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Preface

The Theory of the Top attained its great fame from both its monumen-
tal scope and its outstanding authors. In the early twentieth century,
Felix Klein was known as a mathematician of world fame; Arnold Som-
merfeld, Klein’s disciple, had acquired his reputation as a rising star
of theoretical physics. By 1910, when the final volume of this trea-
tise was published, the names of Klein and Sommerfeld would signal
to a student that a matter as complex as the top was presented in a
most authoritative manner, from the perspective of both mathemat-
ics and physics. The work also stands out in other regards: by its
sheer extent—four volumes comprising a total of almost a thousand
pages—and by the time lag of about fifteen years between inception
and completion. Klein himself regarded the final result as somewhat
disjointed. Its “idiosyncratic disposition,” he reflected in 1922, may be
understood only by taking into account the historic circumstances at
its inception in 1895; the developments between the first and last parts
derailed the project from its intended course, so that for the technical
applications described in Volume IV “almost no use was made of the
theoretical framework developed at the beginning” [Klein 1922, p. 659].

It seems appropriate, therefore, to recall the historical circumstances
under which this treatise was conceived and pursued. Felix Klein was
not only a renowned mathematician, but also an entrepreneurial and
ambitious university professor striving for a broader acknowledgment
of mathematics as a cultural asset. During the Wilhelmian Era, when
Germany was struggling for recognition as a great power, cultural af-
fairs were no longer innocent bystanders of national politics. Friedrich
Althoff, a powerful reformer at the Prussian Ministry of Culture, at-
tempted to form centers of excellence at certain universities [Brocke
1980]. Klein had become professor in Göttingen University in 1886.
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After a few years of frustration and uncertain prospects, Klein per-
suaded Althoff that Göttingen would assume the desired rank only if
rising stars like David Hilbert and Hermann Minkowski were called to
the university as his colleagues. As a result of Klein’s strategy, backed
by the almighty Althoff, Göttingen became a mecca of mathematics
[Rowe 1989].

But Klein’s ambitions were not restricted to local affairs at his uni-
versity. As a part of his attempts to gain widespread recognition for
mathematics, he began to edit an Encyclopedia of Mathematical Sci-
ences, an enterprise that lasted until the 1920s and encompassed, in
addition to pure mathematics, a broad spectrum of mathematical ap-
plications to mechanics, physics, and astronomy. Klein also established
contacts with the Association for the Advancement of Mathematical
and Scientific Education, in order to gain influence on high school
teaching of mathematics. Furthermore, he displayed considerable in-
terest in the scientific training of engineers, which was traditionally the
realm of technical universities, and therefore made Klein the enemy of
engineering professors who regarded his tendencies as an unwelcome
interference in their own affairs. In 1895, for example, Klein conceived
a memorandum in which he suggested the foundation of a new insti-
tute in Göttingen University for the education of the “general staff” of
technology, whereas the training of “front officers” could be left to the
technical universities [Rowe 1989, p. 203].

Such was the broader context for the birth of the Theory of the
Top. Under this title Klein announced a special lecture in the winter
semester of 1895/96, addressed to high school teachers who wished to
keep in touch with advanced mathematical subjects. In the preceding
semester, Klein had held another special lecture for the same audi-
ence on Elementary Geometry. One of his assistants was charged with
elaborating the manuscript of this lecture into a booklet, which Klein
presented to the high school teachers association as a special gift by
which he intended to prepare the ground for his further engagement in
aiming at a general reform of high school teaching. By lecturing on the
top in the winter of 1895/96, Klein attempted to demonstrate that his
university teaching was not an ivory tower activity but had relations to
technological as well as educational affairs. Like the Elementary Ge-
ometry of the preceding semester, the Theory of the Top was meant to
be printed afterward as a small booklet and presented as a gift to his
extramural clients. Klein remarked in an autobiographical note in 1913
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that the Top was a tactic intended as a second dedicatory publication
[Jacobs 1977, p. 18].

The course of subsequent events, however, precluded a smooth re-
alization of these plans. Klein entrusted Arnold Sommerfeld, who had
become his assistant in the autumn of 1894, with much more than
the elaboration of this lecture. Sommerfeld had just accomplished his
habilitation (the German ritual to acquire the right to lecture in a uni-
versity) on the theory of diffraction [Sommerfeld 1896] and was busy
with the elaboration of Klein’s Number Theory, a lecture that Klein
held in two parts in the winter of 1895/96 and summer of 1896 [Klein
1896a; Klein 1896b]. When Sommerfeld finally started to work on the
theory of the top in the autumn of 1896, he did so without great en-
thusiasm. He worked on several projects at the same time, all of them
related to one or another of Klein’s activities, such as a register for the
Mathematische Annalen (a journal edited by Klein) or a review article
on partial differential equations for Klein’s Encyclopedia of Mathemat-
ical Sciences. Furthermore, he discovered that the methods developed
in his habilitation work proved to be more fertile than he had origi-
nally anticipated. Writing papers on his own research appeared more
interesting to him than editing Klein’s lecture on the theory of the top.

