BIRKHAUSER

Jean-Michel Muller Nicolas Brisebarre Florent de Dinechin Claude-Pierre Jeannerod Vincent Lefèvre Guillaume Melquiond Nathalie Revol Damien Stehlé Serge Torres

Handbook of Floating-Point Arithmetic

Birkhäuser Boston • Basel • Berlin Jean-Michel Muller CNRS, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France jean-michel.muller@ ens-lyon.fr

Claude-Pierre Jeannerod INRIA, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France claude-pierre.jeannerod@ ens-lyon.fr

Nathalie Revol INRIA, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France nathalie.revol@ens-lyon.fr Nicolas Brisebarre CNRS, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France nicolas.brisebarre@ ens-lyon.fr

Vincent Lefèvre INRIA, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France vincent@vinc17.net

Damien Stehlé CNRS, Macquarie University, and University of Sydney School of Mathematics and Statistics University of Sydney Sydney NSW 2006 Australia damien.stehle@gmail.com Florent de Dinechin ENSL, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France florent.de.dinechin@ ens-lyon.fr

Guillaume Melquiond INRIA Saclay – Île-de-France Parc Orsay Université 4, rue Jacques Monod 91893 Orsay Cedex France guillaume.melquiond@ inria.fr

Serge Torres ENSL, Laboratoire LIP École Normale Supérieure de Lyon 46, allée d'Italie 69364 Lyon Cedex 07 France serge.torres@ens-lyon.fr

ISBN 978-0-8176-4704-9 DOI 10.1007/978-0-8176-4705-6

e-ISBN 978-0-8176-4705-6

Library of Congress Control Number: 2009939668

Mathematics Subject Classification (2000): 65Y99, 68N30 ACM Subject Classification: G.1.0, G.4

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Birkhäuser Boston is part of Springer Science+Business Media (www.birkhauser.com)

Contents

Pr	eface			xv
Li	st of	Figure	S	xvii
Li	st of	Tables		xxi
Ι	Int	roduct	ion, Basic Definitions, and Standards	1
1	Intr	oductio	on	3
	1.1	Some	History	3
	1.2	Desira	able Properties	6
	1.3	Some	Strange Behaviors	7
		1.3.1	Some famous bugs	7
		1.3.2	Difficult problems	8
2	Def	inition	s and Basic Notions	13
	2.1	Floati	ng-Point Numbers	13
	2.2	Roun	ding	20
		2.2.1	Rounding modes	20
		2.2.2	Useful properties	22
		2.2.3	Relative error due to rounding	23
	2.3	Excep	otions	25
	2.4	Lost	or Preserved Properties of the Arithmetic on the Real	
		Numl	pers	27
	2.5	Note	on the Choice of the Radix	29
		2.5.1	Representation errors	29
		2.5.2	A case for radix 10	30
	2.6	Tools	for Manipulating Floating-Point Errors	32
		2.6.1	The ulp function	32
		2.6.2	Errors in ulps and relative errors	37
		2.6.3	An example: iterated products	37
		2.6.4	Unit roundoff	39
	2.7	Note	on Radix Conversion	40

		2.7.1	Conditions on the formats	40
		2.7.2	Conversion algorithms	43
	2.8	The Fu	used Multiply-Add (FMA) Instruction	51
	2.9	Interva	al Arithmetic	51
		2.9.1	Intervals with floating-point bounds	52
		2.9.2	Optimized rounding	52
3	Floa	ting-Po	pint Formats and Environment	55
	3.1	The IE	EE 754-1985 Standard	56
		3.1.1	Formats specified by IEEE 754-1985	56
		3.1.2	Little-endian, big-endian	60
		3.1.3	Rounding modes specified by IEEE 754-1985	61
		3.1.4	Operations specified by IEEE 754-1985	62
		3.1.5	Exceptions specified by IEEE 754-1985	66
		3.1.6	Special values	69
	3.2	The IE	EE 854-1987 Standard	70
		3.2.1	Constraints internal to a format	70
		3.2.2	Various formats and the constraints between them	71
		3.2.3	Conversions between floating-point numbers and	
			decimal strings	72
		3.2.4	Rounding	73
		3.2.5	Operations	73
		3.2.6	Comparisons	74
		3.2.7	Exceptions	74
	3.3	The N	eed for a Revision	74
		3.3.1	A typical problem: "double rounding"	75
		3.3.2	Various ambiguities	77
	3.4	The N	ew IEEE 754-2008 Standard	79
		3.4.1	Formats specified by the revised standard	80
		3.4.2	Binary interchange format encodings	81
		3.4.3	Decimal interchange format encodings	82
		3.4.4	Larger formats	92
		3.4.5	Extended and extendable precisions	92
		3.4.6	Attributes	93
		3.4.7	Operations specified by the standard	97
		3.4.8	Comparisons	99
		3.4.9	Conversions	99
		3.4.10	Default exception handling	100
		3.4.11	Recommended transcendental functions	103
	3.5	Floatir	ng-Point Hardware in Current Processors	104
		3.5.1	The common hardware denominator	104
		3.5.2	Fused multiply-add	104
		3.5.3	Extended precision	104
		3.5.4	Rounding and precision control	105
			~ •	

		3.5.5	SIMD instructions	106
		3.5.6	Floating-point on x86 processors: SSE2 versus x87	106
		3.5.7	Decimal arithmetic	107
	3.6	Floati	ng-Point Hardware in Recent Graphics Processing Units	108
	3.7	Relati	ons with Programming Languages	109
		3.7.1	The Language Independent Arithmetic (LIA) standard	109
		3.7.2	Programming languages	110
	3.8	Check	sing the Environment	110
		3.8.1	MACHAR	111
		3.8.2	Paranoia	111
		3.8.3	UCBTest	115
		3.8.4	TestFloat	116
		3.8.5	IeeeCC754	116
		3.8.6	Miscellaneous	116
п	Cl	ovorly	Using Floating-Point Arithmetic	117
11	CI	everiy	Using Hoating-Font Antimetic	11/
4	Basi	c Prop	erties and Algorithms	119
	4.1	Testin	g the Computational Environment	119
		4.1.1	Computing the radix	119
	4.0	4.1.2	Computing the precision	121
	4.2	Exact	Operations	122
		4.2.1		122
	4.0	4.2.2	Exact multiplications and divisions	124
	4.3	Accur	The East 2Computations of Sums of Two Numbers	125
		4.3.1	The Power algorithm	126
		4.3.2	I ne 25um algorithm	129
	4.4	4.3.3 Comm	If we do not use rounding to nearest	131
	4.4	Comp	Voltkomp splitting	132
		4.4.1	Dekker's multiplication algorithm	132
	15	4.4.2 Comr	Jox numbers	130
	т.Ј	4 5 1	Various error bounds	140
		452	Fror bound for complex multiplication	140
		453	Complex division	144
		4.5.4	Complex square root	149
5	The	Fused	Multiply-Add Instruction	151
	5.1	The 2	MultFMA Algorithm	152
	5.2	Comp	putation of Residuals of Division and Square Root	153
	5.3	Newt	on–Raphson-Based Division with an FMA	155
		5.3.1	Variants of the Newton–Raphson iteration	155

