BIRKHAUSER

Jean-Michel Muller
Nicolas Brisebarre
Florent de Dinechin
Claude-Pierre Jeannerod
Vincent Lefevre
Guillaume Melquiond
Nathalie Revol

Damien Stehlé

Serge Torres

Handbook of

Floating-Point
Arithmetic

Birkhauser
Boston ¢ Basel » Berlin

Jean-Michel Muller
CNRS, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
jean-michel.muller@
ens-lyon.fr

Claude-Pierre Jeannerod

INRIA, Laboratoire LIP

Ecole Normale
Supérieure de Lyon

46, allée d’Italie

69364 Lyon Cedex 07

France

claude-pierre.jeannerod @
ens-lyon.fr

Nathalie Revol
INRIA, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
nathalie.revol @ens-lyon.fr

ISBN 978-0-8176-4704-9

DOI 10.1007/978-0-8176-4705-6

Nicolas Brisebarre
CNRS, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
nicolas.brisebarre @
ens-lyon.fr

Vincent Lefevre

INRIA, Laboratoire LIP

Ecole Normale
Supérieure de Lyon

46, allée d’Italie

69364 Lyon Cedex 07

France

vincent@vinc17.net

Damien Stehlé

CNRS, Macquarie University,
and University of Sydney

School of Mathematics
and Statistics

University of Sydney

Sydney NSW 2006

Australia

damien.stehle @ gmail.com

e-ISBN 978-0-8176-4705-6

Library of Congress Control Number: 2009939668

Mathematics Subject Classification (2000): 65Y99, 68N30

ACM Subject Classification: G.1.0, G.4

© Birkhiuser Boston, a part of Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Birkhiduser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Florent de Dinechin
ENSL, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
florent.de.dinechin @
ens-lyon.fr

Guillaume Melquiond

INRIA Saclay — ile-de-
France

Parc Orsay Université

4, rue Jacques Monod

91893 Orsay Cedex

France

guillaume.melquiond @
inria.fr

Serge Torres

ENSL, Laboratoire LIP

Ecole Normale
Supérieure de Lyon

46, allée d’Italie

69364 Lyon Cedex 07

France

serge.torres @ens-lyon.fr

Birkhauser Boston is part of Springer Science+Business Media (www.birkhauser.com)

Contents

Preface XV

List of Figures xvii

List of Tables xxi

I Introduction, Basic Definitions, and Standards 1

1 Introduction 3

1.1 SomeHistory 3

1.2 Desirable Properties., 6

1.3 Some Strange Behaviors 7

131 Somefamousbugs 7

1.3.2 Difficult problems, 8

2 Definitions and Basic Notions 13

2.1 Floating-Point Numbers 13

22 Rounding. 20

221 Roundingmodes 20

222 Useful properties 22

223 Relative error duetorounding 23

23 Exceptions 25
24 Lost or Preserved Properties of the Arithmetic on the Real

Numbers e 27

2.5 Note on the ChoiceoftheRadix 29

25.1 Representationerrors. 29

252 Acaseforradix10 30

2.6 Tools for Manipulating Floating-Point Errors 32

26.1 Theulpfunction 32

2.6.2 Errorsin ulps and relative errors 37

2.6.3 Anexample:iterated products 37

2.6.4 Unitroundoff 39

2.7 NoteonRadixConversion 40

vi

Contents

2.7.1 Conditionsontheformats
2.72 Conversion algorithms
2.8 The Fused Multiply-Add (FMA) Instruction
2.9 Interval Arithmetic
29.1 Intervals with floating-pointbounds
29.2 Optimizedrounding

Floating-Point Formats and Environment
3.1 ThelEEE 754-1985Standard
3.1.1 Formats specified by IEEE 754-1985
3.1.2 Little-endian, big-endian
3.1.3 Rounding modes specified by IEEE 754-1985
3.14 Operations specified by IEEE 754-1985
3.1.5 Exceptions specified by IEEE 754-1985
3.1.6 Specialvalues
3.2 ThelEEE 854-1987 Standard
3.2.1 Constraints internaltoaformat
3.2.2 Various formats and the constraints between them . . .
3.2.3 Conversions between floating-point numbers and
decimalstrings
324 Rounding
325 Operations.
32,6 Comparisons
327 Exceptions
3.3 TheNeedforaRevision
3.3.1 A typical problem: “double rounding”
3.3.2 Various ambiguities
3.4 The New IEEE 754-2008 Standard
3.4.1 Formats specified by the revised standard
3.4.2 Binary interchange format encodings
3.4.3 Decimal interchange format encodings
344 Largerformats
3.4.5 Extended and extendable precisions
34.6 Attributes oo o oo
3.4.7 Operations specified by the standard
348 Comparisons
349 Conversions
3.4.10 Default exception handling
3.4.11 Recommended transcendental functions
3.5 Floating-Point Hardware in Current Processors
3.5.1 The common hardware denominator
352 Fused multiply-add
3.5.3 Extended precision
3.54 Rounding and precisioncontrol

Contents vii

3.5.5 SIMDinstructions 106

3.5.6 Floating-point on x86 processors: SSE2 versus x87 . . . 106

3.5.7 Decimal arithmetic 107

3.6 Floating-Point Hardware in Recent Graphics Processing Units 108
3.7 Relations with Programming Languages 109
3.7.1 The Language Independent Arithmetic (LIA) standard 109

3.7.2 Programminglanguages 110

3.8 Checking the Environment 110
381 MACHAR 111

382 Paranoia 111

383 UCBTest 115

384 TestFloat 116

385 TeeeCC754 116

38.6 Miscellaneous 116

II Cleverly Using Floating-Point Arithmetic 117
4 Basic Properties and Algorithms 119
4.1 Testing the Computational Environment 119
411 Computingtheradix 119

412 Computing the precision. 121

42 ExactOperations 122
421 Exactaddition. 122

42.2 Exact multiplications and divisions 124

4.3 Accurate Computations of Sums of Two Numbers 125
43.1 TheFast2Sum algorithm 126

43.2 The2Sum algorithm 129

43.3 If we donot use rounding tonearest 131

44 Computation of Products 132
441 Veltkamp splitting 132
4.4.2 Dekker’s multiplication algorithm 135

45 Complexnumbers. 139
451 \Variouserrorbounds 140

45.2 Error bound for complex multiplication 141

453 Complexdivision 144
454 Complexsquareroot 149

5 The Fused Multiply-Add Instruction 151
51 The 2MultFMA Algorithm 152
5.2 Computation of Residuals of Division and Square Root 153
5.3 Newton-Raphson-Based Division withan FMA 155

