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Göteborg University
412 96 Göteborg
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00014 Helsinki
Finland

Mirjam Kretzschmar
Fakultät für Gesundheitswis-

senschaften
Universität Bielefeld
Universitätsstr. 25
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Preface

This edited volume contains a selection of chapters that are an outgrowth of the Eu-
ropean Conference on Mathematical and Theoretical Biology (ECMTB05, Dresden,
Germany, July 2005). The peer-reviewed contributions show that mathematical and
computational approaches are absolutely essential to solving central problems in the
life sciences, ranging from the organizational level of individual cells to the dynamics
of whole populations.

The contributions indicate that theoretical and mathematical biology is a diverse
and interdisciplinary field, ranging from experimental research linked to mathemati-
cal modelling to the development of more abstract mathematical frameworks in which
observations about the real world can be interpreted and with which new hypotheses
for testing can be generated. Today, much attention is also paid to the development of
efficient algorithms for complex computations and visualization, notably in molecular
biology and genetics. The field of theoretical and mathematical biology and medicine
has profound connections to many current problems of great relevance to society. The
medical, industrial, and social interests in its development are in fact undisputable.
Insights and predictions from mathematical modelling are used increasingly in deci-
sion support in medicine (e.g., immunology and spread of infectious diseases, cancer
research, cardiovascular research, neurological research, optimization of medical treat-
ments, imaging), environmental and nature management, climate problems, agriculture
and management of natural resources. Fast developments in areas such as biotechnol-
ogy (e.g., genome projects, genetic modification, tissue engineering) continue to add
new focal points of activity to the field. The contributions of this volume capture some
of these developments.

The volume contains five parts: epidemiology, evolution and ecology, immunol-
ogy, neural systems and the brain, and, finally, innovative mathematical methods and
education.

Part I deals with epidemiology and contains three chapters.
Smith discusses implications of new malaria vaccines. Recent breakthroughs in

malaria vaccines have given new hope that a safe, effective malaria vaccine may be
found. In particular, the following epidemiological questions are addressed: 1. What
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level of vaccination coverage is required to offset the limitations of an imperfect
disease-modifying vaccine? 2. Could the introduction of a low-efficacy malaria vac-
cine lead to an increase in the number of secondary infections? 3. What characteristics
of such a vaccine will have the greatest effect on the outcome? A mathematical model
is developed for a disease-modifying malaria vaccine that is given once prior to infec-
tion, and the minimum coverage level for disease eradication is established. It is shown
that there is a threshold depending on the relative rate of infection, the efficacy of the
vaccine, and the duration of infection. Vaccines which reduce the rate and duration of
infection will always result in a decrease in secondary infections. More surprisingly,
there is a duration “shoulder,” such that vaccines that increase the duration of infection
slightly will still lead to a decrease in secondary infections, even if the rate of infection
is unchanged. Beyond this, the number of secondary infections will increase unless the
rate of infection is sufficiently lowered. This is critical for low-efficacy vaccines.

Burie, et al. introduce a model for the invasion of a fungal disease over a vineyard.
In particular, the spatiotemporal spreading of a fungal disease over a vineyard is in-
vestigated using a SEIR-type model coupled with a set of partial differential equations
describing the dispersal of the spores. The model takes into account both short and
long range dispersal of spores and growth of the foliar surface. Results of numerical
simulations are presented, and a mathematical result for the asymptotic behavior of the
solutions is given.

Stollenwerk and Mikolajczyk present an algorithm for parameter estimation in
nosocomial infections. Parameter estimation in nosocomial infections poses specific
problems for estimation techniques. The mathematical description of the spread of
nosocomial infections incorporates transmission as the dynamic part; the outcome is
discrete, and the amount of available information is usually small. The authors trans-
fer an estimation technique developed previously for plant epidemics to nosocomial
infections and demonstrate its application to a data set related to methicillin-resistant
Staphyloccocus aureus (MRSA).

