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Epigraph

Viability theory is a mathematical theory that offers mathemati-
cal metaphors' of evolution of macrosystems arising in biology, eco-
nomics, cognitive sciences, games, and similar areas, as well as in
nonlinear systems of control theory.

We shall specifically be concerned with three main common fea-
tures:

e A nondeterministic (or contingent) engine of evolution, pro-
viding several (and even many) opportunities to explore the
environment,

e Viability constraints that the state of the system must obey at
each instant under “death penalty”,

e An inertia principle stating that the “controls” of the system
are changed only when viability is at stake.

The first two features are best summarized by the deeply intuitive
statement attributed to Democritus by Jacques Monod: “Everything
that exists in the Universe is due to Chance and Necessity”. The in-
ertia principle is a mathematical formulation of the concept of punc-
tuated equilibrium introduced recently in paleontology by Elredge
and Gould. It runs against the teleological trend assigning aims to

11 ike other means of communications (languages, painting, music, etc.), math-
ematics provides metaphors that can be used to explain a given phenomenon by
associating it with some other phenomenon that is more familiar, or at least is
felt to be more familiar. This feeling of familiarity, individual or collective, in-
born or acquired, is responsible for the inner conviction that this phenomenon is
understood.
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be achieved (in even an optimal way) by the state of the system and
the belief that actors control the system for such purposes.

— Nondeterminism: We shall mean by this term that les
jeuz me sont jamais faits, in the sense that at each instant, there
are several available, or feasible, evolutions which depend upon the
state, or even the history of the evolution of the state of the system
up to this time. Therefore, the concept of evolution borrowed from
Newtonian mechanics is no longer adequate for such systems. It has
led to the misleading identification of mathematics with a determin-
istic paradigm, which implies that the evolution of macrosystems can
be predicted. Even if we were to accept the existence of determin-
istic mechanisms? underlying the evolution of biological, economic
and social macrosystems, we know that such systems often can be
inherently unstable - and this places the actual computation of their
solutions beyond the capabilities of even the most sophisticated of
present-day computers! To “run” models which have some inbuilt
structural instability can serve no useful purpose.

Thus, we suppose here that the dynamics responsible for the evo-
lution are not deterministic. This lack of determinism has many dif-
ferent features: it may be due to nonstochastic “uncertainty”?, to
“disturbances”and “perturbations” of various kinds, or to errors in
modeling due to the impossibility of a comprehensive description of
the dynamics of the system.

In several instances, the dynamics of the system are related to
certain “controls”, which, in turn, are restricted by state-dependent
constraints (closed systems.) Such controls, which we do not dare to
call regulees instead of controls, are typically

1. prices or other fiduciary goods in economics (when the evolu-
tion of commodities and services is regulated by Adam Smith’s
invisible hand or the market, the planning bureau, ...),

2And now we discover that some of our “perfectly deterministic’ models can
exhibit all sorts of different trajectories. These are chaotic systems, making
prediction virtually impossible.

3No a priori knowledge of an underlying probability law on the state of events is
made. Fuzzy viability provides models where the available velocities can be ranked
through a membership cost function to take into account that some velocities are
more likely to be chosen than others.



2. genotypes or fitness matrices in genetics and population ge-
netics (when the evolution of phenotypes of a population is
regulated by sexual reproduction and mutations),

3. conceptual controls or synaptic matrices in pattern recogni-
tion mechanisms and neural networks (when the sensory-motor
state is regulated by learning processes),

4. affinity matrices in immunological systems,

5. strategies in differential games (when the state of the system is
regulated by the decision rules for the players),

6. coalitions in cooperative games,

7. cultural codes in sociology (when the evolution of societies is
regulated by every individual believing and obeying such codes),
etc..

— Viability: For a variety of reasons, not all evolutions
are possible. This amounts to saying that the state of the system
must obey constraints, called viability constraints. These constraints
include homeostatic constraints in biological regulation, scarcity con-
straints in economics, state constraints in control, power constraints
in game theory, ecological constraints in genetics, sociability con-
straints in sociology, etc. Therefore, the goal is to select solutions
which are viable in the sense that they satisfy, at each instant, these
constraints.

Viability theorems thus yield selection procedures of viable evo-
lutions, i.e., characterize the connections between the dynamics and
the constraints for guaranteeing the existence of at least one viable
solution starting from any initial state. These theorems also pro-
vide the regulation processes (feedbacks*) that maintain viability, or,
even as time goes by, improve the state according to some preference
relation.

Contrary to optimal control theory, viability theory does not re-
quire any single decision-maker (or actor, or player) to “guide” the

4thus providing the central concept of cybernetics as a solution to the regula-
tion problem.
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system by optimizing an intertemporal optimality criterion®.

Furthermore, the choice (even conditional) of the controls is not
made once and for all at some initial time, but they can be changed
at each instant so as to take into account possible modifications of
the environment of the system, allowing therefore for adaptation to
viability constraints.

Finally, by not appealing to intertemporal criteria, viability theory
does not require any knowledge of the future® (even of a stochastic
nature.) This is of particular importance when experimentation’ is
not possible or when the phenomenon under study is not periodic.
For example, in biological evolution as well as in economics and in
the other systems we shall investigate, the dynamics of the system
disappear and cannot be recreated.