Although the first parts of the lecture advanced to the state of proof
reading by the spring of 1897, its completion was dragging on. In March
of 1897 Sommerfeld wrote to Klein that “the number of boundary value
problems that I am able to solve by my extension of Thomson’s mirror
method is very considerable.” He felt sure that Klein would appreci-
ate the temporary neglect of the top, because his method for solving
physical differential equations was completely in line with Klein’s ten-
dencies: “I hope you will enjoy it yourself. But I still have several days
to do with it. If you could arrange for this work to be published soon
in an English journal, such as the London Math. Soc. [Proceedings of
the London Mathematical Society], I would be very happy.” To please
Klein he added some remarks about his elaboration of the theory of
the top, but finally revealed that this had a rather low priority on his
to-do list. “Unfortunately, I have to admit that in the meantime the
top has been in the nonetheless very interesting ‘sleeping top’ state”
[Sommerfeld 1897a].

Working under Klein must have been quite demanding. “I really
cannot write to you each day,” Sommerfeld once apologized to his fi-
ancée Johanna Höpfner. “Klein’s bullwhip is rather close behind me”
[Sommerfeld 1897b]. At some point in 1897, Klein must have decided
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to split the publication into several parts. Klein did not leave the the-
ory of the top in the state in which he had presented it in his lecture of
1895/96. In the summer semester of 1896 he lectured on technical me-
chanics. In October and November of 1896, he chose the theory of the
top as a theme for guest lectures at Princeton University [Klein 1897].
In view of Klein’s goal of demonstrating the uses of mathematics to
engineers at technical universities, he must have regarded it expedient
to include more applied matters and charged Sommerfeld to work out
the details.

Under these premises, the mathematical foundations as laid out
in earlier lectures were published in 1897 as Volume I. As Sommer-
feld prepared the subsequent volume, progress became slow because he
struggled with problems that were the subject of controversial debates.
“With regard to the equilibrium stability H.[adamard] does not go one
step further than Lyapunov”; such remarks in the correspondence be-
tween Sommerfeld and Klein [Sommerfeld 1898a] illustrate that sub-
jects like stability, dealt with in a chapter of the second volume, could
easily give rise to new debates and prevent rapid publication. Never-
theless, Sommerfeld completed the second volume without much delay,
so that it appeared just a year after the first volume in 1898. As the
first reactions made evident, the more subtle parts of the book such as
the chapter on stability provoked criticism: “I would have a number of
remarks about your definition of stability,” Heinrich Burkhardt com-
mented after the appearance of Volume II. “But I would need a day or
two to formulate them clearly and precisely, which I do not now have.
It seems to me that in your definition stability is the rule, instability
the exception . . . I tend to guess that all motions of the top are stable
according to this definition, except those whose instability you have
proven” [Burkhardt 1898].

Such reactions cautioned against rushing to publication—all the
more because the plan for the remaining parts addressed subjects be-
yond the realm of mathematics proper: gyroscopic phenomena in geo-
physics, astronomy, and technology. Employing mathematical virtu-
osity in these fields was easier proclaimed than done. But Sommer-
feld was not afraid to meet this challenge. For example, he corre-
sponded extensively with the naval engineer Carl Diegel in Kiel, the
German naval base, about the application of the theory to the gy-
roscopic guidance of torpedos [Diegel 1898]. In December of 1898 he
wrote to Klein that “My letters to D.[iegel] have the extent of treatises.
I may travel from Göttingen back to Cl.[austhal] via Kiel. In any case
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this correspondence gives rise to a nice paragraph about ‘applications
of theory in technology’ ” [Sommerfeld 1898b].

Since the autumn of 1897, Sommerfeld had been professor of mathe-
matics at the mining academy in Clausthal, so that his communication
with Klein had to occur via the exchange of letters and at occasional
meetings, which further retarded the project. In addition, Klein per-
suaded Sommerfeld in 1898 to join his Encyclopedia project as an editor
for the planned volumes on physics, a capacity that contributed to the
derailment of Sommerfeld’s career as a mathematician; he transformed
more and more from a mathematician into a theoretical physicist, a
metamorphosis that is also reflected by the choice of his research pa-
pers at the turn of the century. “Unfortunately I had no time for the
top,” he apologized in a letter to Klein in November 1899. “I have
to get rid of my [paper on] X-rays before I can deal with something
else” [Sommerfeld 1899]. Klein responded that he was “thinking of our
top with silent sorrow” [Klein 1899]. In 1900, Sommerfeld exchanged
his position as a professor of mathematics in Clausthal for a profes-
sorship of mechanics at the technical university in Aachen. Although
this brought him into closer contact with technological applications of
gyroscopic theory, it did not accelerate the publication of the pending
volumes. “When I will have time to resume the top?” he responded
to Klein’s urging in November 1900. “The entire next week there are
examinations without interruption. I will hope for the best but promise
nothing” [Sommerfeld 1900].

