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Preface

FLOATING-POINT ARITHMETIC is by far the most widely used way of
approximating real-number arithmetic for performing numerical calcu-
lations on modern computers. A rough presentation of floating-point arith-
metic requires only a few words: a number z is represented in radix
floating-point arithmetic with a sign s, a significand m, and an exponent e,
such that z = s xm x 3°. Making such an arithmetic reliable, fast, and portable
is however a very complex task. Although it could be argued that, to some ex-
tent, the concept of floating-point arithmetic (in radix 60) was invented by the
Babylonians, or that it is the underlying arithmetic of the slide rule, its first
modern implementation appeared in Konrad Zuse’s 5.33Hz Z3 computer.

A vast quantity of very diverse arithmetics was implemented between
the 1960s and the early 1980s. The radix (radices 2, 4, 16, and 10 were then
considered), and the sizes of the significand and exponent fields were not
standardized. The approaches for rounding and for handling underflows,
overflows, or “forbidden operations” (such as 5/0 or v/—3) were significantly
different from one machine to another. This lack of standardization made it
difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki high-
lighted the relevant key concepts for designing an arithmetic that could be
both useful for programmers and practical for implementers. These efforts
resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic,
and its follower, the IEEE 854-1987 “radix-independent standard.” The stan-
dardization process was expertly orchestrated by William Kahan. The IEEE
754-1985 standard was a key factor in improving the quality of the compu-
tational environment available to programmers. It has been revised during
recent years, and its new version, the IEEE 754-2008 standard, was released
in August 2008.

By carefully specifying the behavior of the arithmetic operators, the 754-
1985 standard allowed researchers to design extremely smart yet portable al-
gorithms; for example, to compute very accurate sums and dot products, and
to formally prove some critical parts of programs. Unfortunately, the sub-
tleties of the standard are hardly known by the nonexpert user. Even more
worrying, they are sometimes overlooked by compiler designers. As a conse-
quence, floating-point arithmetic is sometimes conceptually misunderstood
and is often far from being exploited to its full potential.

XV



xvi Preface

This and the recent revision of the IEEE 754 standard led us to the
decision to compile into a book selected parts of the vast knowledge on
floating-point arithmetic. This book is designed for programmers of numer-
ical applications, compiler designers, programmers of floating-point algo-
rithms, designers of arithmetic operators, and more generally the students
and researchers in numerical analysis who wish to more accurately under-
stand a tool that they manipulate on an everyday basis. During the writing,
we tried, whenever possible, to illustrate by an actual program the described
techniques, in order to allow a more direct practical use for coding and
design.

The first part of the book presents the history and basic concepts of
floating-point arithmetic (formats, exceptions, correct rounding, etc.), and
various aspects of the IEEE 754 and 854 standards and the new revised stan-
dard. The second part shows how the features of the standard can be used
to develop smart and nontrivial algorithms. This includes summation algo-
rithms, and division and square root relying on a fused multiply-add. This
part also discusses issues related to compilers and languages. The third part
then explains how to implement floating-point arithmetic, both in software
(on an integer processor) and in hardware (VLSI or reconfigurable circuits).
The fourth part is devoted to the implementation of elementary functions.
The fifth part presents some extensions: certification of floating-point arith-
metic and extension of the precision. The last part is devoted to perspectives
and the Appendix.
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Chapter 1

Introduction

EPRESENTING AND MANIPULATING real numbers efficiently is required in
many fields of science, engineering, finance, and more. Since the early
years of electronic computing, many different ways of approximating real
numbers on computers have been introduced. One can cite (this list is
far from being exhaustive): fixed-point arithmetic, logarithmic [220, 400]
and semi-logarithmic [294] number systems, continued fractions [228, 424],
rational numbers [227] and possibly infinite strings of rational numbers [275],
level-index number systems [71, 318], fixed-slash and floating-slash number
systems [273], and 2-adic numbers [425].