		5.3.2	Using the Newton–Raphson iteration for correctly	160
	54	Nowt	an-Rankson-Based Square Root with an FMA	167
	5.4	5 4 1	The basic iterations	167
		54.1	Using the Newton Rankson iteration for correctly	107
		5.4.2	rounded square roots	168
	55	Multi	Plication by an Arbitrary-Procision Constant	171
	5.5	551	Checking for a given constant C if Algorithm 5.2 will	171
		5.5.1	alwaye work	172
	56	Evalu	ation of the Error of an FMA	172
	5.0	Evalu	ation of Integer Powers	175
		Lvuiu		177
6	Enh Valı	anced	Floating-Point Sums, Dot Products, and Polynomial	181
	61	Prelim	ninaries	182
	0.1	6.1.1	Floating-point arithmetic models	183
		6.1.2	Notation for error analysis and classical error estimates	184
		6.1.3	Properties for deriving running error bounds	187
	6.2	Comp	puting Validated Running Error Bounds	188
	6.3	Comp	puting Sums More Accurately	190
		6.3.1	Reordering the operands, and a bit more	190
		6.3.2	Compensated sums	192
		6.3.3	Implementing a "long accumulator"	199
		6.3.4	On the sum of three floating-point numbers	199
	6.4	Comp	ensated Dot Products	201
	6.5	Comp	ensated Polynomial Evaluation	203
7	Lan	guages	and Compilers	205
	7.1	A Play	y with Many Actors	205
		7.1.1	Floating-point evaluation in programming languages .	206
		7.1.2	Processors, compilers, and operating systems	208
		7.1.3	In the hands of the programmer	209
	7.2	Floati	ng Point in the C Language	209
		7.2.1	Standard C99 headers and IEEE 754-1985 support	209
		7.2.2	Types	210
		7.2.3	Expression evaluation	213
		7.2.4	Code transformations	216
		7.2.5	Enabling unsafe optimizations	217
		7.2.6	Summary: a few horror stories	218
	7.3	Floati	ng-Point Arithmetic in the C++ Language	220
		7.3.1	Semantics	220
		7.3.2	Numeric limits	221
		7.3.3	Overloaded functions	222
	7.4	FORT	RAN Floating Point in a Nutshell	223

		7.4.1 Philosophy		223
		7.4.2 IEEE 754 support in FORTRAN		226
	7.5	Java Floating Point in a Nutshell		227
		7.5.1 Philosophy		227
		7.5.2 Types and classes		228
		7.5.3 Infinities, NaNs, and signed zeros		230
		7.5.4 Missing features		231
		7.5.5 Reproducibility		232
		7.5.6 The BigDecimal package		233
	7.6	Conclusion		234
II	I In	mplementing Floating-Point Operators		237
8	Alg	gorithms for the Five Basic Operations		239
	8.1	Overview of Basic Operation Implementation .		239
	8.2	Implementing IEEE 754-2008 Rounding		241
		8.2.1 Rounding a nonzero finite value wit	h unbounded	
		exponent range		241
		8.2.2 Overflow		243
		8.2.3 Underflow and subnormal results		244
		8.2.4 The inexact exception		245
		8.2.5 Rounding for actual operations		245
	8.3	Floating-Point Addition and Subtraction		246
		8.3.1 Decimal addition		249
		8.3.2 Decimal addition using binary encoding	;	250
		8.3.3 Subnormal inputs and outputs in binary	addition	251
	8.4	Floating-Point Multiplication		251
		8.4.1 Normal case		252
		8.4.2 Handling subnormal numbers in binary	multiplication	252
		8.4.3 Decimal specifics		253
	8.5	Floating-Point Fused Multiply-Add		254
		8.5.1 Case analysis for normal inputs		254
		8.5.2 Handling subnormal inputs		258
		8.5.3 Handling decimal cohorts		259
		8.5.4 Overview of a binary FMA implementat	ion	259
	8.6	Floating-Point Division		262
		8.6.1 Overview and special cases		262
		8.6.2 Computing the significand quotient		263
		8.6.3 Managing subnormal numbers		264
		8.6.4 The inexact exception		265
		8.6.5 Decimal specifics		265
	8.7	Floating-Point Square Root		265
		8.7.1 Overview and special cases		265

		8.7.2	Computing the significand square root	266
		8.7.3	Managing subnormal numbers	267
		8.7.4	The inexact exception	267
		8.7.5	Decimal specifics	267
9	Har	dware	Implementation of Floating-Point Arithmetic	269
	9.1	Introd	luction and Context	269
		9.1.1	Processor internal formats	269
		9.1.2	Hardware handling of subnormal numbers	270
		9.1.3	Full-custom VLSI versus reconfigurable circuits	271
		9.1.4	Hardware decimal arithmetic	272
		9.1.5	Pipelining	273
	9.2	The P	rimitives and Their Cost	274
		9.2.1	Integer adders	274
		9.2.2	Digit-by-integer multiplication in hardware	280
		9.2.3	Using nonstandard representations of numbers	280
		9.2.4	Binary integer multiplication	281
		9.2.5	Decimal integer multiplication	283
		9.2.6	Shifters	284
		9.2.7	Leading-zero counters	284
		9.2.8	Tables and table-based methods for fixed-point	
			function approximation	286
	9.3	Binary	y Floating-Point Addition	288
		9.3.1	Overview	288
		9.3.2	A first dual-path architecture	289
		9.3.3	Leading-zero anticipation	291
		9.3.4	Probing further on floating-point adders	295
	9.4	Binary	y Floating-Point Multiplication	296
		9.4.1	Basic architecture	296
		9.4.2	FPGA implementation	296
		9.4.3	VLSI implementation optimized for delay	298
		9.4.4	Managing subnormals	301
	9.5	Binary	y Fused Multiply-Add	302
		9.5.1	Classic architecture	303
		9.5.2	To probe further	305
	9.6	Divisi	on	305
		9.6.1	Digit-recurrence division	306
		9.6.2	Decimal division	309
	9.7	Concl	usion: Beyond the FPU	309
		9.7.1	Optimization in context of standard operators	310
		9.7.2	Operation with a constant operand	311
		9.7.3	Block floating point	313
		9.7.4	Specific architectures for accumulation	313
		9.7.5	Coarser-grain operators	317