Part II focuses on evolution and ecology and consists of eight chapters.
Broom, et al. discuss evolutionarily stable investment in anti-predatory defenses

and aposematic signalling. Many species possess defenses (such as toxins) against
predator attack which cannot be observed by the predator prior to attack, but which
might be beneficial for the predator to avoid. Often, such animals are brightly col-
ored or have some other way of signalling that they are defended (aposematism). In an
earlier paper the authors examined the evolution and maintenance of defense and con-
spicuousness, the brightness of the defense signal, in such prey species using a game
theoretic model. Here, they develop the model further, and, in particular, expand on
the more theoretical results with examples demonstrating the type of solutions which
can occur. The authors categorize eight possible configurations of solution states for
simple solutions. Finally, it is shown that there is another class of solutions possible
where there is strong between-individual variation in appearance between conspicu-
ous, poorly defended prey, and one example of this complex solution is demonstrated.

Laird, et al. introduce an overview of the Tangled Nature model of evolutionary
ecology. The model focuses on the effect of evolution and multiple interactions on
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ecological and evolutionary observables. Furthermore, the model is individual based,
and ecological structures, such as species, are emergent quantities. The dynamics con-
sists of a simplistic mutation-prone multiplication in which the probability of produc-
ing an offspring is determined by the occupancy in genotype space. The macroscopic
long-time dynamics is intermittent and exhibits a slow decrease in the macroscopic
extinction rate. Ecological quantities such as the species-abundance distribution and
the species-area relationship compare qualitatively well with observations, as does the
relation between interaction and diversity. The effect of correlations between parents
and mutants has been studied, as well as the effect of a conserved resource.

Garay discusses the relative advantage and fundamental theorems of natural selec-
tion. According to the tenet of Darwinian selection, a phenotype will spread only if
its fitness is greater than the mean fitness of the entire population. It is therefore nat-
ural to introduce the notion of relative advantage of a replicator, which is defined as
the expected fitness of this replicator minus the average fitness of the entire replicator
population. For general replicator dynamics, it is shown that the relative advantage of
an offspring population over its parent population is proportional to the variance in
fitness. The relationship between the proposed and earlier versions of the fundamental
theorem of natural selection is also discussed.

Kon considers competitive exclusion between year-classes in a semelparous bien-
nial population. In particular, competitive exclusion between two reproductively iso-
lated year-classes in the Leslie matrix model for a semelparous biennial population is
investigated. The results show that competitive exclusion occurs if competition is more
severe between than within year-classes. A criterion is suggested which is applicable
even if the model exhibits complex behavior.

Nedorezov, et al. study the impact of winter conditions on the dynamics of an iso-
lated population. In particular, this chapter is devoted to the analysis of single-species
population dynamics models with overlapping and nonoverlapping generations. It is
assumed that there are no activities of individuals during the winter time (as, for exam-
ple, is the case for forest insect populations in the boreal zone), and changes in popula-
tion size at these moments are described with a broken trajectory (“jump down”). Fur-
thermore, it is assumed that the fecundity of individuals is constant and that the quota
of individuals surviving winter depends on the within-year population dynamics. The
dynamics of the models, which are determined by the influence of winter conditions
on the survival of individuals and by the influence of intra-population self-regulative
mechanisms, are analyzed. For some particular cases the conditions for population ex-
tinction and for stabilization at a nonzero level are determined; it is shown numerically
that chaotic regimes exist in some models. In addition, the conditions for the reduction
of the models to some well-known discrete models are obtained.

Fuller, et al. consider the topic of planning for biodiversity conservation using
stochastic programming. Rapid species extinctions and the loss of other biodiversity
features worldwide have prompted the development of a systematic planning frame-
work for the conservation of biodiversity. Limited resources (∼ 40 million USD annu-
ally) are available for conservation, particularly in the developing countries that con-
tain many of the world’s hotspots of species diversity. Thus, conservation planning
problems are often represented as mathematical programs in which the objective is to
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select sites to serve as conservation areas so that the cost of the plan is as small as
possible and adequate habitat is protected for each species. Here, the authors gener-
alize this approach to allow for uncertainty in the planning process. In particular, it is
assumed that the species to be protected disperse after the conservation areas are estab-
lished and that planners cannot anticipate with certainty the species’ future locations
when selecting the conservation areas. This uncertainty is modeled by including ran-
dom variables in the mathematical program. The approach is illustrated by designing
a network of conservation areas for birds in southern Quebec.