Hence, forecasting or prediction of the future are not the issues
which we shall address in this book.

However, the conclusions of the theorems allow us to reduce the
choice of possible evolutions, or to single out impossible future events,
or to provide explanation of some behaviors which do not fit any
reasonable optimality criterion.

Therefore, instead of using intertemporal optimization® that in-
volves the future, viability theory provides selection procedures of
viable evolutions obeying, at each instant, state constraints which
depend upon the present or the past. (This does not exclude antici-
pations, which are extrapolations of past evolutions, constraining in
the last analysis the evolution of the system to be a function of its
history.)

5the choice of which is open to question even in static models, even when
multicriteria or several decision makers are involved in the model.

8Most systems we investigate do involve myopic behavior; while they cannot
take into account the future, they are certainly constrained by the past.

"Experimentation, by assuming that the evolution of the state of the system
starting from a given initial state for a same period of time will be the same
whatever the initial time, allows one to translate the time interval back and
forth, and, thus, to “know” the future evolution of the system.

8which can be traced back to Sumerian mythology which is at the origin of
Genesis: one Decision-Maker, deciding what is good and bad and choosing the
best (fortunately, on an intertemporal basis, thus wisely postponing to eternity
the verification of optimality), knowing the future, and having taken the optimal
decisions, well, during one week...
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Nonetheless, selection through viability constraints may not be
discriminating enough. Starting from any state at any instant, sev-
eral viable solutions may be implemented by the system, including
equilibria, which are stationary evolutions®.

Thus further selection mechanisms need to be devised or discov-
ered. We advocate here a third feature to which a selection procedure
must comply, the Inertia Principle.

— Inertia Principle: which states that “the controls are

kept constant as long as viability of the system is not at stake”.
Indeed, as long as the state of the system lies in the interior of
the viability set (the set of states satisfying viability constraints), any
regularity control will work. Therefore, the system can maintain the
control inherited from the past. This happens if the system obeys the
inertia principle. Since the state of the system may evolve while the
control remains constant, it may reach the viability boundary with
an “outward” velocity. This event corresponds to a period of crisis:
To survive, the system must find another regulatory control such
that the new associated velocity forces the solution back inside the
viability set. (See Figure 1.) Alternatively, if the viability constraints
can evolve, another way to resolve the crisis is to relax the constraints
so that the state of the system lies in the interior of the new viability
set. When this is not possible, strategies for structural change fail:
by design, this means the solution leaves the viability set and “dies”.
Naturally, there are several procedures for selecting a viable con-
trol when viability is at stake. For instance, the selection at each
instant of the controls providing viable evolutions with minimal ve-
locity is an example that obeys this inertia principle. They are called
“heavy” viable evolutions'® in the sense of heavy trends in economics.

9This touches on another aspect of viability theory - that concerned with
complexity and robustness: It may be observed that the state of the system
becomes increasingly robust the further it is from the boundary of the viability
set. Therefore, after some time has elapsed, only the parts of the trajectories
furthest away from the viability boundary will remain. This fact may explain the
apparent discontinuities (“missing links”) and hierarchical organization arising
from evolution in certain systems.

0When the controls are the velocities, heavy solutions are the ones with min-
imal acceleration, i.e., maximal inertia.
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Figure 0.1: Heavy Viable Solutions
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Heavy viable evolutions can be viewed as providing mathemati-
cal metaphors for the concept of punctuated equilibrium® introduced
recently in paleontology by Elredge and Gould.

In a nutshell, the main purpose of viability theory is to explain the
evolution of a system, determined by given nondeterministic dynam-
1cs and viability constraints, to reveal the concealed feedbacks which
allow the system to be regulated and provide selection mechanisms
for implementing them.

It assumes implicitly an “opportunistic” and “conservative” be-
havior of the system: a behavior which enables the system to keep
viable solutions as long as its potential for exploration (or its lack
of determinism) — described by the availability of several evolutions
— makes possible its regulation.

On the mathematical side, viability theory contributed to vigor-
ous renewed interest in the field of “differential inclusions”, as well as
an engine for the development of a differential calculus of set-valued
maps?. Indeed, as it often occurs in mathematics, these techniques
have already found applications to other domains, for instance, to
nonlinear systems theory (tracking, zero dynamics, local controlla-
bility and observability3, control under state constraints, etc.) and

'Excavations at Kenya’s Lake Turkana have provided clear evidence of evolu-
tion from one species to another. The rock strata there contain a series of fossils
that show every small step of an evolution journey that seems to have proceeded
in fits and starts. Examination of more than 3,000 fossils by P. Williamson showed
how 13 species evolved. The record indicated that the animals stayed much the
same for immensely long stretches of time. But twice, about two million years
ago and then, 700,000 years ago, the pool of life seemed to explode — set off,
apparently, by a drop in the lake’s water level. Intermediate forms appeared very
quickly, new species evolving in 5,000 to 50,000 years, after millions of years of
constancy, leading paleontologists to challenge the accepted idea of continuous
evolution.

2One can say that by now the main results of functional analysis have their
counterpart in what can be called Set-Valued Analysis. Only the results needed
in this book will be presented. An exposition of Set-Valued Analysis can be found
in the companion monograph SET-VALUED ANALYSIS by Héléne Frankowska and
the author.