	9.8	Probing	g Further	320
10	Soft	ware Im	plementation of Floating-Point Arithmetic	321
	10.1	Implen	nentation Context	322
		10.1.1	Standard encoding of binary floating-point data	322
		10.1.2	Available integer operators	323
		10.1.3	First examples	326
		10.1.4	Design choices and optimizations	328
	10.2	Binary	Floating-Point Addition	329
		10.2.1	Handling special values	330
		10.2.2	Computing the sign of the result	332
		10.2.3	Swapping the operands and computing the alignment	
			shift	333
		10.2.4	Getting the correctly rounded result	335
	10.3	Binary	Floating-Point Multiplication	341
		10.3.1	Handling special values	341
		10.3.2	Sign and exponent computation	343
		10.3.3	Overflow detection	345
		10.3.4	Getting the correctly rounded result	346
	10.4	Binary	Floating-Point Division	349
		10.4.1	Handling special values	350
		10.4.2	Sign and exponent computation	351
		10.4.3	Overflow detection	354
		10.4.4	Getting the correctly rounded result	355
	10.5	Binary	Floating-Point Square Root	361
		10.5.1	Handling special values	362
		10.5.2	Exponent computation	364
		10.5.3	Getting the correctly rounded result	365
		10.0.0		000
IV	El	ementa	ary Functions	373
11	Eval	uating	Floating-Point Elementary Functions	375
	11.1	Basic R	Cange Reduction Algorithms	379
		11.1.1	Cody and Waite's reduction algorithm	379
		11.1.2	Payne and Hanek's algorithm	381
	11.2	Boundi	ing the Relative Error of Range Reduction	382
	11.3	More S	ophisticated Range Reduction Algorithms	384
		11.3.1	An example of range reduction for the exponential	
			function	386
		11.3.2	An example of range reduction for the logarithm	387
	11.4	Polvno	mial or Rational Approximations	388
		11.4.1	L^2 case	389
		11.4.2	L^{∞} , or minimax case	390
			· · · · · · · · · · · · · · · · · · ·	

		11.4.3	"Truncated" approximations	392
	11.5	Evalua	ating Polynomials	393
	11.6	Correc	et Rounding of Elementary Functions to binary64	394
		11.6.1	The Table Maker's Dilemma and Ziv's onion peeling	
			strategy	394
		11.6.2	When the TMD is solved	395
		11.6.3	Rounding test	396
		11.6.4	Accurate second step	400
		11.6.5	Error analysis and the accuracy/performance tradeoff	401
	11.7	Comp	uting Error Bounds	402
		11.7.1	The point with efficient code	402
		11.7.2	Example: a "double-double" polynomial evaluation	403
12	Solv	ing the	e Table Maker's Dilemma	405
	12.1	Introd	uction	405
		12.1.1	The Table Maker's Dilemma	406
		12.1.2	Brief history of the TMD	410
		12.1.3	Organization of the chapter	411
	12.2	Prelim	inary Remarks on the Table Maker's Dilemma	412
		12.2.1	Statistical arguments: what can be expected in practice	412
		12.2.2	In some domains, there is no need to find worst cases .	416
		12.2.3	Deducing the worst cases from other functions or	
			domains	419
	12.3	The Ta	ble Maker's Dilemma for Algebraic Functions	420
		12.3.1	Algebraic and transcendental numbers and functions .	420
		12.3.2	The elementary case of quotients	422
		12.3.3	Around Liouville's theorem	424
		12.3.4	Generating bad rounding cases for the square root	
			using Hensel 2-adic lifting	425
	12.4	Solvin	g the Table Maker's Dilemma for Arbitrary Functions .	429
		12.4.1	Lindemann's theorem: application to some	
			transcendental functions	429
		12.4.2	A theorem of Nesterenko and Waldschmidt	430
		12.4.3	A first method: tabulated differences	432
		12.4.4	From the TMD to the distance between a grid and a	
			segment	434
		12.4.5	Linear approximation: Lefèvre's algorithm	436
		12.4.6	The SLZ algorithm	443
		12.4.7	Periodic functions on large arguments	448
	12.5	Some	Results	449
		12.5.1	Worst cases for the exponential, logarithmic,	
			trigonometric, and hyperbolic functions	449
		12.5.2	A special case: integer powers	458
	12.6	Curren	nt Limits and Perspectives	458

V	Ext	tensions	461
13	Form	nalisms for Certifying Floating-Point Algorithms	463
	13.1	Formalizing Floating-Point Arithmetic	463
		13.1.1 Defining floating-point numbers	464
		13.1.2 Simplifying the definition	466
		13.1.3 Defining rounding operators	467
		13.1.4 Extending the set of numbers	470
	13.2	Formalisms for Certifying Algorithms by Hand	471
		13.2.1 Hardware units	471
		13.2.2 Low-level algorithms	472
		13.2.3 Advanced algorithms	473
	13.3	Automating Proofs	474
		13.3.1 Computing on bounds	475
		13.3.2 Counting digits	477
		13.3.3 Manipulating expressions	479
		13.3.4 Handling the relative error	483
	13.4	Using Gappa	484
		13.4.1 Toy implementation of sine	484
		13.4.2 Integer division on Itanium	488
14	Exte	nding the Precision	493
	14.1	Double-Words, Triple-Words	494
		14.1.1 Double-word arithmetic	495
		14.1.2 Static triple-word arithmetic	498
		14.1.3 Quad-word arithmetic	500
	14.2	Floating-Point Expansions	503
	14.3	Floating-Point Numbers with Batched Additional Exponent .	509
	14.4	Large Precision Relying on Processor Integers	510
		14.4.1 Using arbitrary-precision integer arithmetic for	
		arbitrary-precision floating-point arithmetic	512
		14.4.2 A brief introduction to arbitrary-precision integer	
		arithmetic	513
VI	Pe	erspectives and Appendix	517
	~		-10
15	Con	clusion and Perspectives	519
16	Арр	endix: Number Theory Tools for Floating-Point Arithmetic	521
	16.1	Continued Fractions	521
	16.2	The LLL Algorithm	524
Bil	oliog	raphy	529
Ind	lex		567
	nen		207