Eberl and Schraft present a diffusion-reaction model of a mixed culture biofilm
arising in food safety studies. Bacterial biofilms are communities of microorganisms
that develop on interfaces in aqueous environments. The authors formulate a density-
dependent diffusion-reaction model for the growth of a dual-species biofilm. Both bac-
teria respond differently to their environment and develop different types of biofilms:
one is a classical aerobic biofilm former that produces the characteristic cluster-and-
channel biofilm morphology; the other one also develops under anaerobic conditions
and tends to form flat, creeping biofilms. A previously developed nonstandard finite-
difference scheme is adapted for computer simulation. In a numerical experiment it is
shown how variations of a single parameter (growth rate) can trigger different spatial
patterns and organization of the biofilm community.

Iwata, et al. discuss the periodical population dynamics of lottery models with
undeveloped seeds. The mechanism that promotes coexistence of species has not been
completely clarified yet. The authors propose that the amount of nutrient can be one of
the factors that promotes coexistence of species. Plant species have to reproduce seeds
to produce descendants. Even if plant species do reproduce seeds, it is not ensured that
every seed will bud. The amount of seeds that can bud successfully depends on the
amount of nutrient: if the nutrient is scarce, then not every seed can bud, but if the
nutrient is rich, then every seed can bud. It is also assumed that the amount of seeds
reproduced by one plant individual depends on the amount of nutrient. It is shown that
in this situation the population dynamics of plants exhibits a complex behavior, which
promotes coexistence of species.

Part III deals with the immune system and has four chapters.
Zanlungo, et al. present an automata-based microscopic model for the clonal ex-

pansion process. The model is based on a repertoire of antigens and T lymphocytes
interacting via the APC cells which present the antigen peptides. Each cell is repre-
sented by an automaton moving randomly on a two-dimensional lattice. This simplified
model is used in order to introduce local and spatial considerations in the mathematical
models of clonal expansion based on differential equations, and at the same time to at-
tempt an analytical interpretation of the results of computer simulations. Furthermore,
a mean field theory is derived, whose results are in good agreement with the solutions
of the microscopic model, at least for situations that are not too far from equilibrium.
This model may be used as the basis of a more realistic one that could follow the clonal
expansion process on a simplified version of the lymphatic network.

Vogel and Behn focus on Th1–Th2 regulation and allergy and present a bifurcation
analysis of the nonautonomous system. A previously proposed mathematical model
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based on a simplified scheme of Th1–Th2 regulation mediated by the cytokine net-
work which describes the population dynamics of allergen-specific naive T cells, Th1
and Th2 cells, autocrine and cross-suppressive cytokines, and allergen is further in-
vestigated. The model provides a theoretical explanation of the switch from a Th2-
dominated response to a Th1-dominated response to allergen in allergic individuals as
a result of a hyposensitization therapy. The authors focus here on the bifurcation anal-
ysis of the nonautonomous dynamical system driven by periodic allergen injections.
The stability of the fixed points of a stroboscopic map is investigated. The set of unsta-
ble fixed points forms the dynamical separatrix between the regions of Th2-dominated
response and Th1-dominated response which is crossed during a successful therapy.
The maintenance phase of the therapy holds the system near the stable fixed point of
the stroboscobic map.

Schmidtchen and Behn discuss the architecture of randomly evolving idiotypic net-
works. B lymphocytes express on their surface receptors (antibodies) of a given speci-
ficity (idiotype). Crosslinking these receptors by complementary structures, antigens
or antibodies, stimulates the lymphocyte. Thus, a large functional network of inter-
acting lymphocytes, the idiotypic network, emerges. Idiotypic networks, conceived by
Niels Jerne 30 years ago, experience a renewed interest, e.g., in the context of autoim-
mune diseases. In a previously proposed minimalistic model, idiotypes are represented
by bit strings. The population dynamics of the idiotype clones is reduced to a zero-one
scheme. An idiotype survives only if it meets enough but not too many complemen-
tary structures. The authors investigate the random evolution of the network towards
a highly organized functional architecture which is driven by the influx of new idio-
types, randomly generated in bone marrow. The vertices can be classified into different
groups, which are clearly distinguished, e.g., by the mean lifetime of the occupied ver-
tices. They include densely connected core groups and peripheral groups of isolated
vertices, resembling the central and peripheral parts of the biological network. The au-
thors have determined the construction principles of the observed patterns and propose
a description of their architecture, which is easily transferable to other patterns and
applicable to different system sizes.

