a minimal surface, amount
to the fact that the stability operator −∆− |II|2 has non-negative spectrum, re-
spectively finite Morse index.

In describing these relationships we give an account of the links between
essential spectrum, bottom of the spectrum, and index of a Schrödinger operator
L on a manifold, and that of its restriction to (internal or external) domains. With
a somewhat different approach and arguments, our presentation follows the lines
of a paper by P. Berard, M.P. do Carmo and W. Santos, [13].

Chapter 4 and Chapter 5 are the analytic heart of the book. In Chapter 4 we
prove a Liouville-type theorem for Lp solutions u of divergence-type differential
inequalities of the form

udiv
(
ϕ∇u

) ≥ 0,

where ϕ is a suitable positive function. An effort is made to state and prove the
result under the minimal regularity assumptions that will be needed for geometric
applications. As a consequence we deduce the main result of the chapter, namely
a vanishing theorem for non-negative solutions of the Bochner-type differential
inequality

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0. (0.4)

Assuming the existence of a positive solution of the inequality

∆ϕ + Ha(x)ϕ ≤ 0, (0.5)

for a suitable constant H , one proceeds similarly to what we described above, and
shows that an appropriate combination u of the function ψ and ϕ satisfies the
hypotheses of the Liouville-type theorem.

In Chapter 6 the analytic setting is similar, one considers vector spaces of
Lp-sections whose lengths satisfy the differential inequality (0.4) and proves that
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such spaces are finite-dimensional under the assumption that a solution ϕ to the
differential inequality (0.5) exists in the complement of a compact set K in M .
The idea of the proof is to show that there exists a constant C depending only
on the geometry of the manifold in a neighborhood of K such that the dimension
of every finite-dimensional subspace is bounded by C. The proof is based on a
version of a lemma by Li, and uses a technique of Li and J. Wang, [104] and [105],
combined with the technique of the coupling of the solutions ψ and ϕ which allows
us to deal with Lp sections with p not necessarily equal to 2. The proof requires
a number of technical results which are described in detailed, in some cases new,
direct proofs.

Chapter 6 to 9 are devoted to applications in different geometric contexts.
In Chapter 6 we specialize the vanishing results to the case of harmonic maps
with finite Lp energy, and derive results on the constancy of convergent harmonic
maps, and a Schwarz-type lemma for harmonic maps of bounded dilation. We then
describe topological results by Schoen and Yau, [146], concerning the fundamental
group of manifolds of non-negative Ricci curvature and of stable minimal hypersur-
faces immersed in non-positively curved ambient spaces. While the main argument
is the same as Schoen and Yau’s, the use of our vanishing theorem allows us to
relax their assumption that the Ricci curvature of the manifold is non-negative.
The chapter ends by generalizing to non-compact settings the finiteness theorems
of L. Lemaire, [93], for harmonic maps of bounded dilation into a negatively curved
manifold, on the assumption that the domain manifold has a finitely generated
fundamental group.

In Chapter 7 we use the techniques developed above to describe the topology
at infinity of a Riemannian manifold M , and more specifically the number of
unbounded connected components of the complement of a compact domain D in
M , namely the ends of M with respect to D.

The number of ends of a manifold will in turn play a crucial role in the
structure results for Kähler manifolds, and in the derivation of metric rigidity in
the Riemannian setting (see Chapters 8 and 9, respectively).

The chapter begins with an account of the theory relating the topology at in-
finity and suitable classes of harmonic functions on the manifold as developed by Li
and L.F. Tam and collaborators. At the basis of this theory is the fact that, via the
maximum principle, the parabolicity/non-parabolicity of an end is intimately con-
nected with the existence of a proper harmonic function on the end (the so-called
Evans–Selberg potential of the end), or, in the non-parabolic case, of a bounded
harmonic function on the end with finite Dirichlet integral. Combining these facts
with the analytic results of the previous chapters in particular, we obtain that the
manifold has only one, or at most finitely many non-parabolic ends, depending on
spectral assumptions on the operator L = −∆−a(x), where −a(x) is the smallest
eigenvalue of the Ricci tensor at x. To complete the picture, following H.-D. Cao,
Y. Shen, S. Zhu, [25], and Li and Wang, [104], one shows that when the mani-
fold supports an L1-Sobolev inequality, then all ends are non-parabolic. This in
particular applies to submanifolds of Cartan–Hadamard manifolds, provided that
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the second fundamental form is small in a suitable integral norm. In the chapter,
using a gluing technique of T. Napier and Ramachandran, [117], we also provide
the details of a construction sketched by Li and Ramachandran, [98] of harmonic
functions with controlled L2 energy growth that will be used in the structure the-
orems for Kähler manifolds. The last two sections of the chapter contain further
applications of these techniques to problems concerning line bundles over Kähler
manifolds, and to the reduction of codimension of harmonic immersions with less
than quadratic p-energy growth.

