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PREFACE

The origin of simplicial homotopy theory coincides with the beginning of alge-
braic topology almost a century ago. The thread of ideas started with the work
of Poincaré and continued to the middle part of the 20th century in the form
of combinatorial topology. The modern period began with the introduction of
the notion of complete semi-simplicial complex, or simplicial set, by Eilenberg-
Zilber in 1950, and evolved into a full blown homotopy theory in the work of
Kan, beginning in the 1950s, and later Quillen in the 1960s.

The theory has always been one of simplices and their incidence relations,
along with methods for constructing maps and homotopies of maps within
these constraints. As such, the methods and ideas are algebraic and combina-
torial and, despite the deep connection with the homotopy theory of topological
spaces, exist completely outside any topological context. This point of view was
effectively introduced by Kan, and later encoded by Quillen in the notion of
a closed model category. Simplicial homotopy theory, and more generally the
homotopy theories associated to closed model categories, can then be inter-
preted as a purely algebraic enterprise, which has had substantial applications
throughout homological algebra, algebraic geometry, number theory and alge-
braic K-theory. The point is that homotopy is more than the standard varia-
tional principle from topology and analysis: homotopy theories are everywhere,
along with functorial methods of relating them.

This book is, however, not quite so cosmological in scope. The theory has
broad applications in many areas, but it has always been quite a sharp tool
within ordinary homotopy theory — it is one of the fundamental sources of
positive, qualitative and structural theorems in algebraic topology. We have
concentrated on giving a modern account of the basic theory here, in a form
that could serve as a model for corresponding results in other areas.

This book is intended to fill an obvious and expanding gap in the litera-
ture. The last major expository pieces in this area, namely [33], [67], [61] and
[18], are all more than twenty-five years old. Furthermore, none of them take
into account Quillen’s ideas about closed model structures, which are now part
of the foundations of the subject.

We have attempted to present an account that is as linear as possible
and inclusive within reason. We begin in Chapter I with elementary definitions
and examples of simplicial sets and the simplicial set category S, classifying
objects, Kan complexes and fibrations, and then proceed quickly through much
of the classical theory to proofs of the fundamental organizing theorems of the
subject which appear in Section 11. These theorems assert that the category of
simplicial sets satisfies Quillen’s axioms for a closed model category, and that
the associated homotopy category is equivalent to that arising from topological
spaces. They are delicate but central results, and are the basis for all that
follows.

v
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Chapter I contains the definition of a closed model category. The foun-
dations of abstract homotopy theory, as given by Quillen, start to appear in
the first section of Chapter II. The “simplicial model structure” that most of
the closed model structures appearing in nature exhibit is discussed in Sections
2–7. A simplicial model structure is an enrichment of the underlying category
to simplicial sets which interacts with the closed model structure, like function
spaces do for simplicial sets; the category of simplicial sets with function spaces
is a standard example. Simplicial model categories have a singular technical ad-
vantage which is used repeatedly, in that weak equivalences can be detected in
the associated homotopy category (Section 4). There is a detection calculus for
simplicial model structures which leads to homotopy theories for various alge-
braic and diagram theoretic settings: this is given in Sections 5–7, and includes
a discussion of cofibrantly generated closed model categories in Section 6 — it
may be heavy going for the novice, but homotopy theories of diagrams almost
characterize work in this area over the past ten years, and are deeply implicated
in much current research. The chapter closes on a much more elementary note
with a description of Quillen’s non-abelian derived functor theory in Section 8,
and a description of proper closed model categories, homotopy cartesian dia-
grams and gluing and cogluing lemmas in Section 9. All subsequent chapters
depend on Chapters I and II.

Chapter III is a further repository of things that are used later, although
perhaps not quite so pervasively. The fundamental groupoid is defined in Chap-
ter I and then revisited here in Section III.1. Various equivalent formulations
are presented, and the resulting theory is powerful enough to show, for exam-
ple, that the fundamental groupoid of the classifying space of a small category
is equivalent to the free groupoid on the category, and give a quick proof of
the Van Kampen theorem. The closed model structure for simplicial abelian
groups and the Dold-Kan correspondence relating simplicial abelian groups to
chain complexes (ie. they’re effectively the same thing) are the subject of Sec-
tion 2. These ideas are the basis of most applications of simplicial homotopy
theory and of closed model categories in homological algebra. Section 3 con-
tains a proof of the Hurewicz theorem: Moore-Postnikov towers are introduced
here in a self-contained way, and then treated more formally in Chapter VII.
Kan’s Ex∞-functor is a natural, combinatorial way of replacing a simplicial
set up to weak equivalence by a Kan complex: we give updated proofs of its
main properties in Section 4, involving some of the ideas from Section 1. The
last section presents the Kan suspension, which appears later in Chapter V in
connection with the loop group construction.

Chapter IV discusses the homotopy theory, or more properly homotopy
theories, for bisimplicial sets and bisimplicial abelian groups, with major ap-
plications. Basic examples and constructions, including homotopy colimits and
the diagonal complex, appear in the first section. Bisimplicial abelian groups,
the subject of Section 2, are effectively bicomplexes, and hence have canon-
ical associated spectral sequences. One of the central technical results is the
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generalized Eilenberg-Zilber theorem, which asserts that the diagonal and to-
tal complexes of a bisimplicial abelian group are chain homotopy equivalent.
Three different closed model structures for bisimplicial sets, all of which talk
about the same homotopy theory, are discussed in Section 3. They are all impor-
tant, and in fact used simultaneously in the proof of the Bousfield-Friedlander
theorem in Section 4, which gives a much used technical criterion for detecting
fibre sequences arising from maps of bisimplicial sets. There is a small technical
innovation in this proof, in that the so-called π∗-Kan condition is formulated in
terms of certain fibred group objects being Kan fibrations. The chapter closes
in Section 4 with proofs of Quillen’s “Theorem B” and the group completion
theorem. These results are detection principles for fibre sequences and homol-
ogy fibre sequences arising from homotopy colimits, and are fundamental for
algebraic K-theory and stable homotopy theory.