5.3.1 Variants of the Newton-Raphson iteration 155

viii

54

55

5.6
57

Contents

53.2 Using the Newton-Raphson iteration for correctly

rounded division o o000 160
Newton-Raphson-Based Square Root with an FMA 167
54.1 Thebasiciterations 167
542 Using the Newton-Raphson iteration for correctly

rounded squareroots L L L 168
Multiplication by an Arbitrary-Precision Constant 171
5.5.1 Checking for a given constant C' if Algorithm 5.2 will

alwayswork oo 172
Evaluation of the ErrorofanFMA 175
Evaluation of Integer Powers 177

6 Enhanced Floating-Point Sums, Dot Products, and Polynomial

Values 181
6.1 Preliminaries. 182
6.1.1 Floating-point arithmeticmodels 183

6.1.2 Notation for error analysis and classical error estimates 184

6.1.3 Properties for deriving running error bounds 187

6.2 Computing Validated Running Error Bounds 188
6.3 Computing Sums More Accurately 190
6.3.1 Reordering the operands, and a bitmore 190

6.32 Compensatedsums. 192

6.3.3 Implementing a “long accumulator” 199

6.3.4 On the sum of three floating-point numbers 199

6.4 Compensated Dot Products 201
6.5 Compensated Polynomial Evaluation 203
7 Languages and Compilers 205
7.1 APlay withMany Actors 205
7.1.1 Floating-point evaluation in programming languages . 206

7.1.2 Processors, compilers, and operating systems 208

7.1.3 In the hands of the programmer 209

7.2 Floating Point in the C Language 209
7.2.1 Standard C99 headers and IEEE 754-1985 support . . . 209

722 Iypes 210

72.3 Expressionevaluation 213

724 Code transformations 216

7.2.5 Enabling unsafe optimizations 217

7.2.6 Summary: a few horror stories 218

7.3 Floating-Point Arithmetic in the C++ Language 220
73.1 Semantics L. 220

7.3.2 Numericlimits 221

7.3.3 Overloaded functions 222

74 FORTRAN Floating Pointin a Nutshell 223

Contents ix

741 Philosophy. 223

742 IEEE 754 supportin FORTRAN 226

7.5 Java Floating Pointina Nutshell 227

751 Philosophy. 227

752 Typesandclasses 228

7.5.3 Infinities, NaNs, and signed zeros 230

754 Missing features. L. 231

755 Reproducibility 0 .. 232

7.5.6 The BigDecimal package 233

76 Conclusion o 234

III Implementing Floating-Point Operators 237

8 Algorithms for the Five Basic Operations 239

8.1 Opverview of Basic Operation Implementation 239

8.2 Implementing IEEE 754-2008 Rounding 241
8.2.1 Rounding a nonzero finite value with unbounded

exponentrange 241

822 Overflow o 243

8.2.3 Underflow and subnormal results 244

824 Theinexactexception 245

8.2.5 Rounding for actual operations 245

8.3 Floating-Point Addition and Subtraction. 246

8.3.1 Decimal addition 249

8.3.2 Decimal addition using binary encoding 250

8.3.3 Subnormal inputs and outputs in binary addition . . . 251

8.4 Floating-Point Multiplication 251

84.1 Normalcase 252

8.4.2 Handling subnormal numbers in binary multiplication 252

8.4.3 Decimalspecifics 253

8.5 Floating-Point Fused Multiply-Add 254

8.5.1 Case analysis for normalinputs 254

8.5.2 Handling subnormalinputs 258

8.5.3 Handling decimal cohorts 259

8.5.4 Overview of a binary FMA implementation 259

8.6 Floating-Point Division 262

8.6.1 Overview and specialcases 262

8.6.2 Computing the significand quotient 263

8.6.3 Managing subnormal numbers 264

8.6.4 Theinexactexception 265

8.6.5 Decimalspecifics 265

8.7 Floating-Point SquareRoot. 265

8.7.1 Overview and specialcases 265

X Contents
8.7.2 Computing the significand squareroot 266
8.7.3 Managing subnormal numbers 267
8.74 Theinexactexception 267
8.7.5 Decimal specifics 267
9 Hardware Implementation of Floating-Point Arithmetic 269
9.1 Introductionand Context 269
9.1.1 Processor internal formats 269
9.1.2 Hardware handling of subnormal numbers 270
9.1.3 Full-custom VLSI versus reconfigurable circuits 271
9.14 Hardware decimal arithmetic 272
915 Pipelining o 0L 273
9.2 The Primitives and TheirCost 274
921 Integeradders. 274
9.2.2 Digit-by-integer multiplication in hardware 280
9.2.3 Using nonstandard representations of numbers 280
9.24 Binary integer multiplication 281
9.25 Decimal integer multiplication 283
926 Shifters o o 284
9.2.7 Leading-zerocounters 284
9.28 Tables and table-based methods for fixed-point
function approximation 286
9.3 Binary Floating-Point Addition 288
931 Overview 288
9.3.2 A first dual-path architecture 289
9.3.3 Leading-zero anticipation 291
9.3.4 Probing further on floating-point adders 295
9.4 Binary Floating-Point Multiplication 296
9.4.1 Basicarchitecture 296
942 FPGA implementation 296
9.43 VLSIimplementation optimized for delay 298
944 Managing subnormals 301
9.5 Binary Fused Multiply-Add 302
9.5.1 Classicarchitecture 303
952 Toprobefurther. 305
9.6 Division 305
9.6.1 Digit-recurrence division 306
9.6.2 Decimaldivision 309
9.7 Conclusion: Beyond the FPU 309
9.7.1 Optimization in context of standard operators 310
9.7.2 Operation with a constantoperand 311
9.73 Block floatingpoint. 313
9.7.4 Specific architectures for accumulation 313