And yet, floating-point arithmetic is by far the most widely used way
of representing real numbers in modern computers. Simulating an infinite,
continuous set (the real numbers) with a finite set (the “machine numbers”)
is not a straightforward task: clever compromises must be found between,
e.g., speed, accuracy, dynamic range, ease of use and implementation, and
memory cost. It appears that floating-point arithmetic, with adequately cho-
sen parameters (radix, precision, extremal exponents, etc.), is a very good
compromise for most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in
Chapter 3, but roughly speaking, a radix-3, precision-p, floating-point num-
ber is a number of the form

e
:I:mo.mlmg e Mp—1 X ﬂ R

where e, called the exponent, is an integer, and mg.myms - - - m,_1, called the
significand, is represented in radix (. The major purpose of this book is to
explain how these numbers can be manipulated efficiently and safely.

1.1 Some History

Even if the implementation of floating-point arithmetic on electronic com-
puters is somewhat recent, floating-point arithmetic itself is an old idea.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_1, 3
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010



4 Chapter 1. Introduction

In The Art of Computer Programming [222], Donald Knuth presents a short
history of floating-point arithmetic. He views the radix-60 number system
of the Babylonians as some kind of early floating-point system. Since the
Babylonians did not invent the zero, if the ratio of two numbers is a power
of 60, then their representation in the Babylonian system is the same. In that
sense, the number represented is the significand of a radix-60 floating-point
representation of w.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives an
approximation to v/2 with four sexagesimal places (the digits represented on
the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [434], and a
very interesting analysis of the Babylonian mathematics related to YBC 7289
was done by Fowler and Robson [138].

The arithmetic of the slide rule, invented around 1630 by William
Oughtred [433], can be viewed as another kind of floating-point arithmetic.
Again, as with the Babylonian number system, we only manipulate signifi-
cands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are prob-
ably Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described
an electro-mechanical implementation of Babbage’s Analytical Engine with
floating-point arithmetic [341]. And yet, the first real, modern implementa-
tion of floating-point arithmetic was in Konrad Zuse’s Z3 computer, built in
1941 [66]. It used a radix-2 floating-point number system, with 14-bit signifi-
cands, 7-bit exponents and 1-bit sign. The Z3 computer had special represen-
tations for infinities and indeterminate results. These characteristics made the
real number arithmetic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [347]. Photographs of Konrad Zuse and
the Z3 can be viewed at http://www.computerhistory.org/projects/zuse_
z23/ and http://www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a
look at the excellent book by Aspray et al. [15].

Radix 10 is what humans use daily for representing numbers and per-
forming paper and pencil calculations. Therefore, to avoid input and output
radix conversions, the first idea that springs to mind for implementing auto-
mated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic,
radix 2 (and, more generally, radices that are a power of 2) is by far the easiest
to implement. Hence, choosing the right radix for the internal representation
of floating-point numbers was not obvious. Indeed, several different solu-
tions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the
PDP-10, and the Burroughs 570 and 6700 for example. The IBM 360
had a radix-16 floating-point arithmetic. Radix 10 has been extensively
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used in financial calculations! and in pocket calculators, and efficient

implementation of radix-10 floating-point arithmetic is still a very active
domain of research [63, 85, 90, 91, 129, 414, 413, 428, 429]. The computer
algebra system Maple also uses radix 10 for its internal representation of
numbers. It therefore seems that the various radices of floating-point arith-
metic systems that have been implemented so far have almost always been
either 10 or a power of 2.

There has been a very odd exception. The Russian SETUN computer,
built in Moscow University in 1958, represented numbers in radix 3, with dig-
its —1, 0, and 1. This “balanced ternary” system has several advantages. One
of them is the fact that rounding to nearest is equivalent to truncation [222].
Another one [177] is the following. Assume you use a radix-3 fixed-point
system, with p-digit numbers. A large value of 3 makes the implementation
complex: the system must be able to “recognize” and manipulate 5 different
symbols. A small value of 3 means that more digits are needed to represent
a given number: if 3 is small, p has to be large. To find a compromise, we can
try to minimize 3 x p, while having the largest representable number 37 — 1
(almost) constant. The optimal solution? will almost always be 3 = 3. See
http://www.computer-museum.ru/english/setun.htm for more information
on the SETUN computer.