From the beginning, we take the point of view that simplicial sets are
usually best viewed as set-valued contravariant functors defined on a category
Δ of ordinal numbers. This immediately leads, for example, to an easily ma-
nipulated notion of simplicial objects in a category C: they’re just functors
Δop → C, so that morphisms between them become natural transformations,
and so on. Chapter II contains a detailed treatment of the question of when
the category sC of simplicial objects in C has a simplicial model structure.

Simplicial groups is one such category, and is the subject of Chapter V.
We establish, in Sections 5 and 6, the classical equivalence of homotopy theories
between simplicial groups and simplicial sets having one vertex, from a modern
perspective. The method can the be souped up to give the Dwyer-Kan equiva-
lence between the homotopy theories of simplicial groupoids and simplicial sets
in Section 7. The techniques involve a new description of principal G-fibrations,
for simplicial groups G, as cofibrant objects in a closed model structure on the
category of G-spaces, or simplicial sets with G-action (Section 2). Then the
classifying space for G is the quotient by the G-action of any cofibrant model
of a point in the category of G-spaces (Section 3); the classical WG construc-
tion is an example, but the proof is a bit interesting. We give a new treatment
of WG as a simplicial object of universal cocycles in Section 4; one advantage
of this method is that there is a completely analogous construction for simpli-
cial groupoids, which is used for the results of Section 7. Our approach also
depends on a specific closed model structure for simplicial sets with one vertex,
which is given in Section 6. That same section contains a definition and proof of
the main properties of the Milnor FK-construction, which is a functor taking
values in simplicial groups that gives a model for loops suspension ΩΣX of a
given space X.

The first section of Chapter V contains a discussion of skeleta in the
category of simplicial groups which is later used to show the technical (and
necessary) result that the Kan loop group functor outputs cofibrant simplicial
groups. Skeleta for simplicial sets first appear in a rather quick and dirty way
in Section I.2. Skeleta for more general categories appear in various places: we
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have skeleta for simplicial groups in Chapter V, skeleta for bisimplicial sets in
Section IV.3, and then skeleta for simplicial objects in more general categories
later, in Section VII.1. In all cases, skeleta and coskeleta are left and right
adjoints of truncation functors.

Chapter VI collects together material on towers of fibrations, nilpotent
spaces, and the homotopy spectral sequence for a tower of fibrations. The
first section describes a simplicial model structure for towers, which is used
in Section 3 as a context for a formal discussion of Postnikov towers. The
Moore-Postnikov tower, in particular, is a tower of fibrations that is functori-
ally associated to a space X; we show, in Sections 4 and 5, that the fibrations
appearing in the tower are homotopy pullbacks along maps, or k-invariants,
taking values in homotopy colimits of diagrams of Eilenberg-Mac Lane spaces,
which diagrams are functors defined on the fundamental groupoid of X. The
homotopy pullbacks can be easily refined if the space is nilpotent, as is done in
Section 6. The development includes an introduction of the notion of covering
system of a connected space X, which is a functor defined on the fundamental
groupoid and takes values in spaces homotopy equivalent to the covering space
of X. The general homotopy spectral sequence for a tower of fibrations is in-
troduced, warts and all, in Section 2 — it is the basis for the construction of
the homotopy spectral sequence for a cosimplicial space that appears later in
Chapter VIII.

Chapter VII contains a detailed treatment of the Reedy model structure
for the category of simplicial objects in a closed model category. This theory
simultaneously generalizes one of the standard model structures for bisimpli-
cial sets that is discussed in Chapter IV, and specializes to the Bousfield-Kan
model structures for the category of cosimplicial objects in simplicial sets, aka.
cosimplicial spaces. The method of the application to cosimplicial spaces is to
show that the category of simplicial objects in the category Sop has a Reedy
model structure, along with an adequate notion of skeleta and an appropriate
analogue of realization, and then reverse all arrows. There is one tiny wrinkle
in this approach, in that one has to show that a cofibration in Reedy’s sense
coincides with the original definition of cofibration of Bousfield and Kan, but
this argument is made, from two points of view, at the end of the chapter.

The standard total complex of a cosimplicial space is dual to the realiza-
tion in the Reedy theory for simplicial objects in Sop, and the standard tower
of fibrations tower of fibrations from [14] associated to the total complex is
dual to a skeletal filtration. We begin Chapter VIII with these observations,
and then give the standard calculation of the E2 term of the resulting spectral
sequence. Homotopy inverse limits and p-completions, with associated spectral
sequences, are the basic examples of this theory and its applications, and are
the subjects of Sections 2 and 3, respectively. We also show that the homotopy
inverse limit is a homotopy derived functor of inverse limit in a very precise
sense, by introducing a “pointwise cofibration” closed model structure for small
diagrams of spaces having a fixed index category.
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The homotopy spectral sequence of a cosimplicial space is well known to
be “fringed” in the sense that the objects that appear along the diagonal in
total degree 0 are sets rather than groups. Standard homological techniques
therefore fail, and there can be substantial difficulty in analyzing the path
components of the total space. Bousfield has created an obstruction theory to
attack this problem. We give here, in the last section of Chapter VII, a special
case of this theory, which deals with the question of when elements in bidegree
(0, 0) in the E2-term lift to path components of the total space. This particular
result can be used to give a criterion for maps between mod p cohomology
objects in the category of unstable algebras over the Steenrod algebra to lift to
maps of p-completions.