9.7.5 Coarser-grain operators 317

Contents X1

9.8 ProbingFurther 320
10 Software Implementation of Floating-Point Arithmetic 321
10.1 Implementation Context 322
10.1.1 Standard encoding of binary floating-point data 322
10.1.2 Available integer operators 323
10.1.3 Firstexamples 326
10.1.4 Design choices and optimizations 328
10.2 Binary Floating-Point Addition 329
10.2.1 Handling special values 330
10.2.2 Computing the sign of theresult 332
10.2.3 Swapping the operands and computing the alignment
shift 333
10.2.4 Getting the correctly rounded result 335
10.3 Binary Floating-Point Multiplication 341
10.3.1 Handling special values 341
10.3.2 Sign and exponent computation 343
10.3.3 Overflow detection 345
10.3.4 Getting the correctly rounded result 346
10.4 Binary Floating-Point Division 349
10.4.1 Handling special values 350
10.4.2 Sign and exponent computation 351
10.4.3 Overflow detection 354
10.4.4 Getting the correctly rounded result 355
10.5 Binary Floating-Point Square Root 361
10.5.1 Handling special values 362
10.5.2 Exponent computation 364
10.5.3 Getting the correctly rounded result 365
IV Elementary Functions 373
11 Evaluating Floating-Point Elementary Functions 375
11.1 Basic Range Reduction Algorithms 379
11.1.1 Cody and Waite’s reduction algorithm 379
11.1.2 Payne and Hanek’s algorithm 381
11.2 Bounding the Relative Error of Range Reduction 382
11.3 More Sophisticated Range Reduction Algorithms 384
11.3.1 An example of range reduction for the exponential
function L 386
11.3.2 An example of range reduction for the logarithm . . . 387
11.4 Polynomial or Rational Approximations 388
1141 L2CaS€ v v v v v e e i 389

1142 L°,or minimax Ccase « v v v v v v v v e e 390

xii

12

Contents

11.4.3 “Truncated” approximations

11.5 Evaluating Polynomials

11.6 Correct Rounding of Elementary Functions to binary64

11.6.1 The Table Maker’s Dilemma and Ziv’s onion peeling

strategy o oo

11.6.2 Whenthe TMDissolved

11.6.3 Roundingtest

11.64 Accuratesecondstep
11.6.5 Error analysis and the accuracy/performance tradeoff

11.7 Computing Error Bounds

11.7.1 The point with efficientcode

11.7.2 Example: a “double-double” polynomial evaluation . .

Solving the Table Maker’s Dilemma
12.1 Introduction
12.1.1 The Table Maker’s Dilemma.
12.1.2 Brief historyofthe TMD
12.1.3 Organization of the chapter
12.2 Preliminary Remarks on the Table Maker’s Dilemma
12.2.1 Statistical arguments: what can be expected in practice
12.2.2 In some domains, there is no need to find worst cases .
12.2.3 Deducing the worst cases from other functions or
domains
12.3 The Table Maker’s Dilemma for Algebraic Functions
12.3.1 Algebraic and transcendental numbers and functions .
12.3.2 The elementary case of quotients
12.3.3 Around Liouville’s theorem
12.3.4 Generating bad rounding cases for the square root
using Hensel 2-adic lifting
12.4 Solving the Table Maker’s Dilemma for Arbitrary Functions
12.4.1 Lindemann’s theorem: application to some
transcendental functions
12.4.2 A theorem of Nesterenko and Waldschmidt.
12.4.3 A first method: tabulated differences
12.4.4 From the TMD to the distance between a grid and a
segment oL
12.4.5 Linear approximation: Lefevre’s algorithm
12.4.6 TheSLZ algorithm
12.4.7 Periodic functions on large arguments
125 SomeResults
12.5.1 Worst cases for the exponential, logarithmic,
trigonometric, and hyperbolic functions
12.5.2 A special case: integer powers
12.6 Current Limits and Perspectives

394
395
396
400
401
402
402
403

405
405
406
410
411
412
412
416

419
420
420
422
424

425
429

429
430
432

434
436
443
448
449

Contents xiii

V Extensions 461
13 Formalisms for Certifying Floating-Point Algorithms 463
13.1 Formalizing Floating-Point Arithmetic 463
13.1.1 Defining floating-point numbers 464
13.1.2 Simplifying the definition 466
13.1.3 Defining rounding operators 467
13.1.4 Extending the setof numbers 470
13.2 Formalisms for Certifying Algorithmsby Hand 471
13.2.1 Hardwarewunits 471
13.2.2 Low-level algorithms 472
13.2.3 Advanced algorithms 473
13.3 Automating Proofs 474
13.3.1 Computingonbounds 475
13.3.2 Countingdigits 477
13.3.3 Manipulating expressions 479
13.3.4 Handling the relativeerror 483
134 UsingGappa i 484
13.4.1 Toy implementationofsine 484
13.4.2 Integer division on Itanium 488
14 Extending the Precision 493
14.1 Double-Words, Triple-Words... 494
14.1.1 Double-word arithmetic 495
14.1.2 Static triple-word arithmetic. 498
14.1.3 Quad-word arithmetic 500
14.2 Floating-Point Expansions 503
14.3 Floating-Point Numbers with Batched Additional Exponent . 509
14.4 Large Precision Relying on Processor Integers 510
14.4.1 Using arbitrary-precision integer arithmetic for
arbitrary-precision floating-point arithmetic 512
1442 A brief introduction to arbitrary-precision integer
arithmetic Lo oL 513
VI Perspectives and Appendix 517
15 Conclusion and Perspectives 519

16 Appendix: Number Theory Tools for Floating-Point Arithmetic 521

16.1 Continued Fractions 521
16.2 The LLL Algorithm 524
Bibliography 529

Index 567

Preface

FLOATING-POINT ARITHMETIC is by far the most widely used way of
approximating real-number arithmetic for performing numerical calcu-
lations on modern computers. A rough presentation of floating-point arith-
metic requires only a few words: a number z is represented in radix
floating-point arithmetic with a sign s, a significand m, and an exponent e,
such that z = s xm x 3°. Making such an arithmetic reliable, fast, and portable
is however a very complex task. Although it could be argued that, to some ex-
tent, the concept of floating-point arithmetic (in radix 60) was invented by the
Babylonians, or that it is the underlying arithmetic of the slide rule, its first
modern implementation appeared in Konrad Zuse’s 5.33Hz Z3 computer.