Preface

FLOATING-POINT ARITHMETIC is by far the most widely used way of approximating real-number arithmetic for performing numerical calculations on modern computers. A rough presentation of floating-point arithmetic requires only a few words: a number x is represented in radix β floating-point arithmetic with a sign s, a significand m, and an exponent e, such that $x = s \times m \times \beta^e$. Making such an arithmetic reliable, fast, and portable is however a very complex task. Although it could be argued that, to some extent, the concept of floating-point arithmetic (in radix 60) was invented by the Babylonians, or that it is the underlying arithmetic of the slide rule, its first modern implementation appeared in Konrad Zuse's 5.33Hz Z3 computer.

A vast quantity of very diverse arithmetics was implemented between the 1960s and the early 1980s. The radix (radices 2, 4, 16, and 10 were then considered), and the sizes of the significand and exponent fields were not standardized. The approaches for rounding and for handling underflows, overflows, or "forbidden operations" (such as 5/0 or $\sqrt{-3}$) were significantly different from one machine to another. This lack of standardization made it difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki highlighted the relevant key concepts for designing an arithmetic that could be both useful for programmers and practical for implementers. These efforts resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic, and its follower, the IEEE 854-1987 "radix-independent standard." The standardization process was expertly orchestrated by William Kahan. The IEEE 754-1985 standard was a key factor in improving the quality of the computational environment available to programmers. It has been revised during recent years, and its new version, the IEEE 754-2008 standard, was released in August 2008.

By carefully specifying the behavior of the arithmetic operators, the 754-1985 standard allowed researchers to design extremely smart yet portable algorithms; for example, to compute very accurate sums and dot products, and to formally prove some critical parts of programs. Unfortunately, the subtleties of the standard are hardly known by the nonexpert user. Even more worrying, they are sometimes overlooked by compiler designers. As a consequence, floating-point arithmetic is sometimes conceptually misunderstood and is often far from being exploited to its full potential. This and the recent revision of the IEEE 754 standard led us to the decision to compile into a book selected parts of the vast knowledge on floating-point arithmetic. This book is designed for programmers of numerical applications, compiler designers, programmers of floating-point algorithms, designers of arithmetic operators, and more generally the students and researchers in numerical analysis who wish to more accurately understand a tool that they manipulate on an everyday basis. During the writing, we tried, whenever possible, to illustrate by an actual program the described techniques, in order to allow a more direct practical use for coding and design.

The first part of the book presents the history and basic concepts of floating-point arithmetic (formats, exceptions, correct rounding, etc.), and various aspects of the IEEE 754 and 854 standards and the new revised standard. The second part shows how the features of the standard can be used to develop smart and nontrivial algorithms. This includes summation algorithms, and division and square root relying on a fused multiply-add. This part also discusses issues related to compilers and languages. The third part then explains how to implement floating-point arithmetic, both in software (on an integer processor) and in hardware (VLSI or reconfigurable circuits). The fourth part is devoted to the implementation of elementary functions. The fifth part presents some extensions: certification of floating-point arithmetic and extension of the precision. The last part is devoted to perspectives and the Appendix.

Acknowledgements

Some of our colleagues around the world and students from École Normale Supérieure de Lyon and Université de Lyon greatly helped us by reading preliminary versions of this book: Nicolas Bonifas, Pierre-Yves David, Jean-Yves l'Excellent, Warren Ferguson, John Harrison, Nicholas Higham, Nicolas Louvet, Peter Markstein, Adrien Panhaleux, Guillaume Revy, and Siegfried Rump. We thank them all for their suggestions and interest.

We have been very pleased working with our publisher, Birkhäuser Boston. Especially, we would like to thank Tom Grasso, Regina Gorenshteyn, and Torrey Adams for their help.

Jean-Michel Muller, Nicolas Brisebarre Lyon, France Florent de Dinechin, Claude-Pierre Jeannerod July 2009 Vincent Lefèvre, Guillaume Melquiond Nathalie Revol, Damien Stehlé Serge Torres

List of Figures

2.1	Positive floating-point numbers for $\beta = 2$ and $p = 3$	18
2.2	Underflow before and after rounding.	19
2.3	The four rounding modes.	21
2.4	Relative error committed by rounding a real number to nearest	
	floating-point number.	24
2.5	Values of ulp according to Harrison's definition.	33
2.6	Values of ulp according to Goldberg's definition.	33
2.7	Counterexample in radix 3 for a property of Harrison's ulp	34
2.8	Conversion from ulps to relative errors.	38
2.9	Conversion from relative errors to ulps	39
2.10	Converting from binary to decimal, and back	42
2.11	Possible values of the binary ulp between two powers of 10.	43
2.12	Illustration of the conditions (2.10) in the case $b = 2^e$	47
3.1	Binary interchange floating-point formats	81
3.2	Decimal interchange floating-point formats	84
4.1	Independent operations in Dekker's product	139
5.1	Convergence of iteration (5.4).	157
5.2	The various values that should be returned in round-to-nearest mode assuming <i>a</i> is within one $ulp(h/a)$ from h/a	164
53	Position of Cx with respect to the result of Algorithm 5.2	174
0.0	robition of our what respect to the result of rigorithm 0.2.	17 1
6.1	Boldo and Melquiond's algorithm for computing $RN(a+b+c)$	
	in radix-2 floating-point arithmetic.	200
8.1	Specification of the implementation of a FP operation	240
8.2	Product-anchored FMA computation for normal inputs	255
8.3	Addend-anchored FMA computation for normal inputs	256
8.4	Cancellation in the FMA.	257
8.5	FMA $ab - c$, where a is the smallest subnormal, ab is	
	nevertheless in the normal range, $ c < ab $, and we have an	
	effective subtraction.	258