To cut a long story short, it took five years after the appearance of
Volume II in 1898 before the third volume of the Theory of the Top
was published, and seven more years before the fourth and final volume
appeared in 1910. In the meantime, gyroscopic theory itself had ad-
vanced or was made the subject of other reviews. In 1907, for example,
Klein admonished Sommerfeld to pay attention to a recent article of
Paul Stäckel, who was writing on the top for the Encyclopedia [Klein
1907]. In the foreword to the fourth volume, dated April 1910, Klein
and Sommerfeld had to admit that during this long time span “the
unity of substance and manner of presentation was lost.” The loss of
unity and coherence was caused not just by a turn from mathematical
foundations to technological applications. Despite Sommerfeld’s close
contacts with technology, his presentation of applied subjects in Vol-
umes III and IV was written from the perspective of a mathematician
and theoretical physicist, so that it did not really address engineer-
ing concerns. With regard to the technology of the gyrocompass, for
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example, Sommerfeld admitted later that even in the part about the
technical applications the text “nowhere addresses technical details”
[Broelmann 2002, p. 138].

The Theory of the Top, therefore, is a strange monument of scien-
tific literature from the turn of the nineteenth to the twentieth century:
too heterogeneous to please one or another orientation, and yet out-
standing in its scope and detail. Klein and Sommerfeld hoped that
its versatility would be considered as a compensation for its “lack of
systematicness.” In the end, they confessed that the top was for them
what it had been already for many natural philosophers in the nine-
teenth century: a target of opportunity for “awakening the sense for
true mechanics,” a “philosophical instrument.”

Michael Eckert
Deutsches Museum, Munich
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Translators’ Remarks

The ordinary difficulties of a translation are happily moderated, in
our present case, by the extraordinary greatness of the original work
and its authors. We could do no better than to preserve the form and
notation of the text in a literal and unabridged rendering. Our notes
are added separately, and are intended primarily to provide historical
context. They are indicated by numerical superscripts; the footnotes
of Klein and Sommerfeld are retained, as are their own supplementary
notes to Volume I, which were published as addenda when Volume IV
appeared in 1910.

More comments in this place are not necessary. It remains for us
only to acknowledge the very fine editors at Birkhäuser Boston, and to
return, with pleasure, to the preparation of Volume II.
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FOREWORD

When F. K l e i n gave a two-hour lecture “On the Top” in the winter
semester of 1895/96, he attempted, in the first place, to emphasize the
direct and particularly English conception of mechanical problems, as
opposed to the more abstract coloring of the German school, and, on
the other hand, to make the particularly German methods of Riemann
function theory fruitful in mechanics. The consideration of applications
and physical reality would thus be outlined and forcefully advanced in
a detailed example, but not yet carried out to full extent.

In the extensive printed edition originating from the pen of A.
S o m m e r f e l d, interest in applications prevailed more and more,
especially after his appointment to a teaching position in technical
mechanics and later in physics. The astronomical, geophysical, and
technical content added in this way required, in consequence, the ne-
cessity of a change, compared with the original lecture, in the mathe-
matical point of view. While the approximation methods prepared in
the first volumes (the method of small oscillations, the treatment of
pseudo-regular precession) and the intuitive formulation of the prin-
ciples of mechanics by means of the impulse concept were perfectly
conformable to applications, the advanced function-theoretical meth-
ods, the exact representation of the motion by elliptic functions, etc.,
were later found to be dispensable. Thus, for example, the parameters
α, β, γ, δ and their related quaternion quantities, whose geometric
meaning was elaborated in the first volume and whose analytic impor-
tance was given special emphasis in the second volume, withdrew in
the third and fourth volumes, naturally in complete agreement with
K l e i n himself, whose interests had likewise turned more and more
toward applications. In particular, the presentation of the technical
top problems in the fourth volume used only the very simplest and
most elementary law of top motion, which flows immediately from the
concept of the impulse in the dynamics of rigid bodies, and which is
briefly derived once more at the beginning of this volume.

We would not deny, that with the loss of the unity of time in the
course of the fifteen years which have elapsed between the first plan
and the present conclusion of the book, our work has also lost its unity
of substance and manner of presentation; that what we often promised

xv
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earlier with respect to the general, so-called analytic mechanics, espe-
cially in the advertisements of Vols. I and II, was later not kept; and
that we have pursued many mathematical side roads which temporarily
diverted us from our primary goal: the concrete understanding of dy-
namical problems. May the comprehensiveness of the content and the
multiplicity of the engaged fields of interest be regarded as substitutes
for the lack of systematicness and purposefulness of the presentation.

If we had to dispose of the collected subject material anew, we would
probably present the actual mechanics of the top, including its appli-
cations, in a much smaller space, by pruning the analytic shoots that
branch so joyously from the stem of mechanics. With this presentation
we would address the large audience with scientific or technical interests
in the theory of the top. The detailed analytic developments, which
we would certainly not suppress simply on the basis of their special
beauty, would be submitted in another presentation only to the more
restricted mathematical circle. As for what pertains, finally, to the re-
quirements of the completely unmathematical reader, and therefore to
the difficult question of the popular explanation of the top phenomena,
we have taken an extensively grounded critical position in the second
volume, and at the beginning of the fourth volume have again pointed
out the somewhat long but, it appears to us, only passable way that
begins from the general impulse theorems of rigid body dynamics. The
impulse theorems are either systematically developed from particle me-
chanics, or, should the occasion arise, illustrated only by experiments,
and then postulated axiomatically; on the basis of these theorems, all
the partly paradoxical facts of the theory of the top may be under-
stood qualitatively as well-defined approximations, and their domains
of validity delimited without want of clarity.