A vast quantity of very diverse arithmetics was implemented between
the 1960s and the early 1980s. The radix (radices 2, 4, 16, and 10 were then
considered), and the sizes of the significand and exponent fields were not
standardized. The approaches for rounding and for handling underflows,
overflows, or “forbidden operations” (such as 5/0 or v/—3) were significantly
different from one machine to another. This lack of standardization made it
difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki high-
lighted the relevant key concepts for designing an arithmetic that could be
both useful for programmers and practical for implementers. These efforts
resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic,
and its follower, the IEEE 854-1987 “radix-independent standard.” The stan-
dardization process was expertly orchestrated by William Kahan. The IEEE
754-1985 standard was a key factor in improving the quality of the compu-
tational environment available to programmers. It has been revised during
recent years, and its new version, the IEEE 754-2008 standard, was released
in August 2008.

By carefully specifying the behavior of the arithmetic operators, the 754-
1985 standard allowed researchers to design extremely smart yet portable al-
gorithms; for example, to compute very accurate sums and dot products, and
to formally prove some critical parts of programs. Unfortunately, the sub-
tleties of the standard are hardly known by the nonexpert user. Even more
worrying, they are sometimes overlooked by compiler designers. As a conse-
quence, floating-point arithmetic is sometimes conceptually misunderstood
and is often far from being exploited to its full potential.

XV

xvi Preface

This and the recent revision of the IEEE 754 standard led us to the
decision to compile into a book selected parts of the vast knowledge on
floating-point arithmetic. This book is designed for programmers of numer-
ical applications, compiler designers, programmers of floating-point algo-
rithms, designers of arithmetic operators, and more generally the students
and researchers in numerical analysis who wish to more accurately under-
stand a tool that they manipulate on an everyday basis. During the writing,
we tried, whenever possible, to illustrate by an actual program the described
techniques, in order to allow a more direct practical use for coding and
design.

The first part of the book presents the history and basic concepts of
floating-point arithmetic (formats, exceptions, correct rounding, etc.), and
various aspects of the IEEE 754 and 854 standards and the new revised stan-
dard. The second part shows how the features of the standard can be used
to develop smart and nontrivial algorithms. This includes summation algo-
rithms, and division and square root relying on a fused multiply-add. This
part also discusses issues related to compilers and languages. The third part
then explains how to implement floating-point arithmetic, both in software
(on an integer processor) and in hardware (VLSI or reconfigurable circuits).
The fourth part is devoted to the implementation of elementary functions.
The fifth part presents some extensions: certification of floating-point arith-
metic and extension of the precision. The last part is devoted to perspectives
and the Appendix.

Acknowledgements

Some of our colleagues around the world and students from Ecole Normale
Supérieure de Lyon and Université de Lyon greatly helped us by reading
preliminary versions of this book: Nicolas Bonifas, Pierre-Yves David, Jean-
Yves 1’Excellent, Warren Ferguson, John Harrison, Nicholas Higham, Nicolas
Louvet, Peter Markstein, Adrien Panhaleux, Guillaume Revy, and Siegfried
Rump. We thank them all for their suggestions and interest.

We have been very pleased working with our publisher, Birkhduser
Boston. Especially, we would like to thank Tom Grasso, Regina Gorenshteyn,
and Torrey Adams for their help.

Jean-Michel Muller, Nicolas Brisebarre Lyon, France
Florent de Dinechin, Claude-Pierre Jeannerod July 2009
Vincent Lefévre, Guillaume Melquiond

Nathalie Revol, Damien Stehlé

Serge Torres

List of Figures

2.1
2.2
2.3
24

25
2.6
2.7
2.8
29
2.10
211
212

3.1
3.2

41

5.1
52

53

6.1

8.1
8.2
8.3
8.4
8.5

Positive floating-point numbers for 3 =2andp=3. 18
Underflow before and after rounding. 19
The four rounding modes. 21
Relative error committed by rounding a real number to nearest

floating-pointnumber. o o 0oL 24
Values of ulp according to Harrison’s definition. 33
Values of ulp according to Goldberg’s definition. 33
Counterexample in radix 3 for a property of Harrison’s ulp. . 34
Conversion from ulps to relative errors. 38
Conversion from relative errors toulps. 39
Converting from binary to decimal, and back. 42
Possible values of the binary ulp between two powers of 10. . 43
Ilustration of the conditions (2.10) in the case b =2°¢. 47
Binary interchange floating-point formats. 81
Decimal interchange floating-point formats. 84
Independent operations in Dekker’s product. 139
Convergence of iteration (5.4). 157
The various values that should be returned in round-to-nearest

mode, assuming ¢ is within one ulp(b/a) from b/a. 164
Position of C'z with respect to the result of Algorithm 5.2. . . . 174
Boldo and Melquiond’s algorithm for computing RN(a+b+c)

in radix-2 floating-point arithmetic. 200
Specification of the implementation of a FP operation. 240
Product-anchored FMA computation for normal inputs. 255
Addend-anchored FMA computation for normal inputs. . . . 256
Cancellationinthe FMA. 257

FMA ab — ¢, where a is the smallest subnormal, ab is
nevertheless in the normal range, |c| < |ab|, and we have an
effective subtraction. 258

xviii

8.6

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10

9.11
9.12

9.13
9.14

9.15

9.16
9.17

9.18
9.19
9.20

9.21

11.1

11.2

11.3

114

12.1

12.2

List of Figures

Significand alignment for the single-path algorithm. 260
Carry-rippleadder. 275
Decimal addition. 275
An implementation of the decimal DAbox. 276
An implementation of the radix-16 DAbox. 276
Binary carry-save addition. 277
Partial carry-save addition. 278
Carry-selectadder. 279
Binary integer multiplication. 282
Partial product array for decimal multiplication. 283
A multipartite table architecture for the initial approximation

of I/m.. . o o o 288
A dual-path floating-pointadder. 289
Possible implementations of significand subtraction in the

closepath. o 290
A dual-path floating-point adder with LZA. 292
Basic architecture of a floating-point multiplier without

subnormal handling. 297
A floating-point multiplier using rounding by injection,

without subnormal handling. 300
The classic single-path FMA architecture. 304
A pipelined SRT4 floating-point divider without subnormal

handling. 306
Iterative accumulator. 0L 313
Accumulator and post-normalization unit. 315
Accumulation of floating-point numbers into a large

fixed-point accumulator. o oo 0oL 315
The 25um and 2Mul operators. 319
The difference between In and its degree-5 Taylor

approximation in the interval [1,2]. 377
The difference between In and its degree-5 minimax

approximation in the interval [1,2]. 377
The L? approximation p* is obtained by projecting f on the

subspace generated by To, T, ..., Tp. . o . o o o o oo oo 390
The exp(cos(xz)) function and its degree-4 minimax

approximationon [0,5].. L 391

Example of an interval around f(z) containing f(z) but no
breakpoint. Hence, RN(f(z)) = RN(f(z)). 407
Example of an interval around f(z) containing f(z) and a
breakpoint.o L L oL 408