8.6	Significand alignment for the single-path algorithm	260
9.1	Carry-ripple adder.	275
9.2	Decimal addition.	275
9.3	An implementation of the decimal DA box	276
9.4	An implementation of the radix-16 DA box.	276
9.5	Binary carry-save addition.	277
9.6	Partial carry-save addition.	278
9.7	Carry-select adder.	279
9.8	Binary integer multiplication.	282
9.9	Partial product array for decimal multiplication.	283
9.10	A multipartite table architecture for the initial approximation	
	of 1/x	288
9.11	A dual-path floating-point adder.	289
9.12	Possible implementations of significand subtraction in the	
	close path.	290
9.13	A dual-path floating-point adder with LZA	292
9.14	Basic architecture of a floating-point multiplier without	
	subnormal handling.	297
9.15	A floating-point multiplier using rounding by injection,	
	without subnormal handling.	300
9.16	The classic single-path FMA architecture	304
9.17	A pipelined SRT4 floating-point divider without subnormal	
	handling	306
9.18	Iterative accumulator.	313
9.19	Accumulator and post-normalization unit.	315
9.20	Accumulation of floating-point numbers into a large	
	fixed-point accumulator.	315
9.21	The 2Sum and 2Mul operators.	319
11 1	The difference between he and its deemes ? Terden	
11.1	approximation in the interval [1, 2]	277
11 7	The difference between ln and its degree 5 minimax	577
11.2	approximation in the interval [1, 2]	377
11 3	The L^2 approximation n^* is obtained by projecting f on the	577
11.5	subspace generated by T_0 , T_1 , T_1	390
11 4	The $\exp(\cos(x))$ function and its degree-4 minimax	070
11.1	approximation on $[0, 5]$	391
		071
12.1	Example of an interval around $\hat{f}(x)$ containing $f(x)$ but no	
	breakpoint. Hence, $\operatorname{RN}(f(x)) = \operatorname{RN}(\hat{f}(x))$	407
12.2	Example of an interval around $\hat{f}(x)$ containing $f(x)$ and a	
	breakpoint.	408

12.3 Computing $P(1)$, $P(2)$, $P(3)$,, for $P(X) = X^3$ with 3	3
additions per value	. 433
12.4 The graph of f (and f^{-1}) and a regular grid consisting of points	5
whose coordinates are the breakpoints	. 435
12.5 The integer grid and the segment $y = b - a.x$; the	5
two-dimensional transformation modulo 1; and the	5
representation of the left segment (corresponding to $x \in \mathbb{Z}$)
modulo 1 as a circle.	. 438
12.6 Two-length configurations for $a = 17/45$. 439
14.1 The representation of Algorithm 2Sum [180]. Here, $s = RN(a + a)$	-
b), and $s + e = a + b$ exactly	. 501
14.2 The representation of rounded-to-nearest floating-poin	t
addition and multiplication [180]	. 501
14.3 SimpleAddQD: sum of two quadwords	. 502
14.4 Graphic representation of Shewchuk's Scale-Expansion	ı
Algorithm [377] (Algorithm 14.10)	. 508
16.1 The lattice $\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,2)$. 524
16.2 Two bases of the lattice $\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,2)$. 525

List of Tables

1.1	Results obtained by running Program 1.1 on a			
	Pentium4-based workstation, using GCC and Linux	10		
2.1	Rounding a significand using the "round" and "sticky" bits.			
2.2	ARRE and MRRE of various formats			
2.3	Converting from binary to decimal and back without error			
3.1	Main parameters of the formats specified by the IEEE 754-1985 standard.	57		
3.2	Sizes of the various fields in the formats specified by the IEEE 754-1985 standard, and values of the exponent bias.	57		
3.3	Binary encoding of various floating-point data in single	50		
3.4	How to interpret the binary encoding of an IEEE 754-1985	59		
	floating-point number.	60		
3.5	Extremal values in the IEEE 754-1985 standard.	61		
3.6	The thresholds for conversion from and to a decimal string,	65		
37	Correctly rounded decimal conversion range as specified by	05		
5.7	the IEEE 754-1985 standard.	65		
3.8	Comparison predicates and the four relations	66		
3.9	Floating-point from/to decimal string conversion ranges in the IEEE 854-1987 standard	73		
3.10	Correctly rounded conversion ranges in the IEEE 854-1987			
	standard.	73		
3.11	Results returned by Program 3.1 on a 32-bit Intel platform.	75		
3.12	Results returned by Program 3.1 on a 64-bit Intel platform.	76		
3.13	Main parameters of the binary interchange formats of size up to 128 bits specified by the 754-2008 standard [187].	81		
3.14	Main parameters of the decimal interchange formats of size	-		
	up to 128 bits specified by the 754-2008 standard [187]	81		
3.15	Width (in bits) of the various fields in the encodings of the	00		
	binary interchange formats of size up to 128 bits [187]	ō2		

3.16	Width (in bits) of the various fields in the encodings of the decimal interchange formats of size up to 128 bits [187].	85
3.17	Decimal encoding of a decimal floating-point number (IEEE	07
3 1 8	Binary encoding of a decimal floating-point number (IEEE	87
5.10	754-2008)	88
3.19	Decoding the declet $b_0b_1b_2\cdots b_9$ of a densely packed decimal oncoding to three docimal digits $d_1d_2d_3$	80
3.20	Encoding to three decimal digits $a_0a_1a_2$	09
	them being represented in binary by four bits, into a 10-bit declet <i>bab</i> by <i>w</i> , <i>b</i> , of a densely packed decimal encoding	80
3 21	Parameters of the interchange formats	93
3.22	Parameters of the binary256 and binary1024 interchange	20
0.00	formats deduced from Table 3.21.	93
3.23	formats deduced from Table 3.21.	94
3.24	Extended format parameters in the IEEE 754-2008 standard	94
3.25	Minimum number of decimal digits in the decimal external character sequence that allows for an error-free write-read	
	cycle, for the various basic binary formats of the standard	100
3.26	Execution times of decimal operations on POWER6	108
4.1	The four cases of Brent, Percival, and Zimmermann	143
5.1	Quadratic convergence of iteration (5.4).	157
5.2	Comparison of various methods for checking Algorithm 5.2.	176
6.1	Errors of various methods for $\sum x_i$ with $x_i = \text{RN}(\cos(i))$	198
6.2	Errors of various methods for $\sum x_i$ with $x_i = \text{RN}(1/i)$	198
7.1	FLT_EVAL_METHOD macro values.	213
7.2	FORTRAN allowable alternatives.	225
7.3	FORTRAN forbidden alternatives	226
8.1	Specification of addition/subtraction when both x and y are	247
8.2	Specification of addition for positive floating-point data	247
8.3	Specification of subtraction for floating-point data of positive	217
01	Sign	247
0.4	positive sign	251
8.5	Special values for $ x / y $.	263
8.6	Special values for $sqrt(x)$.	265
10.1	Standard integer encoding of binary32 data	324