The top is suitable above all other mechanical devices for awaken-
ing the sense for true mechanics. May it, in the presentation of our
book, serve this purpose in elevated measure, and thus prove worthy
in the future of the honorable surname formerly bestowed upon it by
Sir J o h n H e r s c h e l,1 the name of a philosophical instrument!

G ö t t i n g e n and M ü n c h e n, April 1910.

F. KLEIN. A. SOMMERFELD.
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Advertisement of the Book
(from the notices of B. G. Teubner publishing company in Leipzig).

The work owes its origin to a lecture given by Prof. K l e i n during
the winter semester of 1895/96 in Göttingen University. The elabo-
ration of the ideas set forth in the lecture and the rounding out of
the subject matter have since been the primary responsibility of Dr.
S o m m e r f e l d.

The first part, which appears in July of this year, presents, after a
preparatory chapter of kinematic content, the fundamental c o n s i d -
e r a t i o n s o n t h e p r i n c i p l e s o f m e c h a n i c s, in so far as
they apply to the present topic. A singular character of this section is
the authors’ frequent return, in the spirit of the older writers, to impact
forces, and, throughout, to the concept of the “impulse” (W. Thomson’s
terminology; Poinsot’s couple d’impulsion); that is, the impact turning-
force that is able to produce the actual motion instantaneously from
rest. The theory of the top, and the mechanics of rigid bodies in general,
thus acquire a higher degree of clarity and simplicity than that obtained
by the exclusive use of continuously applied forces.

The second part treats in detail of the m a t h e m a t i c a l s i d e
o f t h e t h e o r y, the explicit representation of the motion of the
heavy top by means of elliptic functions. It is shown here that neither
the commonly used asymmetric Euler angles nor the symmetric Euler
parameters (quaternion quantities), but rather certain parameters aris-
ing from Riemann function theory, are the simplest building stones, in
analytic respects, from which the general formulas for the motion of
the top may be composed.

The third part contains, in addition to many supplements to the
previous material (consideration of friction at the support point, crit-
icism of the popular top literature, etc.), the manifold a p p l i c a -
t i o n s o f t h e t h e o r y t o a s t r o n o m i c a l a n d p h y s i -
c a l q u e s t i o n s. The accumulated treasures of the English lit-
erature, and especially the Natural Philosophy of T h o m s o n and
T a i t, are of particular value here in presenting the investigations of
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cyclic systems, gyrostats, etc., to the German public in a convenient
readable form.

Originally conceived as a dedication to the Association for the Ad-
vancement of Mathematical and Scientific Education,2 the book should
also be understandable without difficulty to the more advanced research
mathematician and physicist. Specific prior knowledge of analytic me-
chanics or function theory is not assumed. It is hoped, however, that
the specialized mathematical circle will thus feel, without displeasure,
a certain breadth and comfort in the presentation.

The tendency of the book may be characterized, finally, by a few
sentences taken from the Introduction:

“The development of theoretical mechanics has taken, especially in
Germany, an overly exclusive direction toward abstraction and formu-
las, which often detracts from a direct understanding. The student who
learns well to derive the general principles of mechanics analytically
does not always grasp their true mechanical meaning in a sufficiently
lively sense, and often appears awkward when faced with obtaining the
solution of a specific problem.

“We wish to oppose this recent and rising evil by a thorough treat-
ment of our problem. We wish to establish not only a knowledge of
mechanics, but also, so to speak, a feeling for it. Full clarity in the
geometric aspects of motion is naturally a first prerequisite for this.
. . . Still more important for us, however, is full clarity concerning the
forces that come into play as the mechanical causes of the motion. We
will convey these forces as concretely as possible in space by vectors;
we place special value on the development and consistent use of the
impulse principle, etc. . . . We do not intend, however, to minimize in
any way the analytical side of our problem. The formula is ultimately
the simplest and most concise description of the process of motion; it
is indispensable, moreover, as the basis of actual numerical calculation.
We will only demand, that our knowledge of mechanics be based not
on formulas, but rather, on the contrary, that the analytic formulation
appear of itself as the last consequence of a fundamental understanding
of the mechanical principles.”

xviii
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Introduction

We are obliged, in fairness, to establish at the beginning of this
lecture what we mean by the word top, and what we do not wish to
mean by this word.

By a top we mean — reserving a later generalization of the con-
cept — a rigid body subject to gravity, whose mass is symmetrically
distributed around an axis of the body, and which, by means of an ap-
propriate device, is fixed in space at one point of the symmetry axis.

We denote the fixed point of the body as the support point O; this
point divides the symmetry axis into two half-lines. We designate one
of these half-lines, by an arbitrary choice, as the figure axis. The plane
perpendicular to the figure axis through the point O is called the equa-
torial plane of the top.

The model illustrated below, which was made by the particularly
noteworthy French engineer and experimentalist R o z é,3 represents
a top in the given
sense, and will serve
repeatedly in these
lectures for the pur-
pose of demonstra-
tion.