In Chapter 8 we concentrate on the Kähler setting. We begin by provid-
ing a detailed description of a result of Li and Yau, [107], on the constancy of
holomorphic maps with values in a Hermitian manifold with suitably negative
holomorphic bisectional curvature. We then describe two variations of the result,
where the conclusion is obtained under different assumptions: in the first, using
Poisson equation techniques, an integral growth condition on the Ricci tensor is re-
placed by a volume growth condition, while in the second one assumes a pointwise
lower bound on the Ricci curvature which is not necessarily integrable, together
with some spectral assumptions on a variant of the operator L. We then apply this
in the proof of the existence of pluri-subharmonic exhaustions due to Li and Ra-
machandran, [98], which is crucial in obtaining the important structure theorem
of Napier and Ramachandran, [117], and Li and Ramachandran, [98].

The unifying element of Chapter 9 is the validity of a Poincaré–Sobolev in-
equality. In the first section, we give a detailed proof of a warped product splitting
theorem of Li and Wang, [104]. There are two main ingredients in the proof. The
first is to prove that the metric splitting holds provided the manifold supports a
non-constant harmonic function u for which the Bochner inequality with a sharp
constant in the refined Kato’s inequality is in fact an equality. The second ingredi-
ent consists of energy estimates for a suitable harmonic function u on M obtained
by means of an exhaustion procedure. This is the point where the Poincaré–Sobolev
inequality plays a crucial role. Finally, one uses the analytic techniques of Chap-
ter 4 to show that u is the sought-for function which realizes equality in the
Bochner inequality. In the second section we begin by showing that whenever M
supports an L2 Poincaré–Sobolev-type inequality, then a non-negative Lp solution
ψ of the differential inequality (0.4),

ψ∆ψ + a(x)ψ2 + A|∇ψ|2 ≥ 0,

must vanish provided a suitable integral norm of the potential a(x) is small
compared to the Sobolev constant. This compares with the vanishing result of
Chapter 4 which holds under the assumption that the bottom of the spectrum
of −∆ + Ha(x) is non-negative. Actually, in view of the geometric applications
that follow, we consider the case where M supports an inhomogeneous Sobolev
inequality.

We then show how to recover the results on the topology at infinity for
submanifolds of Cartan–Hadamard manifolds of Chapter 7. In fact, using directly
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the Sobolev inequality allows us to obtain quantitative improvements. Further
applications are given to characterizations of space forms which extend in various
directions a characterization of the sphere among conformally flat manifolds with
constant scalar curvature of S. Goldberg, [61].

The book ends with two appendices. The first is devoted to the unique con-
tinuation property for solutions of elliptic partial differential systems on manifolds,
which plays an essential role in the finite-dimensionality result of Chapter 5. Apart
from some minor modifications, our presentation follows the line of J. Kazdan’s
paper [87].

In the second appendix we review some basic facts concerning the Lp co-
homology of complete non-compact manifolds. We begin by describing the basic
definitions of the Lp de Rham complex and discussing some simple, but significant
examples. We then collect some classical results like the Hodge, de Rham, Kodaira
decomposition, and briefly consider the role of Lp harmonic forms. Finally, we il-
lustrate some of the relationships between Lp cohomology and the geometry and
the topology of the underlying manifold both for p = 2 and p 	= 2. In particular
we present (with no proofs) the Whitney-type approach developed by J. Dodziuk,
[43] and V.M. Gol’dshtein, V.I. Kuz’minov, I.A. Shvedov, [63] and [64], where the
topological content of the Lp de Rham cohomology is emphasized by relating it
to a suitable, global simplicial theory on the underlying triangulated manifold.

The authors are grateful to G. Carron for a careful reading of the manuscript
and several useful comments. It is also a pleasure to thank Dr. Thomas Hempfling
of Birkhäuser for his extreme efficiency and helpfulness during the various stages
of the production of this book.



Chapter 1

Harmonic, pluriharmonic, holomorphic
maps and basic Hermitian and
Kählerian geometry

1.1 The general setting

The aim of the chapter is to review some basic facts of Riemannian and complex
geometry, in order to compute, for instance, some Bochner-type formulas that we
shall need in the sequel. In doing so, we do not aim at giving a detailed treatment
of the subject, but only to set down notation and relevant results, illustrating some
of the computational techniques involved in the proofs.

Let (M, 〈 , 〉) and (N, (, )) be (real) smooth manifolds of (real) dimensions
m and n respectively, endowed with the Riemannian metrics 〈 , 〉 and (, ) and let
f : M → N be a smooth map. The energy density e (f) : M → R is the non-
negative function defined on M as follows. Let df ∈ Γ

(
T ∗M ⊗ f−1TN

)
be the

differential of f and set

e (f) (x) =
1
2
|dxf |2

where |df | denotes the Hilbert-Schmidt norm of the differential map. In local
coordinates

{
xi
}

and {yα} respectively on M and N , e (f) is expressed by

e (f) =
1
2
〈 , 〉ij ∂fα

∂xi

∂fβ

∂xj
(, )αβ =

1
2
tr〈 , 〉f∗ (, ) .

Here fα = yα ◦ f and 〈 , 〉ij represents the inverse of the matrix coefficient 〈 , 〉ij =〈
∂/∂xi, ∂/∂xj

〉
.

If Ω ⊂M is a compact domain we use the canonical measure

dVol〈 , 〉 =
√

det 〈 , 〉ij dx1 ∧ · · · ∧ dxm

associated to 〈 , 〉 to define the energy of f |Ω : (Ω, 〈 , 〉) → (N, (, )) by

EΩ (f) =
∫

Ω

e (f) dVol〈 , 〉.