Simplicial model structures return with a vengeance in Chapter IX, in
the context of homotopy coherence. The point of view that we take is that
a homotopy coherent diagram on a category I in simplicial sets is a functor
X : A → S which is defined on a category enriched in simplicial sets and pre-
serves the enriched structure, subject to the object A being a resolution of I
in a suitable sense. The main results are due to Dwyer and Kan: there is a
simplicial model structure on the category of simplicial functors SA (Section
1), and a large class of simplicial functors f : A → B which are weak equiva-
lences induce equivalences of the homotopy categories associated to SA and SB

(Section 2). Among such weak equivalences are resolutions A → I — in prac-
tice, I is the category of path components of A and each component of A is
contractible. A realization of a homotopy coherent diagram X : A → S is then
nothing but a diagram Y : I → S which represents X under the equivalence of
homotopy categories. This approach subsumes the standard homotopy coher-
ence phenomena, which are discussed in Section 3. We show how to promote
some of these ideas to notions of homotopy coherent diagrams and realizations
of same in more general simplicial model categories, including chain complexes
and spectra, in the last section.

Frequently, one wants to take a given space and produce a member of a
class of spaces for which homology isomorphisms are homotopy equivalences,
without perturbing the homology. If the homology theory is mod p homology,
the p-completion works in many but not all examples. Bousfield’s mod p ho-
mology localization technique just works, for all spaces. The original approach
to homology localization [8] appeared in the mid 1970’s, and has since been
incorporated into a more general theory of f -localization. The latter means
that one constructs a minimal closed model structure in which a given map f
becomes invertible in the homotopy category — in the case of homology local-
ization the map f would be a disjoint union of maps of finite complexes which
are homology isomorphisms. The theory of f -localization and the ideas under-
lying it are broadly applicable, and are still undergoing frequent revision in the
literature. We present one of the recent versions of the theory here, in Sections
1–3 of Chapter X. The methods of proof involve little more than aggressive
cardinal counts (the cogniscenti will note that there is no mention of regular
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cardinals): this is where the wide applicability of these ideas comes from —
morally, if cardinality counts are available in a model category, then it admits
a theory of localization. We describe Bousfield’s approach to localization at a
functor in Section 4, and then show that it leads to the Bousfield-Friedlander
model for the stable category.

There are ten chapters in all; we use Roman numerals to distinguish them.
Each chapter is divided into sections, plus an introduction. Results and equa-
tions are numbered consecutively within each section. The overall referencing
system for the monograph is perhaps best illustrated with an example: Lemma
8.8 lives in Section 8 of Chapter II — it is referred to precisely this way from
within Chapter II, and as Lemma II.8.8 from outside. Similarly, the corre-
sponding section is called Section 8 inside Chapter II and Section II.8 from
without.

Despite the length of this tome, much important material has been left
out: there is not a word about traditional simplicial complexes and the vast
modern literature related to them (trees, Tits buildings, Quillen’s work on
posets); the Waldhausen subdivision is not mentioned; we don’t discuss the
Hausmann-Husemoller theory of acyclic spaces or Quillen’s plus construction;
we have avoided all of the subtle aspects of categorical coherence theory, and
there is very little about simplicial sheaves and presheaves. All of these topics,
however, are readily available in the literature, and we have tried to include a
useful bibliography.

This book should be accessible to mathematicians in the second year of
graduate school or beyond, and is intended to be of interest to the research
worker who wants to apply simplicial techniques, for whatever reason. We be-
lieve that it will be a useful introduction both to the theory and the current
literature.

That said, this monograph does not have the structure of a traditional
text book. We have, for example, declined to assign homework in the form
of exercises, preferring instead to liberally sprinkle the text with examples and
remarks that are designed to provoke further thought. Everything here depends
on the first two chapters; the remaining material often reflects the original
nature of the project, which amounted to separately written self contained
tracts on defined topics. The book achieved its current more unified state thanks
to a drive to achieve consistent notation and referencing, but it remains true
that a more experienced reader should be able to read each of the later chapters
in isolation, and find an essentially complete story in most cases.

This book had a lengthy and productive gestation period as an object on
the Internet. There were many downloads, and many comments from interested
readers, and we would like to thank them all. Particular thanks go to Frans
Clauwens, who read the entire manuscript very carefully and made numerous
technical, typographical, and stylistic comments and suggestions. The printed
book differs substantially from the online version, and this is due in no small
measure to his efforts.
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Chapter I Simplicial sets

This chapter introduces the basic elements of the homotopy theory of sim-
plicial sets. Technically, the purpose is twofold: to prove that the category of
simplicial sets has a homotopical structure in the sense that it admits the
structure of a closed model category (Theorem 11.3), and to show that the
resulting homotopy theory is equivalent in a strong sense to the ordinary ho-
motopy theory of topological spaces (Theorem 11.4). Insofar as simplicial sets
are algebraically defined, and the corresponding closed model structure is com-
binatorial in nature, we obtain an algebraic, combinatorial model for standard
homotopy theory.