Sannikova presents an analysis of infectious mortality by means of the individu-
alized risk model. The goal of the work is to describe the mechanism underlying the
age-specific increase in death risk related to immunosenescence and to determine the
cause-specific hazard rate as a function of immune system characteristics. Therefore,
a mathematical model that allows for the estimation of the age-specific risk of death
caused by infectious diseases has been developed. The model consists of three parts:
(1) a model of immunosenescence, (2) a model of infectious disease, and (3) a model
giving the relationship between disease severity and the risk of death. The proposed
model makes it possible to analyze age-specific mortality from infectious diseases and
to predict future changes in mortality due to public health activity. At the same time it
can be used for individualized risk assessment.

Part IV deals with neural systems and the brain and includes nine chapters.
Schierwagen, et al. focus on neuromorphological phenotyping in transgenic mice.

3D morphological data have been used to quantitatively characterize the morpholog-
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ical phenotype of pyramidal neurons in transgenic mice. The authors calculated the
multiscale fractal dimension (MFD) of reconstructed neuronal cells. Changes in the
complexity of neuronal morphology due to permanent activation of p21Ras in the pri-
mary somatosensory cortex of transgenic mice correlate with changes in the MFD of
dendrites of pyramidal neurons. Transgenic neurons seem slightly less complex (i.e.,
have lower peak fractal dimension) if compared with the wild type. On the other hand,
it is shown that the enhanced p21Ras activity in transgenic mice may lead to greater
variety in the cell morphological phenotype.

Gibson, et al. introduce a quantitative model of ATP-mediated calcium wave prop-
agation in astrocyte networks. In the past, attention has mainly been focused on neu-
rons and the role they play, both individually and as parts of networks, in the func-
tioning of the brain and nervous system. However, glial cells outnumber neurons in
the brain, and it is now becoming apparent that, far from just performing support-
ive and housekeeping tasks, they are also actively engaged in information processing
and possibly even learning. Communication in glial cells is manifested by waves of
calcium ions (Ca2+) that are released from internal stores, and these waves are ob-
served experimentally using fluorescent markers attached to the ions. The waves can
be initiated by stimulation of a single cell, and initially it was assumed that the trans-
mission mechanism involved the passage of an intercellular signalling agent through
gap junctions connecting the cells. However, a surprising feature is that in many cases
the calcium waves can cross cell-free zones, thus indicating the presence of an extra-
cellular messenger. The authors have constructed a mathematical model of calcium
wave propagation in networks of model astrocytes, these being a subclass of glial
cells. The extracellular signalling agent is ATP (adenosine triphosphate), and it acts
on metabotropic purinergic receptors on the astrocytes, initiating a G-protein cascade
leading to the production of inositol trisphosphate (IP3) and the subsequent release of
Ca2+ from intracellular stores via IP3-sensitive channels. Stimulation of one cell (by a
pulse of ATP or by raising the IP3 level) leads to the regenerative release of ATP both
from this cell and from neighboring cells, and hence a Ca2+ wave. Results are given
for the propagation of Ca2+ waves in two-dimensional arrays of model astrocytes and
also in lanes with cell-free zones in between. These theoretical considerations support
the concept of extracellular purinergic transmission in astrocyte networks.

Atay and Hutt analyze the dynamics of neural fields with distributed transmission
speeds. In particular, the continuous field model of neural populations is considered
with the addition of a distribution of transmission speeds. The speed distribution arises
as a result of the natural variability of the properties of axons, such as their degree
of myelination. The authors analyze the stability and bifurcations of equilibrium solu-
tions for the resulting field dynamics. Using a perturbation approach, it is shown that
the speed distribution affects the frequency of bifurcating periodic solutions and the
phase speed of traveling waves. The theoretical findings are illustrated by numerical
calculations.