Definition 1.1. A smooth map f : (M, 〈 , 〉) → (N, (, )) is said to be harmonic if,
for each compact domain Ω ⊂ M , it is a stationary point of the energy functional
EΩ : C∞(M, N)→ R with respect to variations preserving f on ∂Ω.
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A vector field X along f , that is, a section of the bundle f−1TN → M
determines a variation ft of f by setting

ft (x) = expf(x) tXx.

If X has support in a compact domain Ω ⊂ M , then

d

dt

∣∣∣∣
t=0

EΩ (ft) = −
∫

M

(
τ (f) (x) , Xx

)
dVol〈 ,〉

where the Euler-Lagrange operator, called the tension field of f , is given by

τ (f) = tr〈 ,〉Ddf,

Ddf ∈ Γ
(
T ∗M ⊗ T ∗M ⊗ f−1TN

)
being the (generalized) second fundamental

tensor of the map f . As a consequence, τ (f) ∈ Γ
(
f−1TN

)
and f is harmonic if

and only if
τ (f) = 0 on M.

In local coordinates

τ (f)γ = 〈 , 〉ij
(

∂2fγ

∂xi∂xj
− MΓk

ij

∂fγ

∂xk
+ NΓγ

αβ

∂fα

∂xi

∂fβ

∂xj

)
where MΓ and NΓ are the Christoffel symbols of the Levi–Civita connections on M
and N , respectively. Thus, the harmonicity condition is represented by a system
of non-linear elliptic equations.

Observe that, when f : (M, 〈 , 〉) → (N, ( , )) is an isometric immersion, that
is, f∗ ( , ) = 〈 , 〉, then τ (f) = mH, with H the mean curvature vector field of
the immersion. It is well known that the equation H ≡ 0 is the Euler-Lagrange
equation of the volume functional

VΩ (f) =
∫

Ω

dVol〈 ,〉

Ω ⊂ M a compact domain. Thus, an isometric immersion is minimal if and only
if it is harmonic.

For later use, we show how to compute the tension field of f : (M, 〈 , 〉) →
(N, (, )) with the moving frame formalism. Towards this aim, let

{
θi
}

and {ei},
i = 1, . . . , m, be local ortho-normal co-frame, and dual frame, on M with cor-
responding Levi–Civita connection forms

{
θi

j

}
. Similarly, let {ωα} , {εα} ,

{
ωα

β

}
,

1 ≤ α, β, . . . ≤ n describe, locally, the Riemannian structure of (N, (, )) . Then

f∗ωα = fα
i θi

so that
df = fα

i θi ⊗ εα
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and computing the covariant derivatives

(i) fα
ijθ

j = dfα
i − fα

j θj
i + fβ

i ωα
β , (ii) fα

ij = fα
ji

in such a way that
Ddf = fα

ijθ
i ⊗ θj ⊗ εα

and
τ (f) =

∑
i

fα
iiεα.

In what follows we shall also use the next Bochner–Weitzenböck-type formula
for harmonic maps. Since we shall prove analogous formulas in Kählerian geometry
we omit here its derivation. See, e.g., [47].

Theorem 1.2. Let f : (M, 〈 , 〉)→ (N, (, )) be a smooth map. Then

1
2
∆ |df |2 = |Ddf |2 − tr〈 ,〉 (Dτ (f) , df) +

∑
i

(
df

(
MRic (ei, ·)#

)
, df (ei)

)
−
∑
i,j

(
NRiem (df (ei) , df (ej)) df (ej) , df (ei)

)
with {ei} as above and MRic, NRiem respectively the Ricci tensor of M and the
Riemannian curvature tensor of N . In particular, if f is harmonic,

1
2
∆ |df |2 = |Ddf |2 +

∑
i

(
df

(
MRic (ei, ·)#

)
, df (ei)

)
−
∑
i,j

(
NRiem (df (ei) , df (ej)) df (ej) , df (ei)

)
.

Futher, assuming that f is a harmonic function the formula specializes to
Bochner’s formula

1
2
∆|∇f |2 = |Hess f |2 + Ric (∇f,∇f). (1.1)

Weitzenböck formulae will be repeatedly used in the sequel. Here we give a
sharp estimate from below of the term |Ddf |2. This type of estimate goes under the
name of refined Kato inequalities. Their relevance will be clarified by their analytic
consequences. For a more general and abstract treatment, we refer to work by T.
Branson, [21], and by D.M.J. Calderbank, P. Gauduchon, and M. Herzlich, [24].

Proposition 1.3. Let f : M → N be a harmonic map between Riemannian mani-
folds of dimensions dimM = m and dim N = n. Then

|Ddf |2 − |∇ |df ||2 ≥ 1
(m− 1)

|∇ |df ||2

pointwise on the open, dense subset Ω = {x ∈M : |df | (x) 	= 0} and weakly on all
of M .
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Remark 1.4. The dimension n of the target manifold plays no role.