3These topics will be not developed here. The forthcoming monograph
CONTROL OF NONLINEAR SYSTEMS AND DIFFERENTIAL INCLUSIONS by Hélene
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Artificial Intelligence (qualitative physics, learning processes, etc.)
These techniques can be efficiently used as mathematical tools and
have been related to other questions (such as Lyapunov’s second
method, variational differential equations, etc..)

This is a book of motivated mathematics®, which searches for new
sources of mathematical metaphors.

Unfortunately, the length of the theoretical part of viability the-
ory did not allow us to include in this volume the discussion of
the motivating problems. Some problems arising in Artificial In-
telligence, economics, game theory, biology, cognitive sciences, etc.,
which have spawned many of the mathematical questions treated
below, will be investigated in forthcoming additional volumes.

By looking at common features of otherwise very different sys-
tems and looking at shared consequences, it was necessary to set our
mathematical metaphors at a fairly high level of abstraction, yielding
an amount of information inversely proportional to the height of this
level so to speak.

For the time being at least, this theory is still far from providing
an ideal description of the evolution of macrosystems. Some poten-
tial users (economists, biologists, ... ) should not be disappointed or
discouraged by the results obtained so far — for it is too early for
such a theory to be “applied” in the engineering sense.

However, the available results may explain a portion of “reality”

Frankowska provides an exhaustive treatment of Control Theory using set-valued
analysis and differential inclusions.

“We have already mentioned a mathematical metaphor as a means of asso-
ciating a particular mathematical theory with a certain observed phenomenon.
This association can arise in two different ways. The first possibility is to look for
an existing mathematical theory which seems to provide a good explanation of
the phenomenon under consideration. This is usually regarded as the domain of
applied mathematics. However, it is also possible to approach the problem from
the opposite direction. Other fields provide mathematicians with metaphors, and
this is the domain of what can be called “motivated mathematics”.

The ancients divided analysis into two forms: zetetic, which corresponds to
what we mean by motivated mathematics or modeling, and poristic, which cor-
responds to applied mathematics, a procedure by which the validity of the model
is confirmed. It is much later, in 1591, that F. Viéte added a third form, rhetic
or ezegetic, which would correspond to our pure mathematics.
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in the extent where the degree of reality for a social group at a given
time is understood in terms of the consensus® interpretations of the
group member’s perceptions of their physical, biological, social and
cultural environments.

I hope that this book may help readers from different scientific
areas to find a common ground for comparing the behaviors of the
systems they study and for asking new questions. Anyhow, whatever
the ultimate outcome, the motivation provided by the viability prob-
lems has already benefited mathematics by suggesting new concepts
and lines of argument, by giving some inkling of possible solutions, or
by developing new modes of intuition, leading many mathematicians
to revive and enrich the theory of dynamical systems and set-valued
analysis. The history of mathematics is full of instances in which
mathematical techniques motivated by problems encountered in one
scientific field have found applications in many others. It is this
“universality” which renders mathematics so fascinating.

Jean-Pierre Aubin
Paris, May 12, 1990

5Gince our brains are built according to the same biological blueprint, and
since the general acceptance of local cultural codes seems to be an innate and
universal phenomenon, it is highly probable that the individuals comprising a so-
cial group arrive at a consensus wide enough for a reasonably believable concept
of reality to emerge. However, the prophets and scholars of each group contin-
ually question the validity of the metaphors on which this consensus is based,
while the high priests and other guardians of ideological purity ultimately try to
transform it into dogma and impose it on the other members of the group. (It
often happens that the prophets and scholars themselves eventually become high
priests ; movement in the reverse direction is much less common.) It is through
this permanent struggle that knowledge evolves. But there is an important dif-
ference between the metaphors of science and those of, say, religion or ideology :
a metaphor that claims scientific validity must be limited, even narrow, in scope.
The more “applied” a scientific study, the narrower it must necessarily be. Sci-
entific theories — scientific metaphors — must be capable of logical refutation
(as in mathematics) or of experimental falsification (which of course requires that
theories be falsifiable.) Ideologies escape these requirements : the “broader” they
are, the more seductive they appear, the more dangerous they can be.

XVvil



Acknowledgments

The CEREMADE (Centre de Recherches de Mathématiques de la Dé-
cision), UNIVERSITE DE PARIS-DAUPHINE, has offered me for twenty years
a unique scientific environment. The pervasive innovative spirit shared by
my colleagues® encouraged me to devote the last 10 years to the develop-
ment of viability theory and set-valued analysis and their applications.

I am also thankful to the S.D.S. (Systems and Decision Sciences) Pro-
gram of IIASA (International Institute for Applied Systems Analysis), es-
pecially, its head, A. Kurzhanski, with whom I share common views on
the evolution of systems under uncertainty. It offered me opportunities
to collaborate during many summers with a great number of colleagues,
A. Anderson, C. Byrnes, A. Isidori, N. Keyfitz, A. Krener, G. Leitmann,
A. Nagy, C. Olech, R. T. Rockafellar, D. Saari, K. Sigmund and R. Wets
among many others, who contributed to shaping the ideas exposed in this
book.

Among the other institutions which stimulated me to develop several
parts of this book, I would like to thank the ScuoLA NORMALE bl Pisa,
and specially, G. da Prato and his collaborators, who taught me many
things and brought a stochastic touch in an otherwise contingent world !