List of Figures

12.3

124

12.5

12.6

14.1

14.2

14.3
14.4

16.1
16.2

Computing P(1), P(2), P(3), ..., for P(X) = X3 with 3
additionspervalue. oL
The graph of f (and f~!) and a regular grid consisting of points
whose coordinates are the breakpoints.
The integer grid and the segment y = b — a.z; the
two-dimensional transformation modulo 1; and the
representation of the left segment (corresponding to « € Z)
modulo lasacircle.
Two-length configurations fora = 17/45.

The representation of Algorithm 25um [180]. Here, s = RN(a+
b),ands+e=a+bexactly.
The representation of rounded-to-nearest floating-point
addition and multiplication [180].
SimpleAddQD: sum of two quadwords.
Graphic representation of Shewchuk’s Scale-Expansion
Algorithm [377] (Algorithm 14.10).

The lattice Z(2,0) ® Z(1,2). oo
Two bases of the lattice Z(2,0) ® Z(1,2).

Xix

435

438
439

501

501
502

508

List of Tables

1.1

2.1
2.2
2.3

3.1

3.2

3.3

34

3.5
3.6

3.7

3.8
39

3.10
3.11
3.12
3.13
3.14

3.15

Results obtained by running Program 11 on a
Pentium4-based workstation, using GCC and Linux.

Rounding a significand using the “round” and “sticky” bits.
ARRE and MRRE of various formats.
Converting from binary to decimal and back without error. .

Main parameters of the formats specified by the IEEE
754-1985standard. Lo oL
Sizes of the various fields in the formats specified by the IEEE
754-1985 standard, and values of the exponent bias..
Binary encoding of various floating-point data in single
precision.
How to interpret the binary encoding of an IEEE 754-1985
floating-point number. 0L
Extremal values in the IEEE 754-1985 standard.
The thresholds for conversion from and to a decimal string,
as specified by the IEEE 754-1985 standard.
Correctly rounded decimal conversion range, as specified by
the IEEE 754-1985 standard.
Comparison predicates and the four relations.
Floating-point from/to decimal string conversion ranges in
the IEEE 854-1987 standard
Correctly rounded conversion ranges in the IEEE 854-1987
standard. oo
Results returned by Program 3.1 on a 32-bit Intel platform.

Results returned by Program 3.1 on a 64-bit Intel platform.

Main parameters of the binary interchange formats of size up
to 128 bits specified by the 754-2008 standard [187].
Main parameters of the decimal interchange formats of size
up to 128 bits specified by the 754-2008 standard [187].
Width (in bits) of the various fields in the encodings of the
binary interchange formats of size up to 128 bits [187].

44

57

57

59

60
61

65

65
66

73

73

75

76

81

81

82

Xxi

xxii

3.16

3.17

3.18

3.19

3.20

3.21
3.22

3.23

3.24
3.25

3.26
4.1

51
5.2

6.1
6.2

7.1
7.2
7.3

8.1

8.2
8.3

8.4

8.5
8.6

10.1

List of Tables

Width (in bits) of the various fields in the encodings of the

decimal interchange formats of size up to 128 bits [187]. . . . 85
Decimal encoding of a decimal floating-point number (IEEE
754-2008). 87
Binary encoding of a decimal floating-point number (IEEE
754-2008). 88
Decoding the declet byb bz - - - by of a densely packed decimal
encoding to three decimal digits dodida. 89

Encoding the three consecutive decimal digits dyd;d>, each of
them being represented in binary by four bits, into a 10-bit

declet bob1bs - - - bg of a densely packed decimal encoding. . . 89
Parameters of the interchange formats. 93
Parameters of the binary256 and binary1024 interchange
formats deduced from Table 3.21. 93
Parameters of the decimal256 and decimal512 interchange
formats deduced from Table 3.21. 94

Extended format parameters in the IEEE 754-2008 standard. . 94
Minimum number of decimal digits in the decimal external
character sequence that allows for an error-free write-read

cycle, for the various basic binary formats of the standard. . . 100
Execution times of decimal operations on POWER6. 108
The four cases of Brent, Percival, and Zimmermann. 143
Quadratic convergence of iteration (5.4). 157

Comparison of various methods for checking Algorithm 5.2. 176

Errors of various methods for Y z; with ; = RN(cos(7)). . . 198
Errors of various methods for » | z; with z; = RN(1/7). 198
FLT EVAL_METHOD macrovalues. 213
FORTRAN allowable alternatives. 225
FORTRAN forbidden alternatives. 226
Specification of addition/subtraction when both x and y are

ZETO. « v v i i e e e e 247
Specification of addition for positive floating-point data. . . . 247
Specification of subtraction for floating-point data of positive

SIgN. . . . 247
Specification of multiplication for floating-point data of

positivesign. Lo 251
Special values for |z|/|y|. 263
Special values for sqrt(z). 265

Standard integer encoding of binary32 data. 324

List of Tables xxiii

10.2

11.1
11.2

12.1

12.2

12.3

124

12.5

12.6

12.7

12.8

12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17

14.1

Some floating-point data encoded by X. 330
Some worst cases for range reductions. 385
Degrees of minimax polynomial approximations for various

functions and approximationranges. 385

Actual and expected numbers of digit chains of length &
of the form 1000---0 or 0111---1 just after the p-th bit of
the infinitely precise significand of sines of floating-point
numbers of precision p = 16 between 1/2and 1. 413
Actual and expected numbers of digit chains of length k
of the form 1000---0 or 0111---1 just after the p-th bit of
the infinitely precise significand of sines of floating-point
numbers of precision p = 24 between1/2and 1. 414
Length kp,ax of the largest digit chain of the form 1000---0
or 0111---1 just after the p-th bit of the infinitely precise
significands of sines and exponentials of floating-point

numbers of precision p between 1/2 and 1, for various p. . . . 415
Some results for small values in the binary64 format,
assuming rounding tonearest. 417
Some results for small values in the binary64 format,
assuming rounding toward —oo. L 418