Proof. It suffices to consider the pointwise inequality on Ω. Let {fα
i } and

{
fα

ij

}
be the coefficients of the (local expressions of the) differential and of the Hessian
of f , respectively. Then

|df | =
√∑

α,i

(fα
i )2

so that

∇|df | =

∑
i

{∑
α,j

fα
ijf

α
j

}
ei√∑

α,i

(fα
i )2

and we have

|Ddf |2 − |∇ |df ||2 =
∑
α,i,j

(
fα

ij

)2 −
∑
i

{∑
α,j

fα
ijf

α
j

}2

∑
α,i

(fα
i )2

. (1.2)

For α = 1, . . . , n, define

Mα =
(
fα

ij

) ∈Mm (R) , yα = (fα
i )t ∈ Rm.

Note that each matrix Mα is traceless, by harmonicity of f , and symmetric. Then
(1.2) reads

|Ddf |2 − |∇ |df ||2 =
∑

α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2

where ‖M‖2 = tr (MM t) and |y| denotes the Rm-norm of y. We have to show
that

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥ 1

(m− 1)

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 .

This inequality is an immediate consequence of the next simple algebraic lemma.
�

Lemma 1.5. For α = 1, . . . , n, let Mα ∈Mm (R) be a symmetric matrix satisfying
trace (Mα) = 0. Then, for every y1, . . . , yn ∈ Rm with

∑
α
|yα|2 	= 0,

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥ 1

(m− 1)

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 . (1.3)
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Moreover, suppose the equality holds. If yα 	= 0, then either Mα = 0 or yα is an
eigenvector of Mα corresponding to an eigenvalue µα of multiplicity 1. Further-
more, the orthogonal complement 〈yα〉⊥ is the eigenspace of Mα corresponding to
the eigenvalue −µα/ (m− 1) of multiplicity (m− 1).

Proof. First, we consider the case α = 1. Let λ1 ≤ · · · ≤ λs ≤ 0 ≤ λs+1 ≤ · · · ≤ λm

be the eigenvalues of M . Without loss of generality we may assume that λm ≥ |λ1| .
We are thus reduced to proving that

m∑
i=1

λ2
i ≥

(
1 +

1
m− 1

)
λ2

m.

To this end we note that, since M is traceless,

−
m−1∑
j=1

λj = λm (1.4)

and therefore, from Schwarz’s inequality,

λ2
m ≤ (m− 1)

m−1∑
j=1

λ2
j . (1.5)

This implies
m∑

i=1

λ2
i = λ2

m +
m−1∑
j=1

λ2
j ≥

(
1 +

1
m− 1

)
λ2

m,

as desired. Suppose now that M 	= 0, so that λm > 0, and assume that equality
holds in (1.3) for some vector y 	= 0. Let C ∈ O (m) be such that CMCt = D =
diag (λ1, . . . , λm) and set w = (w1, . . . , wm) = Cy. Thus(

1 +
1

m− 1

)
λ2

m ≤
∑

i

λ2
i =

(
1 +

1
m− 1

)∑
i

(
λi

wi

|w|
)2

≤
(

1 +
1

m− 1

)
λ2

m.

(1.6)
It follows that the equality holds in (1.5) which in turn forces, according to (1.4)
and (the equality case in) Schwarz’s inequality,

λ1 = · · · = λm−1 = µ; λm = − (m− 1)µ,

for some µ < 0. On the other hand, (1.6) gives

m−1∑
i=1

λ2
i

w2
i

|w|2 + λ2
m

(
w2

m

|w|2 − 1
)

= 0

proving that w ∈ span{(0, . . . , 0, 1)t} and therefore it is an eigenvector of D belong-
ing to the multiplicity 1 eigenvalue λm. It follows that y = Ctw is an eigenvector
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of M belonging to the multiplicity 1 eigenvalue λm = − (m− 1)µ. Obviously, y⊥

is the eigenspace corresponding to the multiplicity (m− 1) eigenvalue µ.
Now let α be any positive integer. We note that

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥

∑
α

‖Mα‖2 −

(∑
α
|Mαyα|

)2

∑
α
|yα|2 .

Applying the first part of the proof we get, for every α = 1, . . . , n,

|Mαyα| ≤
√

m− 1
m

‖Mα‖ |yα| (1.7)

which in turn, used in the above, gives

∑
α

‖Mα‖2 −

∣∣∣∣∑
α

Mαyα

∣∣∣∣2∑
α
|yα|2 ≥

∑
α

‖Mα‖2 −

(∑
α

√
m−1

m ‖Mα‖ |yα|
)2

∑
α
|yα|2

≥
∑
α

‖Mα‖2 − m− 1
m

∑
α
‖Mα‖2 ∑

α
|yα|2∑

α
|yα|2 =

1
m

∑
α

‖Mα‖2 .

Whence, rearranging and simplifying yields (1.3). To complete the proof, note that
the equality in (1.3) forces equality in (1.7) and therefore the first part of the proof
applies to Mα. �

1.2 The complex case

We now turn our attention to the complex case.

Definition 1.6. An almost complex manifold (M, J) is a (real) manifold together
with a (smooth) tensor field J ∈ Γ (T ∗M ⊗ TM) of endomorphisms of TM such
that

J2
p = −idp (1.8)

for every p ∈M .