The substance of Theorem 11.3 is that we can find three classes of mor-
phisms within the simplicial set category S, called cofibrations, fibrations and
weak equivalences, and then demonstrate that the following list of properties
is satisfied:

CM1: S is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in S:

X w
g

N
N
NNPh

Y
�

�
���

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.
CM3: If f is a retract of g in the category of maps of S, and g is a weak

equivalence, fibration or cofibration, then so is f .
CM4: Suppose that we are given a commutative solid arrow diagram

U w

u
i

X

u
p

V w

i
i
iij

Y

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is also a weak equivalence.

CM5: Any map f : X → Y may be factored:

(a) f = p · i where p is a fibration and i is both a cofibration and a
weak equivalence, and

(b) f = q · j where q is a fibration and a weak equivalence, and j is
a cofibration.

1



2 I. Simplicial sets

The fibrations in the simplicial set category are the Kan fibrations, which are
defined by a lifting property that is analogous to the notion of Serre fibration.
The cofibrations are the monomorphisms, and the weak equivalences are mor-
phisms which induce homotopy equivalences of CW-complexes after passage to
topological spaces. We shall begin to investigate the consequences of this list of
axioms in subsequent chapters — they are the basis of a great deal of modern
homotopy theory.

Theorem 11.3 and Theorem 11.4 are due to Quillen [76], but the devel-
opment given here is different: the results are proved simultaneously, and their
proofs jointly depend fundamentally on Quillen’s later result that the realiza-
tion of a Kan fibration is a Serre fibration [77]. The category of simplicial sets
is historically the first full algebraic model for homotopy theory to have been
found, but the verification of its closed model structure is still one of the more
difficult proofs of abstract homotopy theory. These theorems and their proofs
effectively summarize all of the classical homotopy theory of simplicial sets, as
developed mostly by Kan in the 1950’s. Kan’s work was a natural outgrowth of
the work of Eilenberg and Mac Lane on singular homology theory, and is part
of a thread of ideas that used to be called “combinatorial homotopy theory”
and which can be traced back to the work of Poincaré at the beginning of the
twentieth century.

We give here, in the proof of the main results and the development leading
to them, a comprehensive introduction to the homotopy theory of simplicial
sets. Simplicial sets are defined, with examples, in Section 1, the functorial
relationship with topological spaces via realization and the singular functor
is described in Section 2, and we start to describe the combinatorial homo-
topical structure (Kan fibrations and Kan complexes) in Section 3. We intro-
duce the Gabriel-Zisman theory of anodyne extensions in Section 4: this is
the obstruction-theoretic machine that trivializes many potential difficulties
related to the function complexes of Section 5, the notion of simplicial homo-
topy in Section 6, and the discussion of simplicial homotopy groups for Kan
complexes in Section 7. The fundamental groupoid for a Kan complex is in-
troduced in Section 8, by way of proving a major result about composition of
simplicial sets maps which induce isomorphisms in homotopy groups (Theo-
rem 8.2). This theorem, along with a lifting property result for maps which
are simultaneously Kan fibrations and homotopy groups isomorphisms (The-
orem 7.10 — later strengthened in Theorem 11.2), is used to demonstrate in
Section 9 (Theorem 9.1) that the collection of Kan complexes and maps be-
tween them satisfies the axioms for a category of fibrant objects in the sense of
Brown [15]. This is a first axiomatic approximation to the desired closed model
structure, and is the platform on which the relation with standard homotopy
theory is constructed with the introduction of minimal fibrations in Section
10. The basic ideas there are that every Kan fibration has a “minimal model”
(Proposition 10.3 and Lemma 10.4), and the Gabriel-Zisman result that min-
imal fibrations induce Serre fibrations after realization (Theorem 10.9). It is



I.1. Basic definitions 3

then a relatively simple matter to show that the realization of a Kan fibration
is a Serre fibration (Theorem 10.10).

The main theorems are proved in the final section, but Section 10 is the
heart of the matter from a technical point of view once all the definitions and
elementary properties have been established. We have not heard of a proof of
Theorem 11.3 or Theorem 11.4 that avoids minimal fibrations. The minimality
concept is very powerful wherever it appears, but not much has yet been made
of it from a formal point of view.

I.1. Basic definitions.
Let Δ be the category of finite ordinal numbers, with order-preserving maps
between them. More precisely, the objects for Δ consist of elements n, n ≥ 0,
where n is a string of relations

0 → 1 → 2 → · · · → n

(in other words n is a totally ordered set with n + 1 elements). A morphism
θ : m → n is an order-preserving set function, or alternatively a functor. We
usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor X : Δop → Sets, where Sets
is the category of sets.

Example 1.1. There is a standard covariant functor

Δ → Top
n�→|Δn|

.

The topological standard n-simplex |Δn| ⊂ Rn+1 is the space

|Δn| = {(t0, . . . , tn) ∈ Rn+1|
n∑

i=0

ti = 1, ti ≥ 0},

with the subspace topology. The map θ∗ : |Δn| → |Δm| induced by θ : n → m
is defined by

θ∗(t0, . . . , tm) = (s0, . . . , sn),

where

si =
{ 0 θ−1(i) = ∅∑

j∈θ−1(i) tj θ−1(i) �= ∅
One checks that θ �→ θ∗ is indeed a functor (exercise). Let T be a topological
space. The singular set S(T ) is the simplicial set given by

n �→ hom(|Δn|, T ).