Various studies (see references [44, 76, 232] and Chapter 2) have shown
that radix 2 with the implicit leading bit convention (see Chapter 2) gives better
worst-case or average accuracy than all other radices. This and the ease of
implementation explain the current prevalence of radix 2.

The world of numerical computation changed much in 1985, when
the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was
released [10]. This standard specifies various formats, the behavior of the
basic operations and conversions, and exceptional conditions. As a matter of
fact, the Intel 8087 mathematics co-processor, built a few years before in 1980,
to be paired with the Intel 8088 and 8086 processors, was already extremely
close to what would later become the IEEE 754-1985 standard. Now, most
systems of commercial significance offer compatibility® with IEEE 754-1985.
This has resulted in significant improvements in terms of accuracy, reliability,
and portability of numerical software. William Kahan played a leading role
in the conception of the IEEE 754-1985 standard and in the development of
smart algorithms for floating-point arithmetic. His web page* contains much
useful information.

!Financial calculations frequently require special rounding rules that are very tricky to
implement if the underlying arithmetic is binary.

2If p and 3 were real numbers, the value of 3 that would minimize 8 x p while letting 57
be constant would be e = 2.7182818 - - -

*Even if sometimes you need to dive into the compiler documentation to find the right
options: see Section 3.3.2 and Chapter 7.

*http://www.cs.berkeley.edu/~wkahan/
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IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard,
released in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-
Point Arithmetic [11], is devoted to both binary (radix-2) and decimal
(radix-10) arithmetic.

IEEE 754-1985 and 854-1987 have been under revision since 2001. The
new revised standard, called IEEE 754-2008 in this book, merges the two
old standards and brings significant improvements. It was adopted in June
2008 [187].

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.)
requires us to find compromises between requirements that are seldom fully
compatible. Among the various properties that are desirable, one can cite:

e Speed: Tomorrow’s weather must be computed in less than 24 hours;

e Accuracy: Even if speed is important, getting a wrong result right now
is worse than getting the correct one too late;

e Range: We may need to represent large as well as tiny numbers;

e Portability: The programs we write on a given machine must run on
different machines without requiring modifications;

¢ Ease of implementation and use: If a given arithmetic is too arcane,
almost nobody will use it.

With regard to accuracy, the most accurate current physical measure-
ments allow one to check some predictions of quantum mechanics or general
relativity with a relative accuracy close to 107'°. This of course means that
in some cases, we must be able to represent numerical data with a similar
accuracy (which is easily done, using formats that are implemented on
almost all current platforms). But this also means that we might sometimes be
able to carry out computations that must end up with a relative error less than
or equal to 1015, which is much more difficult. Sometimes, one will need a
significantly larger floating-point format or smart “tricks” such as those pre-
sented in Chapter 4.

An example of a huge calculation that requires much care was car-
ried out by Laskar’s team at the Paris observatory [243]. They computed
long-term numerical solutions for the insolation quantities of the Earth (very
long-term, ranging from —250 to 4250 millions of years from now).

In other domains, such as number theory, some multiple-precision com-
putations are indeed carried out using a very large precision. For instance,
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in 2002, Kanada’s group computed 1241 billion decimal digits of 7 [19], using
the two formulas

1 1 1
m = 48arctan 0 + 128 arctan A 20 arctan 239 + 48 arctan 110443

1 1 1 1
= 1 — +2 tan — — 4 — .
76 arctan £ + 28 arctan 539 8 arctan 682 + 96 arctan 12943

These last examples are extremes. One should never forget that with 50
bits, one can express the distance from the Earth to the Moon with an error
less than the thickness of a bacterium. It is very uncommon to need such
an accuracy on a final result and, actually, very few physical quantities are
defined that accurately.