Note that (1.8) implies dim TpM = 2s.
Let TMC denote the complexified tangent bundle of M whose fibers are

C ⊗R TpM, p ∈ M . Here, dimC (C⊗R TpM) = 2s. The smooth field J can be
pointwise extended C-linearly to T C

p M so that, again, it satisfies (1.8). It follows
that Jp has eigenvalues ı and −ı and

TpM
C = TpM

(1,0) ⊕ TpM
(0,1) (1.9)
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where TpM
(1,0) and TpM

(0,1) are the eigenspaces of the eigenvalues ı and −ı,
respectively, Furthermore, v′ ∈ TpM

(1,0) and v′′ ∈ TpM
(0,1) if and only if there

exist u, w ∈ TpM such that

v′ = u− iJpu, v′′ = w + iJpw.

The above decomposition induces a dual decomposition

T ∗
p MC = T ∗

p M (1,0) ⊕ T ∗
p M (0,1). (1.10)

Note that (1.9) and (1.10) hold at the bundle level. Similar decompositions are
induced on tensor products and in particular on the Grassmann bundle

ΛkT ∗MC =
∑

i+j=k

Λ(i,j)T ∗MC.

As we have just seen, the existence of J as in Definition 1.6 induces restric-
tions on M and, for instance, one can, according to the previous discussion, easily
prove that an almost complex manifold (M, J) is even-dimensional and orientable.
However, these conditions are not sufficient to guarantee the existence of J . In-
deed, C. Ehreshmann and H. Hopf (see [154] page 217) have shown that S4 cannot
be given an almost complex structure J .

Definition 1.7. An almost Hermitian manifold (M, 〈 , 〉 , J) is an almost complex
manifold (M, J) with a Riemannian metric 〈 , 〉 with respect to which J is an
isometry, that is, for every p ∈M and every v, w ∈ TpM ,

〈Jpv, Jpw〉 = 〈v, w〉 .
In what follows, we extend 〈 , 〉 complex-bilinearly to TpM

C.

Definition 1.8. The Kähler form of an almost Hermitian manifold (M, 〈 , 〉 , J) is
the (1, 1)-form defined by

K (X, Y ) = 〈X, JY 〉
for each X, Y ∈ TMC.

Note that dK ∈ Λ3T ∗MC can be split into types according to the decompo-
sition in (1.10).

Definition 1.9. An almost Hermitian manifold (M, 〈 , 〉 , J) is said to be (1, 2)-
symplectic if

dK(1,2) = 0.

Similarly, if
dK = 0

or
δK = 0

where δ = − ∗ d∗ is the co-differential acting on 2-forms (see Appendix B), the
almost Hermitian manifold is said to be symplectic and co-symplectic, respectively.
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Definition 1.10. Let (M, 〈 , 〉 , J) be a (symplectic) almost Hermitian manifold. If
the almost complex structure J is induced by a complex structure on M , that is,
J is the multiplication by ı in the charts of a holomorphic atlas, then (M, 〈 , 〉 , J)
is called a ( Kähler) Hermitian manifold.

Note that there are manifolds which cannot be given a Kählerian structure,
for instance the Hopf and Calabi-Eckmann manifolds; see [35] page 69.

Given an almost complex manifold (M, J) the Nijenhuis tensor N is the
tensor field of type (1, 2) given by

N (X, Y ) = 2 {[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]}

for each vector field X, Y ∈ Γ (TM) , and where [ , ] denotes the Lie bracket.
By the Newlander-Nirenberg theorem, [118], an almost complex structure

J is induced by a complex structure if and only if the Nijenhuis tensor vanishes
identically.

At the cotangent bundle level, this is expressed by

dω = 0 mod (1, 0)-forms

for each form ω of type (1, 0) . In other words the ideal generated by the (1, 0)-
forms is a differential ideal. Note that if dimR M = 2 this is always true (the result
is due to Korn and Lichtenstein). In a way similar to that of the definition of the
Kähler form, we introduce the Ricci form R, that is, for every X, Y ∈ TMC,

R (X, Y ) = Ric (JX, Y ) .

Clearly, R is a (1, 1) form and the Kähler manifold (M, 〈 , 〉 , JM ) is said to be
Kähler–Einstein in case

R= − ı

4m
S (x)K

with S (x) the scalar curvature.
Let f : (M, 〈 , 〉 , JM ) → (N, ( , ) , JN ) be a smooth map between almost Her-

mitian manifolds. Then, df can be linearly extended to the complexified differential
dfC : TMC → TNC. According to the decomposition

TNC = TN (1,0) ⊕ TN (0,1)

we can write
dfC = df (1,0) + df (0,1).

Definition 1.11. A map f : (M, 〈 , 〉 , JM ) → (N, ( , ) , JN) between almost Hermi-
tian manifolds is holomorphic if and only if

JN ◦ df = df ◦ JM .
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This is immediately seen to be equivalent to the fact that dfC carries (1, 0)
vectors into (1, 0) vectors or the pull-back of (1, 0) forms, under the complex linear
extension

(
fC

)∗, are (1, 0) forms or, finally, to the fact that df (0,1) = 0.
On the other hand, f is said to be anti-holomorphic if

JN ◦ df = −df ◦ JM .

The basic relation between (anti-)holomorphic maps and harmonic maps is given
by the following local result due to A. Lichnerowicz, [108].

Proposition 1.12. Let (M, 〈 , 〉, JM ) and (N, ( , ), JN ) be almost Hermitian man-
ifolds. If M is co-symplectic and N is (1, 2)-symplectic, then any (anti-)holo-
morphic map f : M → N is harmonic.