Our figure gives
only a cut through
a meridian of the
bell-shaped form of
the top; to obtain
a spatial image of
the top, we must imagine the drawing rotated about the figure axis OF .
The lower end of the figure axis rests at O in a seat fixed to the pedestal,

R.J. Nagem, G. Sandri, The Theory of the Top, DOI: 10.1007/978-0-8176-4721-6 0,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008



2 Introduction

so that it is essentially stationary during the motion. Because of the
characteristic shape of the top, its center of gravity lies directly beneath
the support point when the figure axis is vertical, so that the body is
in stable equilibrium in this position. If the opposite is desired, this is
effected by the addition of weights that are themselves rotating bodies
placed axially on the upper part of the figure axis. A special feature
of the R o z é top is the ingenious mechanism by which it is possible
to give the top a lively rotation without damaging the sharp tip in
which the support point terminates.4 All parts of the model are made
of solid metal. We recognize in our example the given properties of the
top concept: the rotational symmetry about the figure axis, the fixed
position of one of its points, and the rigidity of the material.

In contrast, the well-known child’s toy commonly called a top does
not, strictly speaking, represent a top in the given sense of the word,

since the support point is not
fixed in space, but rather is free
to move in the horizontal plane
of the surface of the Earth. Our
mechanical analysis confronts
us here in a more complicated
form. For orientation, it may be
remarked now that the complete
analytic treatment of the top
with a moving support point
leads to hyperelliptic functions,
while the general motion of
the top with a fixed support
point is represented by elliptic

functions. In our lectures, we will be able to consider the more compli-
cated problem only in an appendix.

Our concept of a top applies even less, strictly speaking, to the ap-
paratus represented in the adjacent figure, which is usually called a
Bohnenberger machine 5 (or also a Foucault gyroscope 6). The primary
component of the apparatus is a rotor whose axis is freely mounted in an

2



Introduction 3

inner ring. The inner ring is free to move about an axis that is perpen-
dicular to the axis of the rotor, and has its bearing in an outer ring.
This outer ring is pivoted, in turn, about an axis perpendicular to the
axis of the inner ring. By this mechanism, one point (the middle point
of the rotor) does indeed remain fixed in space during the motion of
the system. The apparatus is not, however, a single rigid body, since
the rings can move relative to the rotor; moreover, the rotational sym-
metry about the axis of the rotor is also destroyed by the masses of the
rings. If we wish, nevertheless, to draw upon this apparatus occasion-
ally as an example for our analysis of the top, then we must add the
explicit assumption that the mass of the rotor is very large compared
to the masses of the inner and outer rings, and must therefore neglect
the latter compared to the former. We have then to consider in the
mechanical treatment of the apparatus only the rotor, which represents
a single rigid rotating body. We see, however, that without this sim-
plifying assumption, the theory of the apparatus will be considerably
more complicated than that of our top.

Indeed, it is self-evident that no real body whatsoever corresponds,
strictly speaking, to the initially given definition. It is not possible
to completely fix a material point in space by means of a mechanical
apparatus, nor does there exist anywhere in nature an absolutely rigid
body. But it is equally self-evident that we can never do complete jus-
tice to reality with our analysis. Mathematics always treats of idealized
problems; we must constantly simplify reality considerably through the
abstraction of all types of secondary circumstances before we can think
of its mathematical treatment.

In this regard, there arises the question of how well actual phenom-
ena may coincide with our idealized mathematical models. To reach
a conclusion here, one will seek to determine the individual influences
of the circumstances not included in the calculation, and will add the
resulting deviations as correction terms to the solution of the idealized
problem. In this spirit, we will later investigate the friction of the top
in the supporting seat; we will also take into consideration, at least
qualitatively, the elasticity of the base that bears the top. An entire
series of other circumstances—the elasticity of the top material itself,

3



4 Introduction

the entrainment of the surrounding air, etc., etc.—will, being of lesser
importance and entirely too complicated, remain excluded from con-
sideration.

Perhaps it is necessary to explain why we single out, from the abun-
dance of problems in mechanics, such a special subject as the motion
of the top.

First, the top offers a particular interest in itself. Its motions are in
some respects very well known, and yet contain paradoxes and appar-
ent contradictions to general mechanical principles. To resolve these
contradictions is an attractive exercise from the point of view of me-
chanics. The interest that our topic may claim is witnessed by the
numerous old and new monographs on the subject. (Cf. the follow-
ing literature review.) In addition, the top plays an important role in
the neighboring fields of astronomy and theoretical physics. A special
study of our problem appears to be indicated on these grounds as well.
Finally, the theory of the top is, at least historically, of singular interest
from the standpoint of pure mathematics. Indeed, it was our problem,
with reference to the included problem of the oscillation of the pen-
dulum, that motivated the early development of the theory of elliptic
functions.

In the following, however, we consider the top as an example of gen-
eral mechanics, and hope to enliven the comprehension of the general
directly through the presentation of the particular. The development
of mechanics has taken, especially in Germany, an overly exclusive di-
rection toward abstraction and formulas, which often detracts from a
direct understanding. The student who learns well to derive the general
principles of mechanics analytically does not always grasp their true
mechanical meaning in a sufficiently lively sense, and appears awkward
when faced with obtaining the solution of a specific problem.