10.2	Some floating-point data encoded by <i>X</i>	330
11.1 11.2	Some worst cases for range reductions	385 385
10.1		000
12.1	Actual and expected numbers of digit chains of length k of the form $1000 \cdots 0$ or $0111 \cdots 1$ just after the <i>p</i> -th bit of the infinitely precise significand of sines of floating-point numbers of precision $p = 16$ between $1/2$ and 1.	413
12.2	Actual and expected numbers of digit chains of length k of the form $1000 \cdots 0$ or $0111 \cdots 1$ just after the <i>p</i> -th bit of the infinitely precise significand of sines of floating-point	
12.3	numbers of precision $p = 24$ between $1/2$ and $1. \ldots \ldots$. Length k_{max} of the largest digit chain of the form $1000\cdots 0$ or $0111\cdots 1$ just after the <i>p</i> -th bit of the infinitely precise	414
	significands of sines and exponentials of floating-point numbers of precision p between $1/2$ and 1, for various p ,	415
12.4	Some results for small values in the binary64 format,	
12.5	assuming rounding to nearest	417
12.6	assuming rounding toward $-\infty$	418
	precise significand of $f(x)$ (or $f(x, y)$).	426
12.7	Worst cases for the function $1/\sqrt{x}$, for binary floating-point	
	systems and various values of the precision <i>p</i>	427
12.8	On the left, data corresponding to the current two-length	
	configuration: the interval I containing b , its length, and the	
	position of 0 in 1. On the right, data one can deduce for the next two-length configuration: the new interval I' containing	
	b and the position of b in I' .	440
12.9	Example with $a = 17/45$ and $b = 23.5/45$.	442
12.10	Worst cases for functions e^x , $e^x - 1$, 2^x , and 10^x	451
12.11	Worst cases for functions $\ln(x)$ and $\ln(1 + x)$.	452
12.12	Worst cases for functions $\log_2(x)$ and $\log_{10}(x)$.	453
12.13	Worst cases for functions $\sinh(x)$ and $\cosh(x)$.	454
12.14	Worst cases for inverse hyperbolic functions.	455
12.15	Worst cases for the trigonometric functions.	456
12.16	Worst cases for the inverse trigonometric functions	457
12.17	Longest runs k of identical bits after the rounding bit in the worst cases of function x^n , for $3 \le n \le 1035$, in binary64.	459
14.1	Asymptotic complexities of multiplication algorithms	514

Part I

Introduction, Basic Definitions, and Standards

Chapter 1 Introduction

R^{EPRESENTING AND MANIPULATING real numbers efficiently is required in many fields of science, engineering, finance, and more. Since the early years of electronic computing, many different ways of approximating real numbers on computers have been introduced. One can cite (this list is far from being exhaustive): fixed-point arithmetic, logarithmic [220, 400] and semi-logarithmic [294] number systems, continued fractions [228, 424], rational numbers [227] and possibly infinite strings of rational numbers [275], level-index number systems [71, 318], fixed-slash and floating-slash number systems [273], and 2-adic numbers [425].}

And yet, floating-point arithmetic is by far the most widely used way of representing real numbers in modern computers. Simulating an infinite, continuous set (the real numbers) with a finite set (the "machine numbers") is not a straightforward task: clever compromises must be found between, e.g., speed, accuracy, dynamic range, ease of use and implementation, and memory cost. It appears that floating-point arithmetic, with adequately chosen parameters (radix, precision, extremal exponents, etc.), is a very good compromise for most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in Chapter 3, but roughly speaking, a radix- β , precision-p, floating-point number is a number of the form

$$\pm m_0.m_1m_2\cdots m_{p-1}\times\beta^e,$$

where *e*, called the *exponent*, is an integer, and $m_0.m_1m_2\cdots m_{p-1}$, called the *significand*, is represented in radix β . The major purpose of this book is to explain how these numbers can be manipulated efficiently and safely.

1.1 Some History

Even if the implementation of floating-point arithmetic on electronic computers is somewhat recent, floating-point arithmetic itself is an old idea.

3

In *The Art of Computer Programming* [222], Donald Knuth presents a short history of floating-point arithmetic. He views the radix-60 number system of the Babylonians as some kind of early floating-point system. Since the Babylonians did not invent the zero, if the ratio of two numbers is a power of 60, then their representation in the Babylonian system is the same. In that sense, the number represented is the *significand* of a radix-60 floating-point representation of w.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives an approximation to $\sqrt{2}$ with four sexagesimal places (the digits represented on the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [434], and a very interesting analysis of the Babylonian mathematics related to YBC 7289 was done by Fowler and Robson [138].

The arithmetic of the slide rule, invented around 1630 by William Oughtred [433], can be viewed as another kind of floating-point arithmetic. Again, as with the Babylonian number system, we only manipulate significands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are probably Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described an electro-mechanical implementation of Babbage's Analytical Engine with floating-point arithmetic [341]. And yet, the first real, modern implementation of floating-point arithmetic was in Konrad Zuse's Z3 computer, built in 1941 [66]. It used a radix-2 floating-point number system, with 14-bit significands, 7-bit exponents and 1-bit sign. The Z3 computer had special representations for infinities and indeterminate results. These characteristics made the real number arithmetic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [347]. Photographs of Konrad Zuse and the Z3 can be viewed at http://www.computerhistory.org/projects/zuse_ z23/ and http://www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a look at the excellent book by Aspray et al. [15].

Radix 10 is what humans use daily for representing numbers and performing paper and pencil calculations. Therefore, to avoid input and output radix conversions, the first idea that springs to mind for implementing automated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic, radix 2 (and, more generally, radices that are a power of 2) is by far the easiest to implement. Hence, choosing the right radix for the internal representation of floating-point numbers was not obvious. Indeed, several different solutions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the PDP-10, and the Burroughs 570 and 6700 for example. The IBM 360 had a radix-16 floating-point arithmetic. Radix 10 has been extensively

used in financial calculations¹ and in pocket calculators, and efficient implementation of radix-10 floating-point arithmetic is still a very active domain of research [63, 85, 90, 91, 129, 414, 413, 428, 429]. The computer algebra system Maple also uses radix 10 for its internal representation of numbers. It therefore seems that the various radices of floating-point arithmetic systems that have been implemented so far have almost always been either 10 or a power of 2.