Hampel focuses on the estimation of differential entropy for positive random vari-
ables and its application in computational neuroscience. This chapter takes essentials
steps toward the goal of a differential entropy concept and provides a set of methods
related to differential entropy estimation. At the beginning, the author defines the basic
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terms: entropy, differential entropy, Kullback–Leibler distance, and refractory periods.
Relations between differential entropy and the Kullback–Leibler distance are demon-
strated. Hereafter a detailed description of the used methods is provided. These meth-
ods can be divided into three groups: parametric methods of entropy estimation, “plug-
in” entropy estimators based on nonparametric density estimation, and direct entropy
estimators. The formulas for direct entropy estimation based on the first four sample
moments are introduced. The results are illustrated by comparison of the methods of
entropy estimation, combined with two refractory period estimates. In particular, the
author compares the estimates based on the histogram, the kernel density estimator,
the sample spacing method, Vasicek’s method, the nearest neighbor distance method,
and the methods based on sample moments.

Tyrcha discusses the dynamics of integrate-and-fire models. In particular, a model
for the generation of action potentials by a neuron is presented. This model is based on
standard and commonly accepted properties of excitable cells (neurons). The novelty is
that under quite natural assumptions the generation of action potentials is described as
a special case of a general model for systems generating recurrent biological events. A
formula for a density function of the membrane potential distribution in the firing times
of the neuron is derived. An analysis of time intervals between spikes is of special in-
terest. Three different interspike interval distributions are found, where one of them is
close to the stable distribution. This is consistent with the known literature hypothesis
that stable interspike intervals form part of the neural chain in which information is
being preserved.

Kotti and Rigas present a Monte Carlo method for the identification of the muscle
spindle. In particular, the behavior of the muscle spindle is described by using a logis-
tic regression model. The system receives input from a motoneuron and fires through
the Ia sensory axon that transfers the information to the spinal cord and from there to
the brain. Three functions, which are of special interest, are included in the model: the
threshold, the recovery, and the summation functions. The most favorable method of
estimating the parameters of the muscle spindle is the maximum likelihood approach.
However, there are cases when this approach fails to converge because some of the
model’s parameters are considered to be perfect predictors. In this case, the exact like-
lihood can be used, which succeeds in finding the estimates and the exact confidence
intervals for the unknown parameters. This method has the main drawback that it is
computationally very demanding, especially with large data sets. A good alternative in
this case is a specific application of the Monte Carlo technique.

Marsalek and Drapal discuss mechanisms of coincidence detection in the auditory
brainstem. The auditory brainstem in mammals contains a neural circuit for sound lo-
calization. The exact functioning of this circuit is still under controversy. Two spike
generation mechanisms studied previously, excitatory coincidence detection and in-
hibitory coincidence detection, are studied here regarding the input-output relationship
of the spike time densities. The authors propose that synchronous binary multiplica-
tion operation on spikes is the underlying process of these two variants of coincidence
detection. A derivation of time to the spike is shown, which allows us to estimate the
contribution of the neural circuit in the auditory brainstem to the overall reaction time
of sound localization. The brainstem contribution is minute compared to the conduc-
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tion delays in the mammalian neocortex. Finally, the skewness of the resulting output
spike time densities is discussed in both the excitatory and inhibitory cases, and the in-
hibitory case is shown to be close to the normal density with a standard goodness-of-fit
test for the normal probability density function.

Hübsch and Tittgemeyer present a multi-scale analysis of brain surface data. The
human brain is characterized by complex convolution patterns. Analyzing the variabil-
ity of these patterns among human subjects can reveal information for the detection
of diseases that affect the human brain. This chapter presents a novel method to vi-
sualize the brain surface and its folding pattern at different scales. The analysis steps
involve the transformation of the cortical surface from high resolution MRT images to
an initial representation as a triangulated mesh, and finally to a representation as a se-
ries of spherical harmonic basis functions. The spherical harmonic parameterization of
the surface is translation, rotation, and scaling invariant. The parametric representation
gives a multidimensional coefficient vector for each cortical surface. The technique
allows easier recognition of convolutional patterns. The method is a first step toward a
statistical multi-scale analysis of the brain surface.