This is the object that gives the singular homology of the space T.
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Among all of the functors m → n appearing in Δ there are special ones,
namely

di : n− 1 → n 0 ≤ i ≤ n (cofaces)

sj : n + 1 → n 0 ≤ j ≤ n (codegeneracies)

where, by definition,

di(0 → 1 → · · · → n − 1) = (0 → 1 → · · · → i − 1 → i + 1 → · · · → n)

(ie. compose i− 1 → i → i + 1, giving a string of arrows of length n − 1 in n),
and

sj(0 → 1 → · · · → n + 1) = (0 → 1 → · · · → j
1−→ j → · · · → n)

(insert the identity 1j in the jth place, giving a string of length n + 1 in n). It
is an exercise to show that these functors satisfy a list of identities as follows,
called the cosimplicial identities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = 1 = sjdj+1

sjdi = di−1sj if i > j + 1
sjsi = sisj+1 if i ≤ j

(1.2)

The maps dj , si and these relations can be viewed as a set of generators and
relations for Δ (see [66]). Thus, in order to define a simplicial set Y, it suffices
to write down sets Yn, n ≥ 0 (sets of n-simplices) together with maps

di : Yn → Yn−1, 0 ≤ i ≤ n (faces)
sj : Yn → Yn+1, 0 ≤ j ≤ n (degeneracies)

satisfying the simplicial identities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = 1 = dj+1sj

disj = sjdi−1 if i > j + 1
sisj = sj+1si if i ≤ j

(1.3)

This is the classical way to write down the data for a simplicial set Y .
From a simplicial set Y, one may construct a simplicial abelian group ZY

(ie. a contravariant functor Δop → Ab), with ZYn set equal to the free abelian
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group on Yn. The simplicial abelian group ZY has associated to it a chain
complex, called its Moore complex and also written ZY, with

ZY0

∂←− ZY1

∂←− ZY2 ←− . . . and

∂ =
n∑

i=0

(−1)idi

in degree n. Recall that the integral singular homology groups H∗(X; Z) of the
space X are defined to be the homology groups of the chain complex ZSX.
The homology groups Hn(Y,A) of a simplicial set Y with coefficients in an
abelian group A are defined to be the homology groups Hn(ZY ⊗ A) of the
chain complex ZY ⊗ A.

Example 1.4. Suppose that C is a (small) category. The classifying space (or
nerve ) BC of C is the simplicial set with

BCn = homcat(n, C),

where homcat(n, C) denotes the set of functors from n to C. In other words an
n-simplex is a string

a0

α1−→ a1

α2−→ . . .
αn−−→ an

of composeable arrows of length n in C.
We shall see later that there is a topological space |Y | functorially associ-

ated to every simplicial set Y, called the realization of Y. The term “classifying
space” for the simplicial set BC is therefore something of an abuse – one really
means that |BC| is the classifying space of C. Ultimately, however, it does not
matter; the two constructions are indistinguishable from a homotopy theoretic
point of view.

Example 1.5. If G is a group, then G can be identified with a category (or
groupoid) with one object ∗ and one morphism g : ∗ → ∗ for each element g
of G, and so the classifying space BG of G is defined. Moreover |BG| is an
Eilenberg-Mac Lane space of the form K(G, 1), as the notation suggests; this
is now the standard construction.

Example 1.6. Suppose that A is an exact category, like the category P(R)
of finitely generated projective modules on a ring R (see [79]). Then A has
associated to it a category QA. The objects of QA are those of A. The arrows
of QA are equivalence classes of diagrams

· � · � ·
where both arrows are parts of exact sequences of A, and composition is repre-
sented by pullback. Then Ki−1(A) := πi|BQA| defines the K-groups of A for
i ≥ 1; in particular πi|BQP(R)| = Ki−1(R), the ith algebraic K-group of the
ring R.
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Example 1.7. The standard n-simplex, simplicial Δn in the simplicial set
category S is defined by

Δn = homΔ( ,n).

In other words, Δn is the contravariant functor on Δ which is represented by
n.

A map f : X → Y of simplicial sets (or, more simply, a simplicial map)
is a natural transformation of contravariant set-valued functors defined on Δ.
We shall use S to denote the resulting category of simplicial sets and simplicial
maps.

The Yoneda Lemma implies that simplicial maps Δn → Y classify n-
simplices of Y in the sense that there is a natural bijection

homS(Δn, Y ) ∼= Yn

between the set Yn of n-simplices of Y and the set homS(Δn, Y ) of simplicial
maps from Δn to Y (see [66], or better yet, prove the assertion as an exercise).
More precisely, write ιn = 1n ∈ homΔ(n,n). Then the bijection is given by
associating the simplex ϕ(ιn) ∈ Yn to each simplicial map ϕ : Δn → Y. This
means that each simplex x ∈ Yn has associated to it a unique simplicial map
ιx : Δn → Y such that ιx(ιn) = x. One often writes x = ιx, since it’s usually
convenient to confuse the two.

Δn contains subcomplexes ∂Δn (boundary of Δn) and Λn
k , 0 ≤ k ≤ n

(kth horn, really the cone centred on the kth vertex). The simplicial set ∂Δn

is the smallest subcomplex of Δn containing the faces dj(ιn), 0 ≤ j ≤ n of the
standard simplex ιn. One finds that ∂Δn is specified in j-simplices by

∂Δn
j =

⎧⎪⎨⎪⎩
Δn

j if 0 ≤ j ≤ n − 1,
iterated degeneracies of elements of Δn

k ,
0 ≤ k ≤ n − 1, if j ≥ n.