We wish to oppose this evil state of affairs by a thorough treatment
of our problem. We wish to establish not only a knowledge of mechan-
ics, but also, so to speak, a feeling for it. Full clarity in the geometric
aspects of motion is naturally a first prerequisite for this. We thus pro-
pose to enliven the geometric perception through numerous figures—in
contrast to L a g r a n g e, the greatest advocate of the abstract direc-
tion in mechanics, who stressed with special predilection that in his An-
alytic Mechanics not one figure is to be found.7 Still more important for
us, however, is full clarity concerning the forces that come into play as

4



Introduction 5

the mechanical causes of the motion. We will convey these forces as
concretely as possible in space by vectors; we place special value on the
development and consistent use of the impulse principle, in which we
conceive the impact force, or the system of impact forces, that is able to
produce the actual motion instantaneously from rest. We do not intend,
however, to minimize in any way the analytical side of our problem.
The formula is ultimately the simplest and most concise description
of the process of motion; it is indispensable, moreover, as the basis of
actual numerical calculation. We will only demand, that our knowledge
of mechanics be based not on formulas, but rather, on the contrary, that
the analytic formulation appear of itself as the last consequence of a
fundamental understanding of the mechanical principles.

The tendency expressed here for mechanical conception over for-
mulas is particularly prominent in the English textbooks. We natu-
rally cite, in the first place, the ingenious work of T h o m s o n and
T a i t, the Treatise on Natural Philosophy*),8 and, further, the work
of R o u t h**),9 which, while generally not sufficiently well known in
Germany, may be more appropriate as a textbook, since it is more
systematically worked through and not as difficult to understand. In
addition to the widespread French textbooks***), the presentations of
V o i g t†)11 and B u d d e††)12 are particularly suitable for us, while the
famous Mechanik by K i r c h h o f f 13 appears one-sidedly systematic
and too abstract. The demands advocated here were raised first and
most forcefully by P o i n s o t, and particularly in the context of our
rotation problem.14 We will cultivate with special pleasure the beautiful
method of Poinsot in these lectures. We do not wish, however, to go as
far as Poinsot, who banishes coordinate calculations from his considera-
tions as much as possible, and thus closes his access to the more difficult
problems. We prefer to regard the considerations of Poinsot only as a

∗) Only the first edition of this work (published in Cambridge, 1867) is translated
at the present time into German (Braunschweig 1871); the second edition, which
appeared in 1883–86 in two parts, is much more comprehensive; citations in the
following always refer to this second edition.

∗∗) Dynamics of a system of rigid bodies, 2 Vols., 5th ed., London 1891; a German
translation by B. G. Teubner will appear soon.
∗∗∗) By D u h a m e l, D e s p e y r o u s - D a r b o u x, A p p e l l, etc.10

†) V o i g t, Elementare Mechanik, Leipzig 1891.
††) B u d d e, Allegemeine Mechanik der Punkte und starren Systeme, 2 Bde.,

Berlin 1890.
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6 Introduction

first and very valuable introduction to the theory of rotation problems,
wishing, however, to complete them through analysis where they alone
cease to lead to the goal or become too complicated. Thus we will begin
the first chapter, for example, with geometric investigations after the
model of Poinsot, but soon go over to analytic considerations.

We cannot, naturally, give a systematic development of mechan-
ics in these lectures; we must assume a general knowledge of the broad
subject. In the same way, we will not be able to forgo a certain familiar-
ity with the methods of function theory. Nevertheless, the mechanical
as well as the function-theoretical concepts are explained briefly when
they appear in the example of our top, so that these lectures can also
serve as a first orienting introduction to the field of elliptic functions
and to the higher regions of the mechanics of more general systems.

Finally, a word about the treatment of the infinitesimal calculus. We
do not, by any means, intend to proceed in this presentation with the
rigor in the infinitesimal calculus that is possible and often customary
today. We will, rather, make use of all the simplifications that come
with the use of infinitesimal quantities and the interchange of limit
processes. The meaning of the modern sharpening of the infinitesimal
calculus is obviously not that one should be obstructed at every step
by doubts on these matters, but rather that one should dispatch these
doubts once and for all to the foundation of the subject, so as to be
able to proceed afterward without hesitation. Whoever knows the more
exact methods of differential calculus will always be easily able to add
a somewhat desirable increase of precision to our manner of expression.
We omit this not because of any difficulty, but rather because we would
thus make the presentation unnecessarily slow, and divert attention
from the true difficulties of the problem.
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Chapter I

The kinematics of the top

§1. Geometric treatment of the kinematics

We begin with a chapter of geometric content that treats of the
kinematics of the top. In opposition to kinematics, we use, after the
suggestion of T h o m s o n and T a i t, the word kinetics.15 While kine-
matics operates merely with space and time and investigates motions
only according to their geometric possibility, kinetics adds the concepts
of mass and force, and treats of motions with regard to their mechanical
possibility.

Among the properties of the top postulated in the Introduction, only
the rigidity of the material and the fixed position of the support point
come into consideration here, since the mass distribution of the body
is completely irrelevant in kinematics. The following investigations are
therefore valid for an arbitrary rigid body with a fixed support point.
We wish to denote such a body as a “generalized top,” in contrast to
the “symmetric top” defined in the Introduction. In the immediately
following chapters we also refer, on occasion, to this “generalized top,”
while in the later chapters we must limit ourselves entirely to the “sym-
metric top.”