Note that, if M is symplectic, then it is also co-symplectic. We should also
remark that some condition on M is necessary for a (anti-)holomorphic map to
be harmonic, as an example of A. Grey shows. See [48], page 58.

We now consider the case where (M, 〈 , 〉 , JM ) is an almost Hermitian mani-
fold and (N, ( , )) is Riemannian. Given a map f : M → N we can split its general-
ized second fundamental tensor Ddf according to types in T ∗MC⊗T ∗MC⊗f−1TN.
We have

DdfC = Ddf (2,0) + Ddf (1,1) + Ddf (0,2)

where DdfC is the complex linear extension of Ddf .

Definition 1.13. The map f : (M, 〈 , 〉 , JM )→ (N, ( , )) is said to be pluriharmonic,
or (1, 1)-geodesic, if Ddf (1,1) = 0.

When N = R, then Ddf (1,1) is a Hermitian form referred to as the Levi form
of f .

Definition 1.14. We say that the function f : (M, 〈 , 〉 , JM ) → R is plurisubhar-
monic if all eigenvalues of its Levi form are non-negative.

Note that any pluriharmonic map is harmonic and, if the almost Hermitian
manifolds (M, 〈 , 〉 , JM ) and (N, (, ) , JN ) are also (1, 2)-symplectic, then any (anti-
)holomorphic map f : M → N is pluriharmonic.

Thus, the notion of pluriharmonic map lies between those of harmonic and
(anti-)holomorphic maps.

In case (M, 〈 , 〉 , JM ) is almost Hermitian and (1, 2)-symplectic, and (N, (, ))
is Riemannian, J. Rawnsley, [136], has given the following characterization.

Theorem 1.15. A map f : (M, 〈 , 〉 , JM )→ (N, (, )) is pluriharmonic if and only if
its restriction to every complex curve in M is harmonic.

Note that, from this it follows that if (M, 〈 , 〉 , JM ) is Kähler, then the notion
of pluriharmonic map does not depend on the choice of the Kähler metric 〈 , 〉 on
M .
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We also note that, if (M, 〈 , 〉 , JM ) and (N, (, ) , JN ) are Kähler and f : M →
N is an isometry, then we can express holomorphicity of f via the system{

II (X, Y ) + II (JMX, JMY ) = 0,
II (X, Y ) + JN II (X, JMY ) = 0

for all X, Y vector fields on M , where we have used the more familiar notation
II for Ddf in the isometric case. Clearly, the first equation is nothing but the
definition of a pluriharmonic map.

The notion of a pluriharmonic map has appeared in the literature in the
context of the work of Y.T. Siu, [152], who used it as a bridge from harmonicity
to (anti-)holomorphicity in the analysis of the strong rigidity of compact Kähler
manifolds. Since then, it has been used in a variety of geometrical problems and
it will be used below with the aim of providing extra geometric information.

1.3 Hermitian bundles

Later on we shall also be interested in vector bundles of rank q on a base manifold
M. This means that we have a map

π : E →M

such that the following conditions are satisfied:

(i) for each x ∈M , π−1 (x) is a real (or complex) vector space of dimension q.

(ii) E is locally a product, that is, for each x ∈ M, there exists an open neigh-
borhood U of x and a bijection

ϕU : U × V → π−1 (U)

with V any fixed real (or complex) vector space of dimension q satisfying the
condition

π ◦ ϕU (x, v) = x,

for each v ∈ V .

(iii) For any two of the above neighborhoods U1, U2 such that U1 ∩U2 	= ∅, there
is a map

gU1U2 : U1 ∩ U2 → Glq (R) (or Glq (C) )

such that, for x ∈ U1 ∩ U2, and for each v, w ∈ V ,

ϕU1 (x, v) = ϕU2 (x, w)

if and only if
v = gU1U2 (x) w.
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Clearly, E can be given a (unique) topology and differentiable structure such
that each

(
π−1 (U) , ϕ−1

U

)
of (ii) is a local chart. The functions gU1U2 are called

transition functions of the bundle and they satisfy

gUU (x) = id ∈ Glq (R) , for each x ∈ U,

gU1U2gU2U1 = id ∈ Glq (R) , for each x ∈ U1 ∩ U2,

gU1U2gU2U3gU3U1 = id ∈ Glq (R) , for each x ∈ U1 ∩ U2 ∩ U3.

It is well known that the transition functions relative to a covering of M completely
determine the bundle.

A section of π : E →M is a map s : M → E such that π ◦ s = idM . The set
Γ (E) of smooth sections of E is a vector space over R (or C)

A connection on E is a map

D : Γ (E)→ Γ (T ∗M ⊗ E)

such that the following conditions are satisfied for each s, t ∈ Γ (E), and for each
f ∈ C∞ (M) (f either real- or complex-valued):

(D1) D (s + t) = Ds + Dt,

(D2) D (fs) = fDs + df ⊗ s.

Letting X ∈ Γ (TM), DXs is the derivative of s in the direction of X . Note that
DXs ∈ Γ (E).

It does make sense to define the curvature transformation

K̃ (X, Y ) : Γ (E) → Γ (E)

where X, Y ∈ Γ (TM) are any two vector fields of M , by setting

K̃ (X, Y ) s = DXDY s−DY DXs−D[X,Y ]s.