I owe a special and warm thanks to my dear friend Shi Shuzhong who
adapted viability theory to partial differential inclusions.

I am much obliged to G. Haddad, who proved in his thesis the basic
theorems on functional viability theory, to O. Dordan, who successfully
applied viability theory to qualitative physics, to M. Quincampoix, who
contributed to the investigation of the target problems in differential games
and to N. Seube, who devised learning algorithms of neural networks to
teach them to regulate control problems. I am also grateful to P. Bond,
F. Bergeaud, V. Krivan, N. Maderner, S. Plaskacz, T. Rzezuchowski, P.
Saint-Pierre, P. Tallos for their contributions to several parts of this book.

This book is dedicated to Héléne Frankowska, for many reasons. She
actually should have been the coauthor of this book as well as of SET-
VALUED ANALYSIS, thanks to her contributions (many of the results are
due to her), daily remarks and continuous ideas, corrections, suggestions
and challenges to improve the redaction of this monograph. Without her,
this book would never have reached this stage. With her, it would have
been much better.

lamong whom my old friends A. Bensoussan, L. Ekeland, the members of the group

VIABILITE ET CONTROLE who contributed so much to this book, without forgetting more
transient colleagues, P. Bernhard, A. Cellina, F. Clarke to name a few.



Contents

Introduction 1
Outline of the Book 11
1 Viability Theorems for Ordinary and Stochastic Dif-

ferential Equations 19
1.1 Viability & Invariance Properties . . . . .. ... ... 23
1.2 Nagumo Theorem . . . . .. ... ... ......... 26
1.3 Numerical Schemes . . . . . . ... ... ........ 32
1.4 Replicator Systems . . . . . ... ... ... ...... 34
1.5 Stochastic Viability and Invariance . . . . .. ... .. 44
1.5.1 Stochastic Tangent Sets . . . . . ... ..... 44

1.5.2 Stochastic Viability . ... ........... 44

1.5.3 Necessary Conditions . . ... ......... 46
1.5.4 Sufficient Conditions for Stochastic Invariance . 47

2 Set-Valued Maps 53
2.1 Semicontinuous Set-Valued Maps . . . ... ... ... 54
2.1.1 Definitions . . ... ... ... ... .. ..., 54
2.1.2 Continuity Concepts . . . . . . .. .. ... .. 56

2.2 Closed Set-Valued Maps . . . ... ... ........ 60
2.2.1 Upper Semicontinuity of Closed Maps . . . . . 60
2.2.2 Marchaud Maps . . ... .. ... ....... 61

2.3 Support Functions . . .. ... ... ... ....... 62
2.4 Convergence Theorem . . . ... ............ 65
2.5 Closed Convex Processes . . . . .. ... ........ 70

X1X



XX

3

Viability Theorems for Differential Inclusions
31 SolutionClass. . . . ... ... ... ... .......
3.2 Viability Domains . . ... ... ... .........
3.2.1 Definition of Viability Domains . . . . . . . ..
3.22 SubnormalCones. . .. .............
3.2.3 Dual Characterization of Viability Domains . .
3.3 Statement of Viability Theorems . . .. ... ... ..
3.4 Proofs of the Viability Theorems . . . . ... ... ..
35 SolutionMap . .. ... .. ... ..
3.5.1 Upper Semicontinuity of Solution Maps . . . .
3.5.2 Closure of a Viability Domain. . . . . ... ..
3.5.3 ReachableMap . ... ..............
3.5.4 Representation Property . . . . . .. ... ...
3.6 Stability of Viability Domains . . . . ... ... .. ..
3.7 w-Limit Sets and Equilibria . . . . ... .. ... ...
371 w-LimitSets . ... ... ... .. ... ...,
3.7.2 Cesaro means of the velocities . . . . ... ...
3.7.3 Viability implies Stationarity . .. .. ... ..
3.8 Chaotic Solutions to Differential Inclusions . . . . ..

Viability Kernels and Exit Tubes

4.1 Viability Kernels . . . . ... ... ... ........
4.1.1 Existence of the Viability Kernel . . . . . . ..
4.1.2 Permanence and Fluctuation . ... ... ...
4.1.3 Viability Envelopes . . . . . . .. .. .. .. ..

4.2 Hitting and Exit Tubes . . .. ... ... ... ....
4.2.1 Hitting and Exit Functionals . .. .. ... ..
4.2.2 Hitting and Exit Functions . . . ... ... ..
423 ExitTubes . ... ... .............

4.3 AnatomyofaSet. .. ... ...... ... ...,
4.3.1 Contingent Cone to the Boundary . ... ...
4.3.2 Strict Invariance . . ... ... ... .. ....
4.3.3 Inward and Outward Areas . ..........
4.3.4 Boundary of Viability Kernels . . . . . ... ..

4.4 Viability Domain Algorithms . . .. ... ... .. ..
4.4.1 Viability Kernel Algorithm . . . ... ... ..
4.4.2 Global Contingent Sets . . . . ... ... ...
4.4.3 Viability Domain Algorithm . . . . . ... ...