It is a standard convention to write ∂Δ0 = ∅, where ∅ is the “unique” simplicial
set which consists of the empty set in each degree. The object ∅ is initial for
the simplicial set category S.

The kth horn Λn
k ⊂ Δn (n ≥ 1) is the subcomplex of Δn which is gener-

ated by all faces dj(ιn) except the kth face dk(ιn). One could represent Λ2
0, for

example, by the picture

0
�
�
���

N
N
NNP

1 2

⊂
0

�
�

���

N
N
NNP

1 w 2

= Δ2.
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I.2. Realization.
Let Top denote the category of topological spaces. To go further, we have to
get serious about the realization functor | | : S → Top. There is a quick way
to construct it which uses the simplex category Δ ↓ X of a simplicial set X.
The objects of Δ ↓ X are the maps σ : Δn → X, or simplices of X. An arrow
of Δ ↓ X is a commutative diagram of simplicial maps

Δn
h
h
hhj
σ

u

θ X

Δm
�
�
���

τ

Observe that θ is induced by a unique ordinal number map θ : m → n.

Lemma 2.1. There is an isomorphism

X ∼= lim−→
Δn → X
in Δ ↓ X

Δn.

Proof: The proof is the observation that any functor C → Sets, which is
defined on a small category C, is a colimit of representable functors. �

The realization |X| of a simplicial set X is defined by the colimit

|X| = lim−→
Δn → X
in Δ ↓ X

|Δn|.

in the category of topological spaces. The construction X �→ |X| is seen to
be functorial in simplicial sets X, by using the fact that any simplicial map
f : X → Y induces a functor f∗ : Δ ↓ X → Δ ↓ Y by composition with f .

Proposition 2.2. The realization functor is left adjoint to the singular functor
in the sense that there is an isomorphism

homTop(|X|, Y ) ∼= homS(X,SY )

which is natural in simplicial sets X and topological spaces Y .

Proof: There are isomorphisms

homTop(|X|, Y ) ∼= lim←−
Δn→X

homTop(|Δn|, Y )

∼= lim←−
Δn→X

homS(Δn, S(Y ))

∼= homS(X,SY )). �
Note that S has all colimits and the realization functor | | preserves them,

since it has a right adjoint.
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Proposition 2.3. |X| is a CW-complex for each simplicial set X.

Proof: Define the nth skeleton skn X of X be the subcomplex of X which is
generated by the simplices of X of degree ≤ n. Then X is a union

X =
⋃
n≥0

skn X

of its skeleta, and there are pushout diagrams

⊔
x∈NXn

∂Δn
w

z

u

skn−1 X
z

u⊔
x∈NXn

Δn
w skn X

of simplicial sets, where NXn ⊂ Xn is the set of non-degenerate simplices of
degree n. In other words,

NXn = {x ∈ Xn|x not of the form siy for any 0 ≤ i ≤ n − 1 and y ∈ Xn−1}.
The realization of Δn is the space |Δn|, since Δ ↓ Δn has terminal object

1 : Δn → Δn. Furthermore, one can show that there is a coequalizer⊔
0≤i<j≤n

Δn−2 ⇒
n⊔

i=0

Δn−1 → ∂Δn

given by the relations djdi = didj−1 if i < j (exercise), and so there is a
coequalizer diagram of spaces⊔

0≤i<j≤n

|Δn−2| ⇒
n⊔

i=0

|Δn−1| → |∂Δn|

Thus, the induced map |∂Δn| → |Δn| maps |∂Δn| onto the (n − 1)-sphere
bounding |Δn|. It follows that |X| is a filtered colimit of spaces | skn X| where
| skn X| is obtained from | skn−1 X| by attaching n-cells according to the push-
out diagram ⊔

x∈NXn

|∂Δn| w

z

u

| skn−1 X|
z

u⊔
x∈NXn

|Δn| w | skn X|.

�
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In particular |X| is a compactly generated Hausdorff space, and so the
realization functor takes values in the category CGHaus of all such. We shall
interpret | | as such a functor. Here is the reason:

Proposition 2.4. The functor | | : S → CGHaus preserves finite limits.

We won’t get into the general topology involved in proving this result; a
demonstration is given in [33]. Proposition 2.4 avoids the problem that |X×Y |
may not be homeomorphic to |X| × |Y | in general in the ordinary category of
topological spaces, in that it implies that

|X × Y | ∼= |X| ×Ke |Y |
(Kelley space product = product in CGHaus). We lose no homotopical in-
formation by working CGHaus since, for example, the definition of homo-
topy groups of a CW-complex does not see the difference between Top and
CGHaus.

I.3. Kan complexes.
Recall the “presentation”⊔

0≤i<j≤n

Δn−2 ⇒
n⊔

i=0

Δn−1 → ∂Δn

of ∂Δn that was mentioned in the last section. There is a similar presentation
for Λn

k .

Lemma 3.1. The “fork” defined by the commutative diagram

Δn−2
w

dj−1

u

ini<j

Δn−1

u

ini

�
�
�
���

di

⊔
0≤i<j≤n

Δn−2
w
w

⊔
i 	=k

Δn−1
w Λn

k

Δn−2

u

ini<j

w

di
Δn−1

u

inj

�
�
�
�
��

dj

is a coequalizer in S.