There has been a very odd exception. The Russian SETUN computer, built in Moscow University in 1958, represented numbers in radix 3, with digits -1, 0, and 1. This "balanced ternary" system has several advantages. One of them is the fact that rounding to nearest is equivalent to truncation [222]. Another one [177] is the following. Assume you use a radix- β fixed-point system, with *p*-digit numbers. A large value of β makes the implementation complex: the system must be able to "recognize" and manipulate β different symbols. A small value of β means that more digits are needed to represent a given number: if β is small, *p* has to be large. To find a compromise, we can try to minimize $\beta \times p$, while having the largest representable number $\beta^p - 1$ (almost) constant. The optimal solution² will almost always be $\beta = 3$. See http://www.computer-museum.ru/english/setun.htm for more information on the SETUN computer.

Various studies (see references [44, 76, 232] and Chapter 2) have shown that radix 2 with the *implicit leading bit convention* (see Chapter 2) gives better worst-case or average accuracy than all other radices. This and the ease of implementation explain the current prevalence of radix 2.

The world of numerical computation changed much in 1985, when the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was released [10]. This standard specifies various formats, the behavior of the basic operations and conversions, and exceptional conditions. As a matter of fact, the Intel 8087 mathematics co-processor, built a few years before in 1980, to be paired with the Intel 8088 and 8086 processors, was already extremely close to what would later become the IEEE 754-1985 standard. Now, most systems of commercial significance offer compatibility³ with IEEE 754-1985. This has resulted in significant improvements in terms of accuracy, reliability, and portability of numerical software. William Kahan played a leading role in the conception of the IEEE 754-1985 standard and in the development of smart algorithms for floating-point arithmetic. His web page⁴ contains much useful information.

¹Financial calculations frequently require special rounding rules that are very tricky to implement if the underlying arithmetic is binary.

²If *p* and β were real numbers, the value of β that would minimize $\beta \times p$ while letting β^p be constant would be $e = 2.7182818 \cdots$

³Even if sometimes you need to dive into the compiler documentation to find the right options: see Section 3.3.2 and Chapter 7.

⁴http://www.cs.berkeley.edu/~wkahan/

IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard, released in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-Point Arithmetic [11], is devoted to both binary (radix-2) and decimal (radix-10) arithmetic.

IEEE 754-1985 and 854-1987 have been under revision since 2001. The new revised standard, called IEEE 754-2008 in this book, merges the two old standards and brings significant improvements. It was adopted in June 2008 [187].

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.) requires us to find compromises between requirements that are seldom fully compatible. Among the various properties that are desirable, one can cite:

- Speed: Tomorrow's weather must be computed in less than 24 hours;
- Accuracy: Even if speed is important, getting a wrong result right now is worse than getting the correct one too late;
- Range: We may need to represent large as well as tiny numbers;
- **Portability**: The programs we write on a given machine must run on different machines without requiring modifications;
- Ease of implementation and use: If a given arithmetic is too arcane, almost nobody will use it.

With regard to accuracy, the most accurate current physical measurements allow one to check some predictions of quantum mechanics or general relativity with a relative accuracy close to 10^{-15} . This of course means that in some cases, we must be able to represent numerical data with a similar accuracy (which is easily done, using formats that are implemented on almost all current platforms). But this also means that we might sometimes be able to carry out computations that must end up with a relative error less than or equal to 10^{-15} , which is much more difficult. Sometimes, one will need a significantly larger floating-point format or smart "tricks" such as those presented in Chapter 4.

An example of a huge calculation that requires much care was carried out by Laskar's team at the Paris observatory [243]. They computed long-term numerical solutions for the insolation quantities of the Earth (very long-term, ranging from -250 to +250 millions of years from now).

In other domains, such as number theory, some multiple-precision computations are indeed carried out using a very large precision. For instance, in 2002, Kanada's group computed 1241 billion decimal digits of π [19], using the two formulas

$$\pi = 48 \arctan \frac{1}{49} + 128 \arctan \frac{1}{57} - 20 \arctan \frac{1}{239} + 48 \arctan \frac{1}{110443}$$
$$= 176 \arctan \frac{1}{57} + 28 \arctan \frac{1}{239} - 48 \arctan \frac{1}{682} + 96 \arctan \frac{1}{12943}.$$

These last examples are extremes. One should never forget that with 50 bits, one can express the distance from the Earth to the Moon with an error less than the thickness of a bacterium. It is very uncommon to need such an accuracy on a final result and, actually, very few physical quantities are defined that accurately.

1.3 Some Strange Behaviors

Designing efficient and reliable hardware or software floating-point systems is a difficult and somewhat risky task. Some famous bugs have been widely discussed; we recall some of them below. Also, even when the arithmetic is not flawed, some strange behaviors can sometimes occur, just because they correspond to a numerical problem that is intrinsically difficult. All this is not surprising: mapping the continuous real numbers on a finite structure (the floating-point numbers) cannot be done without any trouble.

1.3.1 Some famous bugs

• The divider of the first version of the Intel Pentium processor, released in 1994, was flawed [290, 122]. In extremely rare cases, one would get three correct decimal digits only. For instance, the computation of

```
8391667/12582905
```

would give $0.666869 \cdots$ instead of $0.666910 \cdots$.

• With release 7.0 of the computer algebra system Maple, when computing

1001!	
1000!	,

we would get 1 instead of 1001.

• With the previous release (6.0) of the same system, when entering

21474836480413647819643794

you would get

$$413647819643790) + ' - - .(- - .($$

• Kahan [208] mentions some strange behavior of some versions of the Excel spreadsheet. They seem to be due to an attempt to mimic a decimal arithmetic with an underlying binary one.

An even more striking behavior happens with some early versions of Excel 2007: When you try to compute

 $65536 - 2^{-37}$

the displayed result is 100001. This is an error in the binary-todecimal conversion used for displaying that result: the internal binary value is correct, if you add 1 to that result you get 65537. An explanation can be found at http://blogs.msdn.com/excel/ archive/2007/09/25/calculation-issue-update.aspx, and a patch is available from http://blogs.msdn.com/excel/archive/2007/10/09/ calculation-issue-update-fix-available.aspx

• Some bugs do not require any programming error: they are due to poor specifications. For instance, the Mars Climate Orbiter probe crashed on Mars in September 1999 because of an astonishing mistake: one of the teams that designed the numerical software assumed the unit of distance was the meter, while another team assumed it was the foot [7, 306].