Scheper focuses on spike generation processes. Over the last years, the focus of
the computational aspects of neurons has moved from synaptic weight and firing rate
encoding to temporal firing encoding. On the other hand, several elements of these
models have been based on some conceptual assumptions that imply relatively simple
dynamic behavior of neuronal membrane activity in an active-passive process. In line
with recent advances that yielded a better understanding of the biochemical processes
that occur within cells, it is proposed that the processes that are involved in a mem-
brane depolarization cascade are less static than has been assumed so far. In particular,
the possibilities of low-level computation at the membrane level need to be explored
more extensively. In this chapter some computational properties of the spike generation
processes are explored using phenomenological models.

Part V focuses on innovative mathematical methods and education and consists of
eight chapters.

Claussen introduces Offdiagonal Complexity (OdC) as a computationally quick
network complexity measure and applies it to protein networks and cell division. Many
complex biological, social, and economic networks show topologies drastically differ-
ing from random graphs. But what is a complex network, i.e., how can one quantify the
complexity of a graph? Here the OdC, a new, and computationally cheap, measure of
complexity is defined, based on the node-node link cross-distribution, whose nondiag-
onal elements characterize the graph structure beyond link distribution, cluster coeffi-
cient, and average path length. The OdC approach is applied to the Helicobacter pylori
protein interaction network and randomly rewired surrogates thereof. In addition, OdC
is used to characterize the spatial complexity of cell aggregates. The author investigates
the earliest embryo development states of Caenorhabditis elegans. The development
states of the premorphogenetic phase are represented by symmetric binary-valued cell
connection matrices with dimension growing from 4 to 385. These matrices can be in-
terpreted as adjacency matrices of an undirected graph or network. The OdC approach
allows us to describe quantitatively the complexity of the cell aggregate geometry.
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Simitev and Biktashev present an analytically solvable asymptotic model of atrial
excitability. In particular, a three-variable simplified model of excitation fronts in hu-
man atrial tissue is introduced. The model is derived by novel asymptotic techniques
from a previously introduced biophysically realistic model. An iterative analytical so-
lution of the model is presented, which is in excellent quantitative agreement with
the realistic model. This opens new possibilities for analytical studies as well as for
efficient numerical simulation of this and other cardiac models of similar structure.

Lalam and Jacob introduce a Bayesian approach to the quantitative polymerase
chain reaction. This reaction aims at determining the initial amount of a specific por-
tion of DNA molecules from the observation of the amplification process of the DNA
molecules’ quantity. This amplification process is achieved through successive replica-
tion cycles and depends on the efficiency of the replication of the molecules. Modelling
the amplification process by a branching process, the authors estimate the unknown pa-
rameter using Markov chain Monte Carlo methods under a Bayesian framework.

Buck-Sorlin, et al. present a model of poplar (Populus sp.) physiology and mor-
phology based on relational growth grammars. Functional-structural plant models
(FSPMs), combining the physiological function of a plant with its architecture, re-
quire precise and transparent specifications. This can be viewed as a new challenge
to the design of programming languages. Here the authors introduce, exemplarily, a
model of young poplar trees, based on the new formalism of relational growth gram-
mars (RGGs), which extend the well-known Lindenmayer (L-)systems to a specific
type of node- and edge-labelled graph grammars. The model has been written in the
programming language XL, which extends standard Java by rule-based programming
with RGGs and overcomes many of the disadvantages of L-systems. RGGs can bridge
different scales: In the presented model, morphogenetic rules in L-system style are
combined with rules describing a regulatory network of hormone biosynthesis and
rules updating photosynthate concentrations of shoot modules, all in one and the same
formalism.