XX1

4.4.4 Fast Viability Kernel Algorithm . . ... ... 152
4.5 Finite-Difference Approximation of Viability Kernels . 153
4.5.1 Viable Subsets under a Discrete System . . . . 153
4.5.2 Finite-Difference Approximations . . . ... .. 154
Invariance Theorems for Differential Inclusions 157
5.1 External Contingent Cones . . ... ... ....... 158
5.1.1 External Contingent Cones . . .. .. ... .. 158
51.2 Sleek Subsets . . ... .............. 160
5.1.3 Tangent Cones to Convex Sets . . .. ... .. 162
5.1.4 Calculus of Contingent Cones . . . . . ... .. 163
5.1.5 Inequality Constraints . . . ... ... ..... 166
5.2 Invariance Domains. . . ... ... ... ... ..... 167
5.3 Invariance Theorem . . ... ... ........... 170
5.3.1 Filippov’'s Theorem . . ... ... ... ... .. 170
5.3.2 Characterization of Local Invariance . . . . .. 173
5.3.3 Graphical Lower Limits of Solution Maps . . . 174
5.3.4 Accessibility Map. . ... ............ 176
5.3.5 Proof of Convergence of the Fast Viability Ker-
nel Algorithm . . . . ... ... ......... 178
54 Invariance Kernels . .. ... ... ........... 182
5.4.1 Existence of the Invariance Kernel . . .. . .. 182
5.4.2 Complement of the Invariance Kernel . . . . . 183
5.4.3 Stability of Invariance Domains . . . . . .. .. 184
5.4.4 Global Exit and Hitting Functions . . . . . .. 185
5.4.5 Invariance Envelopes . . . .. .. ... ... .. 186
5.5 Boundaries of Viability and Invariance Kernels . . . . 188
5.5.1 Semipermeability of the Boundary of the Via-
bility Kernel . . ... ... ........... 188
5.5.2 Viability of the Boundary of the Invariance
Kernel . . . .. ... ... ... ... ... 190
5.6 Defeat and Victory domains of a Target and its Barrier 190
5.7 Linear Differential Inclusions . . . ... ... ... .. 193
5.7.1 Viability Cones . . . . .. ... ... ... ... 193
5.7.2 Projection on the sphere . . . . . . ... .. .. 195
5.7.3 Projection on a compactsole . ... ... ... 196

5.7.4 Duality between Viability and Invariance . . . 198



XX1i

6 Regulation of Control Systems

6.1
6.2
6.3
6.4

6.5

6.6

RegulationMap . . . . . ... ... ... ... .....
A Simple Economic Example. . . . ... ... ... ..
Lower Semicontinuity Criteria . . . . . ... ... ...
Lower Semicontinuity of the Regulation Map . . . . .
6.4.1 General State Constraints . . . ... ......
6.4.2 Output Dependent Constraints . . . . ... ..
6.4.3 Output Regulation Map . . . . ... ... ...
6.4.4 Duality Criterion . . . . ... ... .......
6.4.5 Decoupling the Regulation Map . . . . . .. ..
Selection Theorems . . . . . . . . ... ... ......
6.5.1 Minimal Selection . . ... ...........
6.5.2 Selection Procedures . . . .. ... .......
6.5.3 Michael’s Selection Theorem . .. ... .. ..
Closed-Loop Controls and Slow Solutions . .. .. ..
6.6.1 Continuous Closed Loop Controls. . . . . . ..
6.6.2 Slow Viable Solutions . . . ... ... .....
6.6.3 Other Selections of Viable Solutions . . . . ..
6.6.4 Examples of Selection of Viable Solutions . .

7 Smooth and Heavy Viable Solutions

7.1
7.2

7.3
74
7.5

7.6

Contingent Derivatives . . . . . .. ... ... ... ..
Smooth Viable Solutions . . . . ... ... .......
7.2.1 Regularity Theorem . ... ... ... .....
7.2.2 Subregulation and Metaregulation Maps . . . .
Second Order Differential Inclusions . . . .. ... ..
Metaregulation Map of High Order . . . . . . ... ..

Punctuated Equilibria, Ramp Controls and Polyno-
mial Open-Loop Controls . . . .. ... ........

Heavy Viable Solutions . . . ... ...........
7.6.1 Dynamical Closed Loops. . . ... ... .. ..
7.6.2 Heavy Viable Solutions . . .. .. .. ... ..

7.6.3 Heavy Viable Solutions under Equality Con-
straints . . . ... ... L L L.

7.6.4 Heavy Viable Solutions of High Order . . . . .

199
201
204
211
216
216
217
219
220
221
223
223
224
228
228
228
229
231

. 233



XX1il

8 Partial Differential Inclusions of Tracking Problems 275

8.1 The Tracking Property . . . . ... ... ........ 282
8.1.1 Characterization of the Tracking Property . . . 283
8.1.2 Construction of trackers . . . ... ... .... 286
8.1.3 The Observation Problem . . .. ... .. ... 287
8.1.4 Construction of Observers . . . . ... ..... 291

8.2 The Tracking Problem . . . . ... ... ........ 292
8.2.1 Tracking Control Systems . . . ... ... ... 292
8.2.2 Decentralization of a control system . . .. .. 293
8.2.3 Hierarchical Decomposition Property . . . . . . 295

8.3 Partial Differential Inclusions . . . ... ........ 297
8.3.1 Decomposable Case . .............. 297
8.3.2 Existence of a Lipschitz Contingent Solution . 305
8.3.3 Comparison Results . . ............. 307