Very similarly, in June 1985, a space shuttle positioned itself to receive a laser beamed from the top of a mountain that was supposedly 10,000 miles high, instead of the correct 10,000 feet [7].

Also, in January 2004, a bridge between Germany and Switzerland did not fit at the border because the two countries use a different definition of the sea level.⁵

1.3.2 Difficult problems

Sometimes, even with a correctly implemented floating-point arithmetic, the result of a computation is far from what could be expected.

A sequence that seems to converge to a wrong limit

Consider the following example, due to one of us [289] and analyzed by Kahan [208, 291]. Let (u_n) be the sequence defined as

$$\begin{cases}
 u_0 = 2 \\
 u_1 = -4 \\
 u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}.
 \end{cases}$$
(1.1)

⁵See http://www.spiegel.de/panorama/0,1518,281837,00.html.

One can easily show that the limit of this sequence is 6. And yet, on any system with any precision, the sequence will seem to go to 100.

For example, Table 1.1 gives the results obtained by compiling Program 1.1 and running it on a Pentium4-based workstation, using the GNU Compiler Collection (GCC) and the Linux system.

```
#include <stdio.h>
int main(void)
ł
  double u, v, w;
 int i, max;
 printf("n =");
 scanf("%d",&max);
 printf("u0 = ");
 scanf("%lf",&u);
 printf("u1 = ");
  scanf("%lf",&v);
 printf("Computation from 3 to n:\n");
  for (i = 3; i <= max; i++)</pre>
    {
      w = 111. - 1130./v + 3000./(v*u);
      u = v;
      v = w;
      printf("u%d = %1.17g\n", i, v);
    }
  return 0;
}
```

Program 1.1: A C program that is supposed to compute sequence u_n using doubleprecision arithmetic. The obtained results are given in Table 1.1.

The explanation of this weird phenomenon is quite simple. The general solution for the recurrence

$$u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}$$

is

$$u_n = \frac{\alpha \cdot 100^{n+1} + \beta \cdot 6^{n+1} + \gamma \cdot 5^{n+1}}{\alpha \cdot 100^n + \beta \cdot 6^n + \gamma \cdot 5^n},$$

where α , β , and γ depend on the initial values u_0 and u_1 . Therefore, if $\alpha \neq 0$ then the limit of the sequence is 100, otherwise (assuming $\beta \neq 0$), it is 6. In the present example, the starting values $u_0 = 2$ and $u_1 = -4$ were chosen so that $\alpha = 0$, $\beta = -3$, and $\gamma = 4$. Therefore, the "exact" limit of u_n is 6. And yet, when computing the values u_n in floating-point arithmetic using (1.1), due to the various rounding errors, even the very first computed terms become slightly different from the exact terms. Hence, the value α corresponding to

n	Computed value	Exact value
3	18.5	18.5
4	9.378378378378379	9.3783783783783783783784
5	7.8011527377521679	7.8011527377521613833
6	7.1544144809753334	7.1544144809752493535
11	6.2744386627644761	6.2744385982163279138
12	6.2186967691620172	6.2186957398023977883
16	6.1661267427176769	6.0947394393336811283
17	7.2356654170119432	6.0777223048472427363
18	22.069559154531031	6.0639403224998087553
19	78.58489258126825	6.0527217610161521934
20	98.350416551346285	6.0435521101892688678
21	99.898626342184102	6.0360318810818567800
22	99.993874441253126	6.0298473250239018567
23	99.999630595494608	6.0247496523668478987
30	99.9999999999998948	6.0067860930312057585
31	99.9999999999999943	6.0056486887714202679

Table 1.1: Results obtained by running Program 1.1 on a Pentium4-based workstation, using GCC and the Linux system, compared to the exact values of sequence u_n .

these computed terms is very tiny, but nonzero. This suffices to make the computed sequence "converge" to 100.

The Chaotic Bank Society

Recently, Mr. Gullible went to the Chaotic Bank Society, to learn more about the new kind of account they offer to their best customers. He was told:

You first deposit \$e - 1 on your account, where $e = 2.7182818 \cdots$ is the base of the natural logarithms. The first year, we take \$1 from your account as banking charges. The second year is better for you: We multiply your capital by 2, and we take \$1 of banking charges. The third year is even better: We multiply your capital by 3, and we take \$1 of banking charges. And so on: The *n*-th year, your capital is multiplied by *n* and we just take \$1 of charges. Interesting, isn't it?

Mr. Gullible wanted to secure his retirement. So before accepting the offer, he decided to perform some simulations on his own computer to see what his capital would be after 25 years. Once back home, he wrote a C program (Program 1.2).

```
#include <stdio.h>
int main(void)
{
    double account = 1.71828182845904523536028747135;
    int i;
    for (i = 1; i <= 25; i++)
        {
            account = i*account - 1;
        }
        printf("You will have $%1.17e on your account.\n", account);
}</pre>
```

Program 1.2: Mr. Gullible's C program.

On his computer (with an Intel Xeon processor, and GCC on Linux, but strange things would happen with any other equipment), he got the following result:

You will have \$1.20180724741044855e+09 on your account.

So he immediately decided to accept the offer. He will certainly be sadly disappointed, 25 years later, when he realizes that he actually has around \$0.0399 on his account.

What happens in this example is easy to understand. If you call a_0 the amount of the initial deposit and a_n the capital after the end of the *n*-th year, then

$$a_n = n! \times \left(a_0 - 1 - \frac{1}{2!} - \frac{1}{3!} - \dots - \frac{1}{n!} \right)$$

= $n! \times \left(a_0 - (e - 1) + \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \dots \right),$

so that:

- if $a_0 < e 1$, then a_n goes to $-\infty$;
- if $a_0 = e 1$, then a_n goes to 0;
- if $a_0 > e 1$, then a_n goes to $+\infty$.

In our example, $a_0 = e - 1$, so the *exact* sequence a_n goes to zero. This explains why the exact value of a_{25} is so small. And yet, even if the arithmetic operations were errorless (which of course is not the case), since e - 1 is not exactly representable in floating-point arithmetic, the *computed* sequence will go to $+\infty$ or $-\infty$, depending on rounding directions.