Some bounds on the size of the largest digit chain of the form
1000---0 or 0111---1 just after the p-th bit of the infinitely

precise significand of f(x) (or f(x,y)). 426
Worst cases for the function 1/+/z, for binary floating-point
systems and various values of the precisionp. 427

On the left, data corresponding to the current two-length
configuration: the interval I containing b, its length, and the
position of b in I. On the right, data one can deduce for the
next two-length configuration: the new interval I’ containing

band the positionof bin I'. 440
Example witha = 17/45and b=23.5/45. 442
Worst cases for functions e*, e* — 1, 2%, and 10*. 451
Worst cases for functions In(z) and In(1 +). 452
Worst cases for functions log,(z) and logo(z). 453
Worst cases for functions sinh(x) and cosh(z). 454
Worst cases for inverse hyperbolic functions. 455
Worst cases for the trigonometric functions. 456
Worst cases for the inverse trigonometric functions. 457
Longest runs k of identical bits after the rounding bit in the

worst cases of function 2", for 3 <n < 1035, in binary64. . . 459

Asymptotic complexities of multiplication algorithms. 514

Part1

Introduction, Basic Definitions,
and Standards

Chapter 1

Introduction

EPRESENTING AND MANIPULATING real numbers efficiently is required in
many fields of science, engineering, finance, and more. Since the early
years of electronic computing, many different ways of approximating real
numbers on computers have been introduced. One can cite (this list is
far from being exhaustive): fixed-point arithmetic, logarithmic [220, 400]
and semi-logarithmic [294] number systems, continued fractions [228, 424],
rational numbers [227] and possibly infinite strings of rational numbers [275],
level-index number systems [71, 318], fixed-slash and floating-slash number
systems [273], and 2-adic numbers [425].

And yet, floating-point arithmetic is by far the most widely used way
of representing real numbers in modern computers. Simulating an infinite,
continuous set (the real numbers) with a finite set (the “machine numbers”)
is not a straightforward task: clever compromises must be found between,
e.g., speed, accuracy, dynamic range, ease of use and implementation, and
memory cost. It appears that floating-point arithmetic, with adequately cho-
sen parameters (radix, precision, extremal exponents, etc.), is a very good
compromise for most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in
Chapter 3, but roughly speaking, a radix-3, precision-p, floating-point num-
ber is a number of the form

e
:I:mo.mlmg e Mp—1 X ﬂ R

where e, called the exponent, is an integer, and mg.myms - - - m,_1, called the
significand, is represented in radix (. The major purpose of this book is to
explain how these numbers can be manipulated efficiently and safely.

1.1 Some History

Even if the implementation of floating-point arithmetic on electronic com-
puters is somewhat recent, floating-point arithmetic itself is an old idea.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_1, 3
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

4 Chapter 1. Introduction

In The Art of Computer Programming [222], Donald Knuth presents a short
history of floating-point arithmetic. He views the radix-60 number system
of the Babylonians as some kind of early floating-point system. Since the
Babylonians did not invent the zero, if the ratio of two numbers is a power
of 60, then their representation in the Babylonian system is the same. In that
sense, the number represented is the significand of a radix-60 floating-point
representation of w.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives an
approximation to v/2 with four sexagesimal places (the digits represented on
the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [434], and a
very interesting analysis of the Babylonian mathematics related to YBC 7289
was done by Fowler and Robson [138].

The arithmetic of the slide rule, invented around 1630 by William
Oughtred [433], can be viewed as another kind of floating-point arithmetic.
Again, as with the Babylonian number system, we only manipulate signifi-
cands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are prob-
ably Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described
an electro-mechanical implementation of Babbage’s Analytical Engine with
floating-point arithmetic [341]. And yet, the first real, modern implementa-
tion of floating-point arithmetic was in Konrad Zuse’s Z3 computer, built in
1941 [66]. It used a radix-2 floating-point number system, with 14-bit signifi-
cands, 7-bit exponents and 1-bit sign. The Z3 computer had special represen-
tations for infinities and indeterminate results. These characteristics made the
real number arithmetic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [347]. Photographs of Konrad Zuse and
the Z3 can be viewed at http://www.computerhistory.org/projects/zuse_
z23/ and http://www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a
look at the excellent book by Aspray et al. [15].

Radix 10 is what humans use daily for representing numbers and per-
forming paper and pencil calculations. Therefore, to avoid input and output
radix conversions, the first idea that springs to mind for implementing auto-
mated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic,
radix 2 (and, more generally, radices that are a power of 2) is by far the easiest
to implement. Hence, choosing the right radix for the internal representation
of floating-point numbers was not obvious. Indeed, several different solu-
tions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the
PDP-10, and the Burroughs 570 and 6700 for example. The IBM 360
had a radix-16 floating-point arithmetic. Radix 10 has been extensively

http://www.computerhistory.org/projects/zuse_z23/
http://www.computerhistory.org/projects/zuse_z23/
http://www.konrad-zuse.de/

1.1. Some History 5

used in financial calculations! and in pocket calculators, and efficient

implementation of radix-10 floating-point arithmetic is still a very active
domain of research [63, 85, 90, 91, 129, 414, 413, 428, 429]. The computer
algebra system Maple also uses radix 10 for its internal representation of
numbers. It therefore seems that the various radices of floating-point arith-
metic systems that have been implemented so far have almost always been
either 10 or a power of 2.

There has been a very odd exception. The Russian SETUN computer,
built in Moscow University in 1958, represented numbers in radix 3, with dig-
its —1, 0, and 1. This “balanced ternary” system has several advantages. One
of them is the fact that rounding to nearest is equivalent to truncation [222].
Another one [177] is the following. Assume you use a radix-3 fixed-point
system, with p-digit numbers. A large value of 3 makes the implementation
complex: the system must be able to “recognize” and manipulate 5 different
symbols. A small value of 3 means that more digits are needed to represent
a given number: if 3 is small, p has to be large. To find a compromise, we can
try to minimize 3 x p, while having the largest representable number 37 — 1
(almost) constant. The optimal solution? will almost always be 3 = 3. See
http://www.computer-museum.ru/english/setun.htm for more information
on the SETUN computer.