Proof: There is a coequalizer⊔
i<j

Δn−1 ×Λn
k

Δn−1 ⇒
⊔

i �= k
0 ≤ i ≤ n

Δn−1 → Λn
k .
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But the fibre product Δn−1 ×Λn
k

Δn−1 is isomorphic to

Δn−1 ×Δn Δn−1 ∼= Δn−2

since the diagram

n− 2 w
dj−1

u

di

n− 1

u

di

n− 1 w

dj
n

is a pullback in Δ. In effect, the totally ordered set {0 . . . î . . . ĵ . . . n} is the
intersection of the subsets {0 . . . î . . . n} and {0 . . . ĵ . . . n} of {0 . . . n}, and this
poset is isomorphic to n− 2. �
The notation {0 . . . î . . . n} means that i isn’t there.

Corollary 3.2. The set homS(Λn
k ,X) of simplicial set maps from Λn

k to X
is in bijective correspondence with the set of n-tuples (y0, . . . , ŷk, . . . , yn) of
(n − 1)-simplices yi of X such that diyj = dj−1yi if i < j, and i, j �= k.

We can now start to describe the internal homotopy theory carried by S.
The central definition is that of a fibration of simplicial sets. A map p : X → Y
of simplicial sets is said to be a fibration if for every commutative diagram of
simplicial set homomorphisms

Λn
k w

z

u

i

X

u

p

Δn
w

�
�
�
��

Y

there is a map θ : Δn → X (the dotted arrow) making the diagram commute.
The map i is the inclusion of the subcomplex Λn

k in Δn.
This requirement was called the extension condition at one time (see [58],

[67], for example), and fibrations were (and still are) called Kan fibrations. The
condition amounts to saying that if (x0 . . . x̂k . . . xn) is an n-tuple of simplices
of X such that dixj = dj−1xi if i < j, i, j �= k, and there is an n-simplex y of
Y such that diy = p(xi), then there is an n-simplex x of X such that dix = xi,
i �= k, and such that p(x) = y. It is usually better to formulate it in terms of
diagrams.
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The same language may be used to describe Serre fibrations: a continuous
map of spaces f : T → U is said to be a Serre fibration if the dotted arrow
exists in each commutative diagram of continuous maps

|Λn
k | w

z

u

T

u

f

|Δn| w

�
�
�
��

U

making it commute. By adjointness (Proposition 2.2), all such diagrams may
be identified with diagrams

Λn
k w

z

u

S(T )

u

S(f)

Δn
w

�
�
�
��

S(U),

so that f : T → U is a Serre fibration if and only if S(f) : S(T ) → S(U) is
a (Kan) fibration. This is partial motivation for the definition of fibration of
simplicial sets. The simplicial set |Λn

k | is a strong deformation retract of |Δn|,
so that we’ve proved

Lemma 3.3. For each space X, the map S(X) → ∗ is a fibration.

The notation ∗ refers to the simplicial set Δ0, as is standard. It consists of a
singleton set in each degree, and is therefore a terminal object in the category
of simplicial sets.

A fibrant simplicial set (or Kan complex) is a simplicial set Y such that
the canonical map Y → ∗ is a fibration. Alternatively, Y is a Kan complex if
and only if one of the following equivalent conditions is met:

K1: Every map α : Λn
k → Y may be extended to a map defined on Δn in the

sense that there is a commutative diagram

Λn
k w

α

z

u

Y

Δn
�
�
�
��
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K2: For each n-tuple of (n − 1)-simplices (y0 . . . ŷk . . . yn) of Y such that
diyj = dj−1yi if i < j, i, j �= k, there is an n-simplex y such that
diy = yi.

The standard examples of fibrant simplicial sets are singular complexes,
as we’ve seen, as well as classifying spaces BG of groups G, and simplicial
groups. A simplicial group H is a simplicial object in the category of groups;
this means that H is a contravariant functor from Δ to the category Grp of
groups. We generally reserve the symbol e for the identities of the groups Hn,
for all n ≥ 0.

Lemma 3.4 (Moore). The underlying simplicial set of any simplicial group
H is fibrant.

Proof: Suppose that (x0, . . . , xk−1, x�−1, x�, . . . , xn), 
 ≥ k + 2, is a family of
(n − 1)-simplices of H which is compatible in the sense that dixj = dj−1xi for
i < j whenever the two sides of the equation are defined. Suppose that there
is an n-simplex y of H such that diy = xi for i ≤ k − 1 and i ≥ 
. Then the
family

(e, . . . , e,
�−1

x�−1d�−1(y−1), e, . . . , e)

is compatible, and di(s�−2(x�−1d�−1y
−1)y) = xi for i ≤ k − 1 and i ≥ 
 − 1.

This is the inductive step in the proof of the lemma. �
Recall that a groupoid is a category in which every morphism is invertible.

Categories associated to groups as above are obvious examples, so that the
following result specializes to the assertion that classifying spaces of groups are
Kan complexes.

Lemma 3.5. Suppose that G is a groupoid. Then BG is fibrant.

Proof: If C is a small category, then its nerve BC is a 2-coskeleton in the
sense that the set of simplicial maps f : X → BC is in bijective correspondence
with commutative (truncated) diagrams

X2 w

f2

u

u

BC2

u

u

X1 w

f1

u

u

BC1

u

u

X0 w

f0 BC0

in which the vertical maps are the relevant simplicial structure maps. It suffices
to prove this for X = Δn since X is a colimit of simplices. But any simplicial
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map f : Δn → BC can be identified with a functor f : n → C, and this functor
is completely specified by its action on vertices (f0), and morphisms (f1), and
the requirement that f respects composition (f2, and dif2 = f1di). Another
way of saying this is that a simplicial map X → BC is completely determined
by its restriction to sk2 X.