8.4 The Variational Principle . . ... ... ........ 308
8.4.1 Definition of the Functional . . . .. ... ... 308
8.4.2 Convergence Properties of the Codifferentials . 311

8.5 Feedback Controls Regulating Smooth Evolutions . . . 313

9 Lyapunov Functions 315

9.1 Contingent Epiderivatives . . . ... ... ... .... 319
9.1.1 Extended Functions and their Epigraphs . . . . 319
9.1.2 Contingent Epiderivatives . . . ... ... ... 320
9.1.3 Epidifferential Calculus . .. .. ... ..... 325

9.2 Lyapunov Functions . .. ... ............. 327
9.2.1 The Characterization Theorem . . .. ... .. 327
9.2.2 Stability Theorems . . . .. ... ... ..... 329
9.2.3 W-Monotone Set-Valued Maps . . . .. .. .. 330
924 Attractors . . . . ... ... ... ... ... 331
9.2.5 Universal Lyapunov Functions . ... ... .. 332

9.3 Optimal Lyapunov Functions . . .. .......... 333
9.3.1 Smallest Lyapunov Functions . . . . ... ... 333
9.3.2 Smallest Universal Lyapunov Functions . . . . 336

9.4 Other Monotonicity Properties . . ... ... .. ... 337
9.4.1 Monotone Solutions . . . ... ... ...... 337
9.4.2 LaSalle’s Theorem . ... ............ 340
9.4.3 Example: Gradient Inclusions . . . . .. .. .. 341

9.4.4 Feedbacks Regulating Monotone Solutions . . . 342



XX1V

9.5 Lyapunov Preorders . ... ............... 344
9.5.1 Monotone solutions with respect to a preorder 345
9.5.2 Comparison of solutions . . . . ... . ... .. 346

9.6 Asymptotic Observability of Differential Inclusions . . 348

10 Miscellaneous Viability Issues 351
10.1 Variational Differential Inequalities . . . . . . . .. .. 353
10.1.1 The Equivalence Theorem . . . . . . . . . ... 354
10.1.2 Slow Solutions . . ... ... ... ... .... 357

10.1.3 Projected differential inclusions onto smooth
subsets . .. . .. ..o 359
10.2 Fuzzy Viability . . .. ... ... ... ......... 361
10.2.1 Fuzzy Sets. . . . . . . . .. . . 361
10.2.2 Fuzzy Differential Inclusions . . . . . . ... .. 362
10.2.3 Fuzzy Viability Domains . . . . . . .. ... .. 364
10.3 Finite-Difference Schemes . . . . .. .. ... ... .. 367
10.3.1 Implicit Finite-Difference Scheme . . . . . . . . 367
10.3.2 Explicit Finite-Difference Scheme . . . . . . . . 368
10.3.3 Approximation of an Equilibrium . . . . . . .. 370
10.4 Newton’s Method . . . . . . ... ... ... ...... 371
11 Viability Tubes 377
11.1 Viability Tubes . . . . . . . ... ... ... ... ... 381
11.2 Cauchy Problem for Viability Tubes . . . .. .. ... 385
11.3 Asymptotic Target . . . . . . .. ... ... ... ... 386
11.4 Examples of Viability Tubes . . . . . . .. .. ... .. 387
11.5 An Abstract K— C Problem ... ........... 391
11.6 Invariant Tubes . . . . . . . .. . ... ... . ..... 393
11.7 Measurable Time Dependence . . . . . . . ... .. .. 395
12 Functional Viability 401
12.1 Definitions and Examples . . . . ... ... ... ... 402
12.2 Functional Viability Theorem . . . . .. .. ... ... 405
12.3 History-dependent Viability Constraints . . . . . . .. 413
12.3.1 Viability constraints with delays . . ... ... 418
12.3.2 Volterra Viability constraints . . . . . . .. .. 419
12.4 Functional Viability Kernel . . .. .. ... ... ... 419

12.5 Functional Viability Tubes . . . . . .. ... ... ... 421



XXV

13 Viability Theorems for Partial Differential Inclusions425

13.1 Unbounded operators . . .. .. ... .........
13.2 Operational Differential Inclusions . . ... ... ...
13.3 Elliptic & Parabolic Inclusions . . ... .. ... ...
13.4 Distributed Control Systems. . . . . . ... ... ...
13.5 Lyapunov Functions of Parabolic Inclusions . . . . . .

14 Differential Games
14.1 Contingent Isaacs Equations . . . . . ... .. ... ..
14.2 Playable Differential Games . . . . . .. ... ... ..
14.3 Feedback Solutions . . . .. . ... ... ... .....
14.4 Discriminating and Leading Feedbacks . . . . . . . ..
14.5 Closed Loop Decision Rules . . . . . ... ... .. ..