1.3 Some Strange Behaviors

Designing efficient and reliable hardware or software floating-point systems
is a difficult and somewhat risky task. Some famous bugs have been widely
discussed; we recall some of them below. Also, even when the arithmetic is
not flawed, some strange behaviors can sometimes occur, just because they
correspond to a numerical problem that is intrinsically difficult. All this is
not surprising: mapping the continuous real numbers on a finite structure
(the floating-point numbers) cannot be done without any trouble.

1.3.1 Some famous bugs

e The divider of the first version of the Intel Pentium processor, released
in 1994, was flawed [290, 122]. In extremely rare cases, one would get
three correct decimal digits only. For instance, the computation of

8391667/12582905
would give 0.666869 - - - instead of 0.666910 - - - .

o With release 7.0 of the computer algebra system Maple, when
computing
1001!
1000!
we would get 1 instead of 1001.

e With the previous release (6.0) of the same system, when entering
21474836480413647819643794
you would get

413647819643790) +' — — .(— — (
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e Kahan [208] mentions some strange behavior of some versions of the
Excel spreadsheet. They seem to be due to an attempt to mimic a deci-
mal arithmetic with an underlying binary one.

An even more striking behavior happens with some early versions of
Excel 2007: When you try to compute

65536 — 2737

the displayed result is 100001. This is an error in the binary-to-
decimal conversion used for displaying that result: the internal
binary value is correct, if you add 1 to that result you get 65537.
An explanation can be found at http://blogs.msdn.com/excel/
archive/2007/09/25/calculation-issue-update.aspx, and a patch is
available from http://blogs.msdn.com/excel/archive/2007/10/09/
calculation-issue-update-fix-available.aspx

e Some bugs do not require any programming error: they are due to poor
specifications. For instance, the Mars Climate Orbiter probe crashed
on Mars in September 1999 because of an astonishing mistake: one
of the teams that designed the numerical software assumed the unit
of distance was the meter, while another team assumed it was the
foot [7, 306].

Very similarly, in June 1985, a space shuttle positioned itself to receive
a laser beamed from the top of a mountain that was supposedly 10,000
miles high, instead of the correct 10,000 feet [7].

Also, in January 2004, a bridge between Germany and Switzerland did
not fit at the border because the two countries use a different definition
of the sea level.

1.3.2 Difficult problems

Sometimes, even with a correctly implemented floating-point arithmetic, the

result of a computation is far from what could be expected.

A sequence that seems to converge to a wrong limit

Consider the following example, due to one of us [289] and analyzed by
Kahan [208, 291]. Let (uy,) be the sequence defined as

uyg = 2

up = —4 (1.1)
11

v — 11— 30 3000

Up—1 Up—1Un—2

5See http://www.spiegel.de/panorama/0, 1518,281837,00.html.


http://blogs.msdn.com/excel/archive/2007/09/25/calculation-issue-update.aspx
http://blogs.msdn.com/excel/archive/2007/09/25/calculation-issue-update.aspx
http://blogs.msdn.com/excel/archive/2007/10/09/calculation-issue-update-fix-available.aspx
http://blogs.msdn.com/excel/archive/2007/10/09/calculation-issue-update-fix-available.aspx
http://www.spiegel.de/panorama/0,1518,281837,00.html

1.3. Some Strange Behaviors 9

One can easily show that the limit of this sequence is 6. And yet, on any
system with any precision, the sequence will seem to go to 100.

For example, Table 1.1 gives the results obtained by compiling
Program 1.1 and running it on a Pentium4-based workstation, using the GNU
Compiler Collection (GCC) and the Linux system.

#include <stdio.h>

int main(void)

{
double u, v, w;
int i, max;

printf("n =");

scanf("%d",&max) ;

printf("uo = ");

scanf ("%Lf",&u);

printf("ul = ");

scanf("%lf",&v);

printf("Computation from 3 to n:\n");
for (i = 3; i <= max; i++)

{
w = 111. - 1130./v + 3000./(vx*u);
u=yv;
V = w;
printf("u%sd = %1.17g\n", i, v);
}
return 0;

}

Program 1.1: A C program that is supposed to compute sequence w,, using double-
precision arithmetic. The obtained results are given in Table 1.1.