Calvez and Dolak-Struß analyze the asymptotic behavior of a two-dimensional
Keller–Segel model with and without density control. In particular, the authors study
the Keller–Segel model for chemotaxis, consisting of a drift-diffusion equation de-
scribing the evolution of the cell density coupled to an equation for the chemoattrac-
tant. It is known that in the classical Keller–Segel model, solutions can become un-
bounded in finite time. The authors present recent analytical results for this model, and
compare its behavior in two space dimensions numerically to the behavior of a model
accounting for the finite volume of cells. This modified Keller–Segel model relies on
the assumption that cells stop aggregating when their density is too high, and thus al-
lows for the global existence of solutions. The authors characterize the slow movement
of a certain class of plateau-shaped solutions and perform numerical experiments for
both models, showing that solutions of the classical (before blow-up) and of the den-
sity control model share common features: regions of high cell density are attracted by
each other and, under suitable boundary conditions, by the domain boundaries.

Jacob discusses saturation effects in population dynamics. The chapter deals with
the behavior of a branching population undergoing saturation effects when it becomes
too large. The author studies, in particular, the limits of the prediction given in the
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setting of the deterministic dynamical system related to the stochastic branching pro-
cess modelling the evolution of the population. Furthermore, Jacob also generalizes
the usual Markovian branching processes of order one to size-dependent branching
processes that may have a longer memory and gives conditions leading to an almost
sure extinction of the process while the dynamical system is persistent. The notion of
reproductive rate is explained and generalized. Finally, some examples are given, in
particular, the amplification process in the PCR (polymerase chain reaction).

Klauß and Voß-Böhme consider modelling and simulation by stochastic interact-
ing particle systems. Stochastic interacting particle systems (IPSs) are individual-based
models, which include stochastic local interactions on a spatial lattice. In this respect
an IPS works similarly to a cellular automaton. However, IPSs are continuous-time
Markov processes, hence there is a large background of analytical methods. Further-
more, one has the possibility to simulate the system on a finite lattice. The authors
explain the modelling steps and describe the core of a simulation algorithm. The idea
is to convince the reader that IPSs can be used to set up and simulate sophisticated and
applicable models, but allow an analytical approach as well.

De Vries and Hillen present mathematical biology teaching experiences from a
summer school for undergraduates. For the past four years, the University of Alberta
has hosted a summer school on mathematical biology, aimed at undergraduate stu-
dents who have completed 2–3 years of study in mathematics or a similar quantitative
science. The aim of this summer school is to introduce the students to mathematical
modelling and analysis applied to real biological systems. In the span of 10 days, stu-
dents attend lectures and exercise sessions, learn how to set up mathematical models,
and use analytical and computational tools to relate them to biological data. Further-
more, they experience the modelling process by working on a research project. In this
chapter, the authors explain their teaching philosophy, share some unique features of
the summer school, and exemplify the key course components.

Finally, the volume owes its existence to the support of many colleagues. First of
all, thanks go to the authors of the various contributions. We would also like to express
our gratitude to the members of the ECMTB05 scientific committee and to a signif-
icant number of other colleagues for providing reviews and suggestions. ECMTB05
and these peer-reviewed proceedings have only become possible thanks to the strong
institutional support provided by the Centre for Information Services and High Per-
formance Computing (Technical University of Dresden). Particular thanks go to Pro-
fessor Wolfgang E. Nagel, the head of this Centre and many colleagues at the Centre,
particularly Niloy Ganguly, Christian Hoffmann, Samatha Kottha, Claudia Schmidt,
Jörn Starruß, and Sabine Vollheim. Finally, we would like to thank Tom Grasso of
Birkhäuser for making this project possible.

Dresden, January 2007
Andreas Deutsch (for the editors)
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Could Low-Efficacy Malaria Vaccines Increase
Secondary Infections in Endemic Areas?

Robert J. Smith?