A Riemannian vector bundle is a smooth vector bundle with a fibre metric
h and a compatible connection D, that is, if s and t are sections of π : E → M ,
then, for each vector field X ∈ Γ (TM),

Xh (s, t) = h (DXs, t) + h (s, DXt) .

We will be mainly concerned with Hermitian bundles, that is, E is a Hermi-
tian manifold with a connection, the Hermitian connection, which is compatible
with the metric and uniquely determined by the next requirement (see, [35]).



12 Chapter 1. Basic Hermitian and Kählerian geometry

Let q = dimR π−1 (x) = 2p be the real dimension of the fibres and let {ea},
1 ≤ a, b, . . . ≤ p, be a unitary (1, 0)-type local frame of sections of E. Thus,
indicating with {µa} the dual (1, 0) forms, we have

h =
∑

a

µa ⊗ µ̄a.

Then, the Hermitian connection on E is the unique connection whose connection
forms µa

b are determined by the requirements

(i) µa
b + µ̄b

a = 0,

(ii) dµa = −µa
b ∧ µb + ζa,

(1.11)

where the ζa are forms of (2, 0)-type, and denotes complex conjugation. The
curvature forms Ma

b are then defined by the second structure equations

dµa
b = −µa

c ∧ µc
b + Ma

b ,

which are of type (1, 1) and satisfy

Ma
b + M̄ b

a = 0.

Having set
Ma

b = Aa
bcd

µc ∧ µ̄d,

the metric of the bundle is said to be Hermitian–Einstein if∑
c

Aa
bcc = λδa

b

for some constant λ ∈ C. Note that the matrix(∑
c

Aa
bcc

)
a,b

is called the mean curvature and

scalh (x) =
∑
a,c

Aa
acc

(in a unitary frame) is called the scalar curvature of the Hermitian bundle π :
E →M .

1.4 Complex geometry via moving frames

In what follows we shall always deal with the case where (M, 〈 , 〉 , JM ) is Kähler,
while (N, ( , )) or (N, ( , ) , JN ) , the target manifolds of maps, will be Riemannian
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or Kählerian. Later on we shall also consider the case where (N, ( , ) , JN ) is Her-
mitian. The situation, from our point of view, will be very similar to the Kähler
case so, since in the Hermitian case the formalism is definitively heavier, we will
not bother to provide details in derivation of the appropriate differential inequali-
ties needed in some proofs of theorems in later chapters. We formalize the Kähler
structure with a particular emphasis on its Riemannian counterpart and to do
so we will use the method of moving frame. Thus, let (M, 〈 , 〉 , JM ) be a Kähler
manifold with s = dimC M so that m = 2s = dimR M . We fix the index convention
1 ≤ i, j, k . . . ≤ s. The Kähler structure of M is naturally described by a unitary
coframe

{
ϕj

}
of (1, 0)-type, 1-forms giving the metric

〈 , 〉 =
∑

j

ϕj ⊗ ϕ̄j

and the corresponding Kähler connection forms
{
ϕi

j

}
characterized by the prop-

erty
ϕi

j + ϕ̄j
i = 0

and by the structure equations

dϕj = −ϕj
k ∧ ϕk. (1.12)

Note that, comparing with (1.11), we are now requiring that the (2, 0)-forms ζa are
identically zero. This can be seen to be equivalent to dK = 0, i.e., to the condition
that the complex manifold is Kähler (see Definition 1.9).

The Kähler curvature forms
{
Φj

k

}
are determined by the second structure

equations
dϕj

k = −ϕj
i ∧ ϕi

k + Φj
k (1.13)

and satisfy the symmetry relations

Φj
k + Φ̄k

j = 0. (1.14)

The coefficients Hi
jkt of the Hermitian curvature tensor are determined by

Φi
j = Hi

jktϕ
k ∧ ϕ̄t (1.15)

and condition (1.14) becomes equivalent to

Hi
jkt = Hj

itk.

Differentiating (1.12) we obtain the first complex Bianchi identities, that is,

Φj
k ∧ ϕk = 0

while differentiating (1.13) we obtain the second complex Bianchi identities which
we write in the form

dΦj
i + Φk

i ∧ ϕj
k − ϕk

i ∧Φj
k = 0.
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We also recall that the Kähler form K and the Ricci form R are respectively given
by

K =
ı

2

∑
j

ϕj ∧ ϕ̄j ,

R =
1
2

∑
i

Hi
iktϕ

k ∧ ϕ̄t,

so that (M, 〈 , 〉 , JM ) is Kähler–Einstein if and only if∑
i

Hi
ikt =

s

8m
δkt

with s the scalar curvature. In order to detect the underlying Riemannian structure
we set

ϕj = θj + ıθs+j , (1.16)

ϕj
k = θj

k + ıθs+j
k , (1.17)

θj
k = θs+j

s+k, θj
s+k = −θs+j

k . (1.18)

Then, the θj , θs+j give an orthonormal coframe for the metric 〈 , 〉 whose corre-
sponding Levi–Civita connection forms are determined by (1.17), (1.18) and the
usual skew symmetry conditions