The explanation of this weird phenomenon is quite simple. The general
solution for the recurrence

1130 3000
+

Up—1 Up—1Un—2

Uy, = 111 —

i
S __a.100n+1+_ﬁ‘6n+1+_7.5n+1
I T 00n + 3 6n -5

where «, 3, and v depend on the initial values ug and ;. Therefore, if & # 0
then the limit of the sequence is 100, otherwise (assuming 3 # 0), it is 6. In
the present example, the starting values vy = 2 and u; = —4 were chosen so
that o = 0, 8 = —3, and v = 4. Therefore, the “exact” limit of u,, is 6. And yet,
when computing the values u,, in floating-point arithmetic using (1.1), due
to the various rounding errors, even the very first computed terms become
slightly different from the exact terms. Hence, the value « corresponding to
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H Computed value

Exact value

|

18.5

18.5

9.378378378378379

9.3783783783783783784

7.8011527377521679

7.8011527377521613833

7.1544144809753334

7.1544144809752493535

n
3
4
5
6
1

1

6.2744386627644761

6.2744385982163279138

12

6.2186967691620172

6.2186957398023977883

16

6.1661267427176769

6.0947394393336811283

17

7.2356654170119432

6.0777223048472427363

18

22.069559154531031

6.0639403224998087553

19

78.58489258126825

6.0527217610161521934

20

98.350416551346285

6.0435521101892688678

21

99.898626342184102

6.0360318810818567800

22

99.993874441253126

6.0298473250239018567

23

99.999630595494608

6.02474965236684 78987

30

99.999999999998948

6.0067860930312057585

31

99.999999999999943

6.0056486887714202679

Table 1.1: Results obtained by running Program 1.1 on a Pentium4-based worksta-
tion, using GCC and the Linux system, compared to the exact values of sequence uy,.

these computed terms is very tiny, but nonzero. This suffices to make the

computed sequence “converge” to 100.

The Chaotic Bank Society

Recently, Mr. Gullible went to the Chaotic Bank Society, to learn more about
the new kind of account they offer to their best customers. He was told:

You first deposit $¢ — 1 on your account, where e = 2.7182818 - - -
is the base of the natural logarithms. The first year, we take $1
from your account as banking charges. The second year is better
for you: We multiply your capital by 2, and we take $1 of banking
charges. The third year is even better: We multiply your capital
by 3, and we take $1 of banking charges. And so on: The n-th
year, your capital is multiplied by n and we just take $1 of charges.
Interesting, isn’t it?

Mr. Gullible wanted to secure his retirement. So before accepting the
offer, he decided to perform some simulations on his own computer to see
what his capital would be after 25 years. Once back home, he wrote a C pro-
gram (Program 1.2).
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#include <stdio.h>

int main(void)
{
double account = 1.71828182845904523536028747135;
int i;
for (i = 1; i <= 25; i++)
{
account = ixaccount - 1;

}

printf("You will have $%1.17e on your account.\n", account);

Program 1.2: Mr. Gullible’s C program.

On his computer (with an Intel Xeon processor, and GCC on Linux, but
strange things would happen with any other equipment), he got the follow-
ing result:

You will have $1.20180724741044855e+09 on your account.

So he immediately decided to accept the offer. He will certainly be sadly
disappointed, 25 years later, when he realizes that he actually has around
$0.0399 on his account.

What happens in this example is easy to understand. If you call ag the
amount of the initial deposit and a,, the capital after the end of the n-th year,
then

1 1 1
= nix <a0_(€_1)+(n+1)!+(n+2)!+(n+3)!+'”>’

so that:

e if ag < e — 1, then a,, goes to —oo;

e if ag = e — 1, then a,, goes to 0;

e if ag > e — 1, then a,, goes to +oo.
In our example, ap = e — 1, so the exact sequence a, goes to zero. This
explains why the exact value of ags is so small. And yet, even if the arith-
metic operations were errorless (which of course is not the case), since e — 1 is

not exactly representable in floating-point arithmetic, the computed sequence
will go to +o00 or —oo, depending on rounding directions.