From the most general point of view, problems of kinematics are
classified according to the number of degrees of freedom. The meaning
of this expression, also introduced by T h o m s o n and T a i t, will be
illustrated through the following small tabulation.

A freely moving point in space has three degrees of freedom (its po-
sition is determined by three independent coordinates).

A freely moving rigid body in space has six degrees of freedom (the
position and orientation of the body are fixed through the specification
of six appropriate independent parameters).

A rigid body with one point held fixed has again three degrees of
freedom.

R.J. Nagem, G. Sandri, The Theory of the Top, DOI: 10.1007/978-0-8176-4721-6 I,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008



8 I. Kinematics of the top

Our top with a fixed point, correspondingly, has three degrees of
freedom, in so far as we may treat it as a rigid body. The moving
top whose support point runs in a horizontal plane has five degrees
of freedom. We can also construct a top with one or two degrees of
freedom if we place the figure axis in a fixed frame or in a ring that
rotates, in turn, about a fixed axis. On the other hand, our top has
infinitely many degrees of freedom as soon as we wish to consider the
elastic deformation of the material.

In the following considerations, we will begin with a freely moving
rigid body in space, of which the top with a fixed support point is a
special case. Since this is a very simple and well-known subject, it is
enough to recall the relevant theorems briefly, without deriving them
in detail. The proofs may be found, if necessary, in the previously cited
textbooks.

We consider two different positions of a moving rigid body, and pose
the problem of giving the motion that leads from the initial position
to the final position in the simplest way. The position of the body is
completely determined if the positions of any three of its points, say O,
P , Q, are known. The initial positions of the points may be denoted by
O1, P1, Q1, and the final positions by O2, P2, Q2. We can first trans-
port the point O1 to O2 by a parallel displacement of the body; the
points P1, Q1 are thus transformed into P ′

1, Q′
1, respectively. We then

connect P ′
1 with P2 and Q′

1 with Q2, and construct at the center of the
connecting lines the normal planes to the lines. These planes intersect
in an axis that passes through O2. We now rotate the body about this
axis through an appropriate angle, so that P ′

1 is brought to P2 and Q′
1

is brought to Q2. We can therefore transport the triad OPQ, and thus
also the rigid body, from its initial position to its final position through
a combination of a parallel displacement and a rotation.16 Thus the
theorem:

The most general change of position of a freely moving rigid body
can always be replaced by a combination of a rotation and a translation.

If we take into consideration, further, that a parallel displacement is
equivalent to a rotation about an infinitely distant axis, or a so-called
rotation-pair (that is, two rotations about parallel axes with the same
rotation angle but opposite sense17), then we can also give the previous

8



§1. Geometric treatment 9

theorem in the following form, which is of interest with regard to the
corresponding theorem for the statics of a rigid system:18

The most general change of position of a rigid body can be replaced
by a single rotation and a rotation-pair.

Our construction can obviously be changed in a great variety of
ways by replacing the initially chosen point O with some other point.
We may designate the chosen point O as the “reference point,” and
can ask whether we can simplify the result of our construction through
an appropriate choice of the reference point. In this respect, it results
that one can always choose the reference point so that the direction
of the translation and the axis of rotation are parallel. The combina-
tion of a rotation and a parallel displacement along the rotation axis
is commonly called a screw (more precisely, a “motion-screw”)*). The
magnitude of the parallel displacement together with the magnitude
of the rotation determine the pitch; the magnitude, axis, and sense of
the rotation give the rotation angle, the rotation axis, and the rotation
sense of the screw.19 We can thus say:

The most general change of position of a rigid body can, by appropri-
ate choice of the reference point, be replaced by a screw with a specific
axis, a specific rotation angle and rotation sense, and a specific pitch.

Our screw-motion naturally coincides with the actual motion of the
body only in the initial and final positions; the intermediate positions
of the actual motion can be entirely different from the intermediate
positions of the imagined screw-motion. Let us consider, however, an
infinitesimal motion of the rigid body (that is, the limiting case of a
finite motion during an infinitely diminished time interval) and the
corresponding infinitesimal screw (that is, the limiting case of the cor-
responding finite screw-motion). Here we can no longer speak of inter-
mediate states; consequently, we will regard an infinitesimal motion as
directly identical to the constructed screw-motion and can state con-
cisely:

Every infinitesimal motion of a rigid body is a screw-motion.

∗) Cf. Sir R o b e r t B a l l. The theory of screws. Dublin 1876. (German edition
by Gravelius, Berlin 1889).

9



10 I. Kinematics of the top

In the following, we will characterize an infinitesimal screw not by its
(infinitesimal) rotation angle, but rather by its (assumed to be finite)
rotational velocity.

We now enter into the special circumstances of our top (that is, nat-
urally, of the generalized top). Here we will place the reference point
O at the fixed support point. The pitch of the screw is then zero; the
screw-motion becomes a simple rotation about an axis passing through
O. We thus have the theorems:

An arbitrary motion of our top can be replaced, with respect to its
final result, by a rotation with a specific axis, a specific rotation angle,
and a specific rotation sense;

and

Every instantaneous (infinitesimal) motion of the top is a rotation
with a specific axis, a specific rotational velocity, and a specific sense.