The inclusion Λn
k ⊂ Δn induces an isomorphism

skn−2 Λn
k
∼= skn−2 Δn.

To see this, observe that every simplex of the form didjιn, i < j, is a face of
some drιn with r �= k: if k �= i, j use di(djιn), if k = i use dk(djιn), and if k = j
use di(dkιn) = dk−1(diιn). It immediately follows that the extension problem

Λn
k w

α

z

u

BG

Δn
�
�
���

is solved if n ≥ 4, for in that case sk2 Λn
k = sk2 Δn.

Suppose that n = 3, and consider the extension problem

Λ3
0 w

α

z

u

BG

Δ3
�
�
���

Then sk1 Λ3
0 = sk1 Δ3 and so we are entitled to write α1 : a0 → a1, α2 : a1 → a2

and α3 : a2 → a3 for the images under the simplicial map α of the 1-simplices
0 → 1, 1 → 2 and 2 → 3, respectively. Write x : a1 → a3 for the image of 1 → 3
under α. Then the boundary of d0ι3 maps to the graph

a1 w

α2
�
�
��x

a2

�
�
��

α3

a3
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in the groupoid G under α, and this graph bounds a 2-simplex of BG if and
only if x = α3α2 in G. But the images of the 2-simplices d2ι3 and d1ι3 under
α together determine a commutative diagram

a0
h

h
h
hk

α1

u

α3(α2α1)

�
�
���
α2α1

a1�
�
���x

a2
h
h
h
hk

α3

a3

in G, so that
xα1 = α3(α2α1),

and x = α3α2, by right cancellation. It follows that the simplicial map α :
Λ3

0 → BG extends to ∂Δ3 = sk2 Δ3, and the extension problem is solved.
The other cases corresponding to the inclusions Λ3

i ⊂ Δ3 are similar.
If n = 2, then, for example, a simplicial map α : Λ2

0 → BG can be
identified with a diagram

a0

�
�
��

α1

�
�
��x

a1 a2

and α can be extended to a 2-simplex of BG if and only if there is an arrow
α2 : a1 → a2 of G such that α2α1 = x. But α2 = xα−1

1 does the trick. The
other cases in dimension 2 are similar. �
The standard n-simplex Δn = Bn fails to be fibrant for n ≥ 2, precisely because
the last step in the proof of Lemma 3.5 fails in that case.

I.4. Anodyne extensions.
The homotopy theory of simplicial sets is based on the definition of fibration
given in the last section. Originally, all statements involving fibrations were
expressed in terms of the extension condition, and this often led to some rather
difficult combinatorial manipulations based on the standard subdivision of a
prism.

The algorithms involved in these manipulations are actually quite formal,
and can be encoded in the Gabriel-Zisman theory of anodyne extensions [33].
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This theory suppresses or engulfs most of the old combinatorial arguments,
and is a basic element of the modern theory. We describe the Gabriel-Zisman
theory in this section.

A class M of (pointwise) monomorphisms of S is said to be saturated if
the following conditions are satisfied:

A: All isomorphisms are in M .
B: M is closed under pushout in the sense that, in a pushout square

A w

u

i

C

u

i∗

B w B ∪A C,

if i ∈ M then so is i∗ (Exercise: Show that i∗ is monic).
C: Each retract of an element of M is in M. This means that, given a

commutative diagram

1

u

A′
w

u

i′

A w

u

i

A′

u

i′

B′
w B w B′,

1

u

of simplicial set maps, if i is in M then so is i′.
D: M is closed under countable compositions and arbitrary direct sums,

meaning respectively that:

D1: Given
A1

i1−→ A2

i2−→ A3

i3−→ . . .

with ij ∈ M , the canonical map A1 → lim−→Ai is in M .

D2: Given ij : Aj → Bj in M , j ∈ I, the map

� ij :
⊔
j∈I

Aj →
⊔
j∈I

Bj

is in M .
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A map p : X → Y is said to have the right lifting property (RLP is the
standard acronym) with respect to a class of monomorphisms M if in every
solid arrow diagram

A w

u

i

X

u

p

B w

i
i
iij

Y

with i ∈ M the dotted arrow exists making the diagram commute.

Lemma 4.1. The class Mp of all monomorphisms which have the left lifting
property (LLP) with respect to a fixed simplicial map p : X → Y is saturated.

Proof: (trivial) For example, we prove the axiom B. Suppose given a com-
mutative diagram

A w

u

i

C w

u

j

X

u

p

B w B ∪A C w Y,

where the square on the left is a pushout. Then there is a map θ : B → X such
that the “composite” diagram

A w

u

i

X

u

p

B w

h
h
hhjθ

Y

commutes. But then θ induces the required lifting θ∗ : B ∪A C → X by the
universal property of the pushout. �

The saturated class MB generated by a class of monomorphisms B is the
intersection of all saturated classes containing B. One also says that MB is the
saturation of B.

Consider the following three classes of monomorphisms:

B1 := the set of all inclusions Λn
k ⊂ Δn, 0 ≤ k ≤ n, n > 0

B2 := the set of all inclusions

(Δ1 × ∂Δn) ∪ ({e} × Δn) ⊂ (Δ1 × Δn), e = 0, 1