Bibliographical Comments
Bibliography

Index

427



XXVil

List of Figures

0.1
21
3.1
3.2
4.1
4.2
4.3
4.4
4.4
5.1
6.1
6.2
11.1
12.1

Heavy Viable Solutions . . . .. ... ......... xii
Semicontinuous and Noncontinuous Maps . . . . . .. 57
Example of a Map without Convex Values . . . . . . . 90
The Graph of Tjgp(-) - -+« « « v o v o v oo oo ot 93
Fluctuation Property . . . . . .. .. .. ... ... .. 126
Permanence Property . . . ... .. ... .. ..... 129
Hitting and Exit Times . . ... ... ... ... ... 133

Invariance of the Complement of a Viability Kernel . . 139
Viability Kernel of [0,1] x R for F(z,v) := {v} x ¢B . 149

Victory and Defeat Domains . . . . ... ... .... 191
Evolution of a Heavy Solution . . . . . .. ... .... 207
Other Solutions and Invariance of the Boundary . . . 208
Viability Tube . . . . .. ... ... .. ... ..... 378
Translation T(¢) . . . .. .. ... ... ... ..... 403

List of Tables

21
5.1
5.2
141

Properties of Support Functions. . . ... ... .. .. 66
Properties of Tangent Cones to Convex Sets. . . . .. 164
Properties of Contingent Cones. . . . . . .. ... ... 165

The 10 areas of the domain of the differential game . . 207



Introduction

Consider the evolution of a control system with (multivalued)
feedbacks:

i)  2'(t) = f(z(t),u(t))
i) ult) € U(z(t))

where the state z(-) ranges over a finite dimensional vector-space X
and the control u(-) ranges over another finite dimensional vector-
space Z. Here, the first equation describes how the control — re-
garded as an input to the system — yields the state of the system!
— regarded as an output — whereas the second inclusion shows how
the state-output “feeds back” to the control-input. The set-valued
map U : X ~ Z may be called an “a priori feedback”. It describes
the state-dependent constraints on the controls. A solution to this
system is a function ¢t — z(t) satisfying this system for some control
t — u(t).

Viability constraints are described by a closed subset? K of the
state space: These are intended to describe the “viability” of the
system because outside of K, the state of the system is no longer
viable.

A subset K is viable under the control system described by f and
U if for every initial state z¢g € K, there exists at least one solution
to the system starting at xo which is viable in the sense that

Vt>0, z(t)e K

Lonce the initial state is fixed.

2We shall naturally investigate in the book the cases when K depends upon
the time, the state, the history of the evolution of the space. We shall also cover
the case of solutions which improve a reference preorder when time evolves.

J.-P. Aubin, Viability Theory, Modern Birkhéduser Classics,
DOI: 10.1007/978-0-8176-4910-4 1,
© Birkhduser Boston, a part of Springer Science+Business Media, LLC 2009



2 Introduction

The first task is to characterize the subsets having this property.
To be of value, this task must be done without solving the system
and then checking the existence of viable solutions for each initial
state.

An immediate intuitive idea jumps to the mind: at each point on
the boundary of the viability set, where the viability of the system is
at stake, there should exist a velocity which is in some sense tangent
to the viability domain and serves to allow the solution to bounce
back and remain inside it. This is, in essence, what the Viability
Theorem states. But, first, the mathematical implementation of the
concept of tangency must be made.

We cannot be content with viability sets that are smooth mani-
folds, because inequality constraints would thereby be ruled out. So,
we need to “implement” the concept of a direction v tangent to K
at * € K, which should mean that starting from z in the direction
v, we do not go too far from K.

To convert this intuition into mathematics, we shall choose from
among the many ways there are to translate what it means to be “not
too far” the one suggested by Bouligand fifty years ago: a direction v
is contingent to K at x € K if it is a limit of a sequence of directions
v such that x + h,v, belongs to K for some sequence h, — 0+.
The collection of such directions, which are in some sense “inward”,
constitutes a closed cone Tk (z), called the contingent cone® to K at
z. Naturally, except if K is a smooth manifold, we lose the fact that
the set of contingent vectors is a vector-space.

We then associate with the dynamical system (described by f
and U) and with the viability constraints (described by K) the (set-
valued) regulation map Ry . It maps any state x to the subset Rk ()
consisting of controls u € U(x) which are viable in the sense that

f(z,u) is contingent to K at z
If, for every x € K, there exists at least one viable control u €

Rk (x), we then say that K is a viability domain of the control system
with dynamics described by both f and U.

Sreplacing the linear structure underlying the use of tangent spaces by the
contingent cone is at the root of Set-Valued Analysis.
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The Viability Theorem we mentioned earlier holds true for a
rather large class of systems, called Marchaud systems: Beyond im-
posing some weak technical conditions, the only severe restriction is
that, for each state , the set of velocities f(x,u) when u ranges over
U(z) is convez®. From now on, we assume that the systems under
investigation are Marchaud systems.

The basic viability theorem states that for such systems,

a closed subset K is viable under a Marchaud system
if and only if K is a viability domain of this system.

Many of the traditional interesting subsets such as equilibrium
points, trajectories of periodic solutions, the w-limit sets of solutions,
are examples of closed viability domains. Actually, equilibrium points
T, which are solutions to

f(Z,7) =0 for some @€ U(T)

are the smallest viability domains, the ones reduced to a single point.
This is because being stationary states, the velocities f(Z,u) are
equal to zero. Furthermore, there exists a basic and curious link
between viability theory and general equilibrium theory:

every compact convex viability domain
contains an equilibrium point.

This statement is an equivalent version of the 1910 Brouwer Fized
Point Theorem, the cornerstone of nonlinear analysis, which finds
here a particularly relevant formulation (viability implies stationar-
ity.)
What happens if a closed subset K is not a viability domain?
First, we characterize the points of the boundary from which
some, or all solutions enter or leave the subset (anatomy of a set).