There may next follow some remarks about the composition of rota-
tions, in which we need consider, with respect to the top, only rotations
whose axes pass through O. We suppose that the top is given two suc-
cessive finite rotations. According to the previous theorem, we can
effect the result of these two rotations by a single rotation. We obtain
the properties of this single rotation from the following theorem:*) if
we rotate space successively about the three edges of a three-sided cor-
ner, each rotation through twice the corresponding edge angle, then
we return to the initial position.20 This theorem yields the following
construction for the single resultant of two given rotations: we place
a unit sphere around O, connect its intersection points with the axes
of the individual given rotations by a great circle, and apply to this
great circle the half-angles of the respective individual rotations. The
third corner of the resulting spherical triangle then gives the axis of the
resultant rotation, and the adjacent exterior angle gives the half-angle
of the resultant rotation.21 This construction operates in a remarkable
way with the half-angles of rotation, so that the value of the half-angle
of the rotation that follows from the construction is determined up to
an additive multiple of 2π (that is, the value of the entire angle of the
rotation is determined modulo 4π).

We now speak of infinitesimal rotations or rotational velocities. As
usual, we assign the infinitesimal rotation a geometric representation

∗) Cf. S c h e l l: Theorie der Bewegung, Leipzig 1879 II. Teil, Kap. II, §9. The
theorem plays a large role in H a m i l t o n’s Lectures on quaternions (art. 217 and
ff.).
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§1. Geometric treatment 11

by the following procedure: we extend from O, along the axis of ro-
tation, a line segment that represents the magnitude of the rotational
velocity, and extends, in particular, in the direction from which the
rotation appears to occur in the clockwise sense. We call the resulting
geometric counterpart of the infinitesimal rotation a rotation vector. If
this rotation vector is known, then the axis, velocity, and sense of the
infinitesimal rotation follow in an unambiguous way.

We have only to add a convention regarding the unit of measure with
which we extend the line, and the system of units with which we wish
to measure the angular velocity. It is simplest, here and throughout
the following, to adopt the so-called “absolute system of measure,” and
thus to measure length in centimeters and time in seconds. An angular
velocity will always be expressed in arc measure; thus, for example, by
the arc of a circle, measured in cm, that a point extending 1 cm from
the rotation axis would describe during one second of uniform rotation.
In the absolute system of measure, every rotation has, in this sense, a
specific numerical value, say n. We determine our representative line
segment by extending n cm directly on the rotation axis in the manner
given above.

The relevant theorem for the composition of two infinitesimal rota-
tions is now simply:

Two infinitesimal rotations are composed according to the parallel-
ogram law of forces; that is, the corresponding rotation vectors add
geometrically (as line segments or vectors).22

This fundamental and very well known theorem justifies after the
fact the introduction of the word rotation vector, and shows, moreover,
that the resultant of two infinitesimal rotations is independent of their
order, and that infinitesimal rotations are thus interchangeable opera-
tions. For the proof of this it is enough to consider the figure of the
parallelogram. We remark that, in contrast, the resultant of two fi-
nite rotations changes if we reverse the order of the two rotations, and
thus finite rotations are not interchangeable. The proof follows from
the construction that is indicated on page 10, in which the defining
elements of the two rotations are used in an asymmetric manner.23

We now consider the moving top in an entire series of different
positions, therefore taking a first, second, third, . . . of these positions

11



12 I. Kinematics of the top

into view. We replace the motions that lead from the first position
to the second, from the second to the third, etc., by single rotations,
and thus obtain a series of different rotation axes passing through O.
Here we distinguish, as usual in kinematics, a moving frame and a fixed
frame. The moving frame is our top, and the fixed frame is ideal space.

We remark, further, that the distinction between one frame and the
other that lies in the words “moving” and “fixed” is actually unjusti-
fied from the standpoint of pure kinematics, and that it would be more
correct to speak, for example, of a first and a second frame. Namely,
every motion is as equally valid geometrically as its inversion, in which
the roles of the moving and fixed frames are interchanged. Kinemat-
ics, therefore, always treats only of relative motion. In kinetics it is
different. The necessary forces for the generation of a motion change
completely if we interchange the moving frame and the fixed frame. In
kinetics, therefore, the direct and the inverse motions have, in general,
completely different characters. We will later emphasize an exception
to this rule, when we become acquainted with the theorem that the
inversion of the motion of the top has, under special circumstances,
the same kinetic character as the direct motion.

We wish to mark, in the moving frame and in the fixed frame, the
positions of the axes of the above rotations that bring the top from the
first position to the second, from the second position to the third, etc.
We thus obtain, if we join the successive axes by planes, a pyramid 24

fixed in space and a pyramid fixed in the top, with equal respective
side angles. In the first rotation, the respective first edges of the two
pyramids coincide. The moving frame turns around this edge until the
second edges become coincident. In the second rotation, the moving
frame turns around the second edge. The magnitude of the rotation is
such that the respective third edges must coincide at the end of this
rotation. So it continues. We can describe the entire rotation process
succinctly in the following manner:

The moving pyramid rolls on the fixed pyramid.

This motion must, naturally, necessarily coincide with the actual
motion of the top only at each of the final positions of the individual
rotations. The intermediate positions can be very different in the two
cases. To attain in this manner a complete reproduction of the actual
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