θa
b + θb

a = 0,

where, from now on, we shall adhere also to the further index convention 1 ≤
a, b, . . . ≤ m. Analogously, setting

Φk
j = Θk

j + ıΘs+k
j , (1.19)

Θk
j = Θs+k

s+j , Θj
s+k = −Θs+j

k , (1.20)

0 = Θa
b + Θb

a, (1.21)

the Θa
b ’s defined in (1.19), (1.20), (1.21) coincide with the corresponding curvature

forms. Thus, letting Ra
bcd be the coefficients of the Riemannian curvature tensor

(obeying the usual symmetries), for which

Θa
b =

1
2
Ra

bcdθ
c ∧ θd (1.22)

form (1.20), we obtain the Kähler symmetry relations

Rk
jab = Rs+k

s+j ab, Rj
s+k ab = −Rs+j

kab . (1.23)

We use (1.15) and (1.19), (1.22) to relate Hermitian and Riemannian curvatures.
We obtain

Hi
jkt =

1
2

(
Ri

jkt + Rs+i
j k+s t

)
+

ı

2

(
Ri

jk s+t + Rs+i
jkt

)
. (1.24)
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Extending C-linearly the ((4, 0)-version of the) Riemannian curvature tensor we
obtain

Rabcdθ
a ⊗ θb ⊗ θc ⊗ θd = Rijklϕ

i ⊗ ϕ̄j ⊗ ϕk ⊗ ϕ̄l + Rijklϕ
i ⊗ ϕ̄j ⊗ ϕ̄k ⊗ ϕl

+ Rijklϕ
i ⊗ ϕj ⊗ ϕk ⊗ ϕl + Rijklϕ

i ⊗ ϕj ⊗ ϕk ⊗ ϕl

where

Rijkl = Rijkl, Rijkl = Rijkl, (1.25)

Rijkl = −Rijlk = −Rjikl, Rijkl = Rklij , (1.26)

the remaining coefficients, for instance Rijkl, being null. From (1.25), (1.26) and
(1.24) we deduce

Hi
jkl = Rijkl. (1.27)

Recalling the first (Riemannian) Bianchi identities

Ra
bcd + Ra

cdb + Ra
dbc = 0,

with the aid of (1.23) we obtain∑
k

Rs+i
j s+k k = Rics+i s+j = Ricij .

Hence, tracing (1.24) twice we obtain that the scalar curvature s is given by

s = 4
∑
k,i

Hi
ikk.

Furthermore
Rics+i j = −Rici s+j = −Rics+j i = −Ricj s+i (1.28)

in particular, for each fixed i = 1, . . . , s,

Rics+i i = 0.

Finally, the “Ricci curvature” of the Kähler manifold has components given by
the Hermitian matrix

Rij̄ =
∑

k

Hi
jkk =

1
2
Ricij +

ı

2
Rics+i j . (1.29)

From (1.27) and (1.28) we deduce

Rics+i j = ı
∑

k

(
Rijkk −Rijkk

)
,

Ricij =
∑

k

(
Rijkk + Rijkk

)
.
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In particular ∑
k

Hi
jkk = Rij̄ k̄ k = Rij̄ ,

and the Ricci form can be expressed as

R =
1
2

∑
i

Rij̄ϕ
k ∧ ϕl.

Note that an orthogonal transformation Uz of TzM
C is unitary if and only if it

commutes with Jz (see, e.g., [88], p. 116), and we may therefore diagonalize the
Hermitian matrix Rkj with a (1, 0)-basis of the form Ek = ek− ıJzek = ek− ıek+s,
where {ek, ek+s} is the orthonormal basis of TzM dual to {θi, θs+i}. If λk are the
corresponding eigenvalues of Rkj , then

Rkj = λkδkj =
1
2

(
Rickj + ıRick+sj

)
which implies that

Rickj = 2λkδkj and Rick+sj = 0 ∀k, j.

Further, since Rick+sj+s = Rickj = 2λkδkj , we conclude that 2λk is an eigenvalue
of Ric. This shows that, if

2Ri j̄u
iūj ≥ −ρ|u|2

holds for every u ∈ Cm, then inequality

Rici jv
ivj ≥ −ρ|v|2

holds for every v ∈ Rm. Since the reverse implication is obviously true, we conclude
that two conditions are in fact equivalent.

Let {ea} be the dual frame to {θa} . For each i, k = 1, . . . , s, we consider the
holomorphic 2-planes Π and Π̂ spanned by ei,Jei = es+i, and ek, Jek = es+k,
respectively. Then the holomorphic bisectional curvature of Π and Π̂ is defined by

Hi
ikk =

1
4
Ri s+i k s+k,

where, in this case, there is no summation over repeated indices. In particular, if
Π = Π̂ we obtain the holomorphic sectional curvature of the 2-plane Π, namely,

Hi
iii =

1
4
Ri s+i i s+i =

1
4
Sect (Π)

where, as above, there is no summation over repeated indices, and where Sect (Π)
is the (Riemannian) sectional curvature of Π.

We say that the holomorphic bisectional curvature of M is bounded above
by a function k (z) if, for all (1, 0) vectors ζ = ξkEk, η = ηjEj , at z, we have

1
2

Hi
jklξ

iξ
j
ηkηl∑

ξkξ
k ∑

ηkηk
≤ k (z) .