4This happens for the class of control systems of the form

#'(t) = fx(t) + Glz(t))u(t)

where G(z) are linear operators from the control space to the state space and
when the control set U (or the images U(z)) are convex.
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Second, we also look for closed subsets of K which are viability
domains. We shall prove that

there exists a largest closed viability domain contained in K.

This domain will be denoted Viab(K) and called the viability kernel®
of K. It may be empty (in this case, the subset K is some kind of
“repeller”.) Furthermore, every closed subset of the viability kernel
is contained in a minimal viability domain, called viability envelope.

Third, one can also keep the set of constraints and change the
dynamics, as it is done in mechanics of unilateral constraints (varia-
tional differential equations).

The Viability Theorem also provides a regulation law for regulat-
ing the system in order to maintain the viability of a solution: The
viable solutions z(t) are regulated by viable “open loop controls”
u(t) through the regulation law:

for almost all t, u(t) € Rg(z(t))

The multivaluedness of the regulation map (this means that sev-
eral controls u(t) may exist in Rg(z(t))) is an indicator of the “ro-
bustness” of the system: The larger the set Rx(x(t)), the larger the
set of disturbances which do not destroy the viability of the system !

Observe that solutions to a control system are solutions to the
differential inclusion z'(t) € F'(z(t)) where, for each state z, F'(z) :=
f(z,U(z)) is the subset of feasible velocities, Conversely, a differen-
tial inclusion is an example of a control system in which the controls
are the velocities (f(z,u) = u & U(z) = F(z).)

As far as servomechanisms are concerned, the question arises of
how to build mechanisms for selecting a unigue control é(z) in Rk ()
for each state z. Such a map (-), associating with every x a single
control 1(z) is called a closed loop control (or single-valued feedback.)
This is because it allows the system to automatically associate with

5This concept of viability kernel happens to be a quite efficient mathematical
tool that we shall use often.

It is also closely related to the concept of zero dynamics introduced recently
by Byrnes and Isidori in control theory.
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any state z(t) the control u(z(t)) which produces a viable solution
through the differential equation

Z(t) = f(=(t),8(=(t)))

An interesting example of closed loop control is provided by
slow solutions. These are the solutions regulated by the controls
u9(z) € Rg(z) with minimal norm. Despite the fact that u®() is
not necessarily continuous, we shall prove that the above differential
equation still has solutions. For instance, when the controls are the
velocities of the system, viable solutions with velocities of minimal
norm are implemented by such a selection procedure. This is why
they are called slow solutions.

Such selection procedures by closed loop controls answer many
engineering control problems. But they may not be adequate for the
type of systems arising in economic, social, biological and cognitive
sciences, as well as in some areas of engineering where the controls
must evolve continuously. Here, we are looking for selection proce-
dures which obey the inertia principle: keep the control constant as
long as the viability of the system is not at stake.

We can reformulate the inertia principle by saying that if the
derivative of a viable open loop control u(-) is equal to 0, then this
control is the one which is chosen and implemented.

This raises several questions.

—  The first one concerns controls which are smooth (at least,
differentiable almost everywhere.) (This issue may be relevant for
engineering problems, where the lack of continuity of controls u(t) :=
u(z(t)) can be damaging.)

—  The second one deals with the problem of differentiating
the regulation law.

—  The third is to find selections (called dynamical closed
loops) of the derivative of the regulation map, with which we obtain
a system of differential equations which govern the smooth viable
evolution of both the state and the control.

—  The fourth is to find some feedback controls as solutions
to systems of first-order partial differential inclusions.

We see at once that this programme requires a concept of deriva-



6 Introduction

tive of a set-valued map and a chain rule formula in order to differ-
entiate the regulation law.

The idea behind the construction of a differential calculus of set-
valued maps is simple and goes back to the very origins of differential
calculus, when Pierre de Fermat introduced in the first half of the
seventeenth century the concept of a tangent to the graph of a func-
tion:

the tangent space to the graph of a function f at a point (z,y) of its
graph is the line of slope f'(z), i.e., the graph of the linear function
u— f(z)u

Consider now a set-valued map F : X ~» Y, which is character-
ized by its graph (the subset of pairs (z,y) such that y belongs to
F(z).)

The contingent cone to the graph of F' at the point (z,y) of its
graph is the graph of the contingent derivative of the set-valued map
F at a point (z,y)

The contingent derivative at (z,y) is a set-valued map from X to Y
denoted by DF(z,y).

Contingent derivatives keep enough properties of the derivatives
of smooth functions to be quite efficient. They enjoy a rich calcu-
lus, and they enable such basic theorems of analysis as the inverse
function theorem to be extended to the set-valued case.

The chain rule is an example of a property which is still true
in this framework: Assume that we start from a “smooth state”,
producing a viable solution z(t) and a viable control u(t) which are
both differentiable (almost everywhere.) Then we can “differentiate”
the regulation law to obtain a “first order regulation law”:

for almost all ¢, u'(t) € DRg(z(t),u(?))(z'(t))

Heavy viable solutions are the ones regulated by the controls
whose velocities have minimal norm in the set

DR (2(2), u(®))(f (2(t), u(t)))

For instance, when the controls are the velocities of the system,
we choose viable solutions with acceleration of minimal norm, i.e.,