Various studies (see references [44, 76, 232] and Chapter 2) have shown
that radix 2 with the implicit leading bit convention (see Chapter 2) gives better
worst-case or average accuracy than all other radices. This and the ease of
implementation explain the current prevalence of radix 2.

The world of numerical computation changed much in 1985, when
the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was
released [10]. This standard specifies various formats, the behavior of the
basic operations and conversions, and exceptional conditions. As a matter of
fact, the Intel 8087 mathematics co-processor, built a few years before in 1980,
to be paired with the Intel 8088 and 8086 processors, was already extremely
close to what would later become the IEEE 754-1985 standard. Now, most
systems of commercial significance offer compatibility® with IEEE 754-1985.
This has resulted in significant improvements in terms of accuracy, reliability,
and portability of numerical software. William Kahan played a leading role
in the conception of the IEEE 754-1985 standard and in the development of
smart algorithms for floating-point arithmetic. His web page* contains much
useful information.

!Financial calculations frequently require special rounding rules that are very tricky to
implement if the underlying arithmetic is binary.

2If p and 3 were real numbers, the value of 3 that would minimize 8 x p while letting 57
be constant would be e = 2.7182818 - - -

*Even if sometimes you need to dive into the compiler documentation to find the right
options: see Section 3.3.2 and Chapter 7.

*http://www.cs.berkeley.edu/~wkahan/

http://www.computer-museum.ru/english/setun.htm
http://www.cs.berkeley.edu/~wkahan/

6 Chapter 1. Introduction

IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard,
released in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-
Point Arithmetic [11], is devoted to both binary (radix-2) and decimal
(radix-10) arithmetic.

IEEE 754-1985 and 854-1987 have been under revision since 2001. The
new revised standard, called IEEE 754-2008 in this book, merges the two
old standards and brings significant improvements. It was adopted in June
2008 [187].

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.)
requires us to find compromises between requirements that are seldom fully
compatible. Among the various properties that are desirable, one can cite:

e Speed: Tomorrow’s weather must be computed in less than 24 hours;

e Accuracy: Even if speed is important, getting a wrong result right now
is worse than getting the correct one too late;

e Range: We may need to represent large as well as tiny numbers;

e Portability: The programs we write on a given machine must run on
different machines without requiring modifications;

¢ Ease of implementation and use: If a given arithmetic is too arcane,
almost nobody will use it.

With regard to accuracy, the most accurate current physical measure-
ments allow one to check some predictions of quantum mechanics or general
relativity with a relative accuracy close to 107'°. This of course means that
in some cases, we must be able to represent numerical data with a similar
accuracy (which is easily done, using formats that are implemented on
almost all current platforms). But this also means that we might sometimes be
able to carry out computations that must end up with a relative error less than
or equal to 1015, which is much more difficult. Sometimes, one will need a
significantly larger floating-point format or smart “tricks” such as those pre-
sented in Chapter 4.

An example of a huge calculation that requires much care was car-
ried out by Laskar’s team at the Paris observatory [243]. They computed
long-term numerical solutions for the insolation quantities of the Earth (very
long-term, ranging from —250 to 4250 millions of years from now).

In other domains, such as number theory, some multiple-precision com-
putations are indeed carried out using a very large precision. For instance,

1.3. Some Strange Behaviors 7

in 2002, Kanada’s group computed 1241 billion decimal digits of 7 [19], using
the two formulas

1 1 1
m = 48arctan 0 + 128 arctan A 20 arctan 239 + 48 arctan 110443

1 1 1 1
= 1 — +2 tan — — 4 — .
76 arctan £ + 28 arctan 539 8 arctan 682 + 96 arctan 12943

These last examples are extremes. One should never forget that with 50
bits, one can express the distance from the Earth to the Moon with an error
less than the thickness of a bacterium. It is very uncommon to need such
an accuracy on a final result and, actually, very few physical quantities are
defined that accurately.

1.3 Some Strange Behaviors

Designing efficient and reliable hardware or software floating-point systems
is a difficult and somewhat risky task. Some famous bugs have been widely
discussed; we recall some of them below. Also, even when the arithmetic is
not flawed, some strange behaviors can sometimes occur, just because they
correspond to a numerical problem that is intrinsically difficult. All this is
not surprising: mapping the continuous real numbers on a finite structure
(the floating-point numbers) cannot be done without any trouble.

1.3.1 Some famous bugs

e The divider of the first version of the Intel Pentium processor, released
in 1994, was flawed [290, 122]. In extremely rare cases, one would get
three correct decimal digits only. For instance, the computation of

8391667/12582905
would give 0.666869 - - - instead of 0.666910 - - - .

o With release 7.0 of the computer algebra system Maple, when
computing
1001!
1000!
we would get 1 instead of 1001.

e With the previous release (6.0) of the same system, when entering
21474836480413647819643794
you would get

413647819643790) +' — — .(— — (

8 Chapter 1. Introduction

e Kahan [208] mentions some strange behavior of some versions of the
Excel spreadsheet. They seem to be due to an attempt to mimic a deci-
mal arithmetic with an underlying binary one.

An even more striking behavior happens with some early versions of
Excel 2007: When you try to compute

65536 — 2737

the displayed result is 100001. This is an error in the binary-to-
decimal conversion used for displaying that result: the internal
binary value is correct, if you add 1 to that result you get 65537.
An explanation can be found at http://blogs.msdn.com/excel/
archive/2007/09/25/calculation-issue-update.aspx, and a patch is
available from http://blogs.msdn.com/excel/archive/2007/10/09/
calculation-issue-update-fix-available.aspx

e Some bugs do not require any programming error: they are due to poor
specifications. For instance, the Mars Climate Orbiter probe crashed
on Mars in September 1999 because of an astonishing mistake: one
of the teams that designed the numerical software assumed the unit
of distance was the meter, while another team assumed it was the
foot [7, 306].

Very similarly, in June 1985, a space shuttle positioned itself to receive
a laser beamed from the top of a mountain that was supposedly 10,000
miles high, instead of the correct 10,000 feet [7].

Also, in January 2004, a bridge between Germany and Switzerland did
not fit at the border because the two countries use a different definition
of the sea level.

1.3.2 Difficult problems

Sometimes, even with a correctly implemented floating-point arithmetic, the

result of a computation is far from what could be expected.

A sequence that seems to converge to a wrong limit

Consider the following example, due to one of us [289] and analyzed by
Kahan [208, 291]. Let (uy,) be the sequence defined as

uyg = 2

up = —4 (1.1)
11

v — 11— 30 3000

Up—1 Up—1Un—2

5See http://www.spiegel.de/panorama/0, 1518,281837,00.html.

http://blogs.msdn.com/excel/archive/2007/09/25/calculation-issue-update.aspx
http://blogs.msdn.com/excel/archive/2007/09/25/calculation-issue-update.aspx
http://blogs.msdn.com/excel/archive/2007/10/09/calculation-issue-update-fix-available.aspx
http://blogs.msdn.com/excel/archive/2007/10/09/calculation-issue-update-fix-available.aspx
http://www.spiegel.de/panorama/0,1518,281837,00.html

1.3. Some Strange Behaviors 9

One can easily show that the limit of this sequence is 6. And yet, on any
system with any precision, the sequence will seem to go to 100.

For example, Table 1.1 gives the results obtained by compiling
Program 1.1 and running it on a Pentium4-based workstation, using the GNU
Compiler Collection (GCC) and the Linux system.

#include <stdio.h>

int main(void)

{
double u, v, w;
int i, max;

printf("n =");

scanf("%d",&max) ;

printf("uo = ");

scanf ("%Lf",&u);

printf("ul = ");

scanf("%lf",&v);

printf("Computation from 3 to n:\n");
for (i = 3; i <= max; i++)

{
w = 111. - 1130./v + 3000./(vx*u);
u=yv;
V = w;
printf("u%sd = %1.17g\n", i, v);
}
return 0;

}

Program 1.1: A C program that is supposed to compute sequence w,, using double-
precision arithmetic. The obtained results are given in Table 1.1.

The explanation of this weird phenomenon is quite simple. The general
solution for the recurrence

1130 3000
+

Up—1 Up—1Un—2

Uy, = 111 —

i
S __a.100n+1+_ﬁ‘6n+1+_7.5n+1
I T 00n + 3 6n -5

where «, 3, and v depend on the initial values ug and ;. Therefore, if & # 0
then the limit of the sequence is 100, otherwise (assuming 3 # 0), it is 6. In
the present example, the starting values vy = 2 and u; = —4 were chosen so
that o = 0, 8 = —3, and v = 4. Therefore, the “exact” limit of u,, is 6. And yet,
when computing the values u,, in floating-point arithmetic using (1.1), due
to the various rounding errors, even the very first computed terms become
slightly different from the exact terms. Hence, the value « corresponding to

10

Chapter 1. Introduction

H Computed value

Exact value

|

18.5

18.5

9.378378378378379

9.3783783783783783784

7.8011527377521679

7.8011527377521613833

7.1544144809753334

7.1544144809752493535

n
3
4
5
6
1

1

6.2744386627644761

6.2744385982163279138

12

6.2186967691620172

6.2186957398023977883

16

6.1661267427176769

6.0947394393336811283

17

7.2356654170119432

6.0777223048472427363

18

22.069559154531031

6.0639403224998087553

19

78.58489258126825

6.0527217610161521934

20

98.350416551346285

6.0435521101892688678

21

99.898626342184102

6.0360318810818567800

22

99.993874441253126

6.0298473250239018567

23

99.999630595494608

6.02474965236684 78987

30

99.999999999998948

6.0067860930312057585

31

99.999999999999943

6.0056486887714202679

Table 1.1: Results obtained by running Program 1.1 on a Pentium4-based worksta-
tion, using GCC and the Linux system, compared to the exact values of sequence uy,.

these computed terms is very tiny, but nonzero. This suffices to make the

computed sequence “converge” to 100.

The Chaotic Bank Society

Recently, Mr. Gullible went to the Chaotic Bank Society, to learn more about
the new kind of account they offer to their best customers. He was told:

You first deposit $¢ — 1 on your account, where e = 2.7182818 - - -
is the base of the natural logarithms. The first year, we take $1
from your account as banking charges. The second year is better
for you: We multiply your capital by 2, and we take $1 of banking
charges. The third year is even better: We multiply your capital
by 3, and we take $1 of banking charges. And so on: The n-th
year, your capital is multiplied by n and we just take $1 of charges.
Interesting, isn’t it?

Mr. Gullible wanted to secure his retirement. So before accepting the
offer, he decided to perform some simulations on his own computer to see
what his capital would be after 25 years. Once back home, he wrote a C pro-
gram (Program 1.2).

1.3. Some Strange Behaviors 11

#include <stdio.h>

int main(void)
{
double account = 1.71828182845904523536028747135;
int i;
for (i = 1; i <= 25; i++)
{
account = ixaccount - 1;

}

printf("You will have $%1.17e on your account.\n", account);

Program 1.2: Mr. Gullible’s C program.

On his computer (with an Intel Xeon processor, and GCC on Linux, but
strange things would happen with any other equipment), he got the follow-
ing result:

You will have $1.20180724741044855e+09 on your account.

So he immediately decided to accept the offer. He will certainly be sadly
disappointed, 25 years later, when he realizes that he actually has around
$0.0399 on his account.

What happens in this example is easy to understand. If you call ag the
amount of the initial deposit and a,, the capital after the end of the n-th year,
then

1 1 1
= nix <a0_(€_1)+(n+1)!+(n+2)!+(n+3)!+'”>’

so that:

e if ag < e — 1, then a,, goes to —oo;

e if ag = e — 1, then a,, goes to 0;

e if ag > e — 1, then a,, goes to +oo.
In our example, ap = e — 1, so the exact sequence a, goes to zero. This
explains why the exact value of ags is so small. And yet, even if the arith-
metic operations were errorless (which of course is not the case), since e — 1 is

not exactly representable in floating-point arithmetic, the computed sequence
will go to +o00 or —oo, depending on rounding directions.