Department of Mathematics and Faculty of Medicine, The University of Ottawa,
585 King Edward Ave, Ottawa, Ontario, K1N 6N5, Canada; rsmith43@uottawa.ca

Summary. Recent breakthroughs in malaria vaccines have given new hope that a safe, effec-
tive malaria vaccine may be found. The following epidemiological questions are addressed: 1.
What level of vaccination coverage is required to offset the limitations of an imperfect disease-
modifying vaccine? 2. Could the introduction of a low-efficacy malaria vaccine lead to an in-
crease in the number of secondary infections? 3. What characteristics of such a vaccine will have
the greatest effect on the outcome? A mathematical model is developed for a disease-modifying
malaria vaccine that is given once prior to infection, and the minimum coverage level for disease
eradication is established. There is a threshold depending on the relative rate of infection, the
efficacy of the vaccine and the duration of infection. Vaccines which reduce the rate and duration
of infection will always result in a decrease in secondary infections. More surprisingly, there is
a duration “shoulder,” such that vaccines that increase the duration of infection slightly will still
lead to a decrease in secondary infections, even if the rate of infection is unchanged. Beyond
this, the number of secondary infections will increase unless the rate of infection is sufficiently
lowered. This is critical for low-efficacy vaccines.

Key words: Malaria, vaccines, coverage, rate of infection, duration of infection, efficacy.

1.1 Introduction

Malaria remains one of the most important human diseases throughout the tropical and
subtropical regions of the world and causes more than 300 million acute illnesses and
at least one million deaths annually [18]. 90% of deaths due to malaria occur in sub-
Saharan Africa, mostly among young children [17]. The search for a malaria vaccine
is now over seventy years old [6], and a great deal of effort and funding has been put
into the task [11]. Recent vaccine findings [1] have renewed the interest in the potential
role of vaccines within malaria-control programs by focusing on the possibility of an
anti-malarial vaccine delivered to infants prior to infection.

In this chapter, a model of malaria infection is developed which combines the clas-
sic Aron models [2,3] with those of vaccine models [8], but includes disease-modifying
effects based on theoretical HIV vaccine models [4, 15]. The following epidemiologi-
cal questions are addressed: 1. What level of vaccination coverage is required to offset
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the limitations of an imperfect disease-modifying vaccine? 2. Could the introduction
of a low-efficacy malaria vaccine lead to an increase in the number of secondary in-
fections? 3. What characteristics of such a vaccine will have the greatest effect on the
outcome?

1.2 The Model

A malaria vaccine could have different potential effects, including (a) reducing mor-
tality due to malaria, (b) increasing the recovery rate, (c) increasing the acquired im-
munity rate or d) reducing the rate of infection. Possible limitations of a vaccination
program include (i) the vaccine may only be delivered to a proportion p of the popu-
lation, (ii) the vaccine may only “take” in a proportion ε of people vaccinated, (iii) the
vaccine may wane over time (ω is the rate of waning of immunity) and (iv) the vac-
cine may have a suboptimal efficacy ψ . It is assumed that all vaccinated individuals
are vaccinated before infection, reflecting the situation in [1]. Furthermore, unlike in
HIV models (but in common with other models of vaccination; eg pertussis [16]), the
vaccine may wane before, during or after infection.

It follows that “successfully vaccinated” individuals consist of those who received
the vaccine, for whom the vaccine “took” and for whom the vaccine did not wane
prior to infection. All other individuals shall be referred to as unprotected individuals,
regardless of whether they received the vaccine or not, since the net effect prior to
infection is identical. (See [4] and [15] for more detailed discussions.) Note that “suc-
cessfully vaccinated” individuals have the potential to become infected (if the vaccine
efficacy ψ is less than 100%, or if vaccine-induced immunity wanes subsequently) and
cause secondary infections. These individuals may have a reduced rate of infection, but
will have an increased life expectancy. They may recover faster from the disease and
their disease-induced mortality will be lower. Consequently, their total duration of in-
fection may either decrease (due to higher recovery rates) or increase (due to fewer
deaths from infection).

It can be assumed that mosquitos are either susceptible (M) or infected (N ), have
birth rate � and that their death rate (µM ) does not vary significantly if they are in-
fected. Individuals who have experienced infection may recover (without substantial
gain in immunity) at recovery rate hk (k = U, V ; U = unvaccinated, V = vacci-
nated) or may become temporarily immune at acquired immunity rate αk (k = U, V ).
See [5,9,10,12] for further details. Temporarily immune individuals will become sus-
ceptible again at rate δk (k = U, V ). The rate of infection of an infected individual in
class Xk is βk (k = U, V ) and the rate of infecting a mosquito is βM (assumed identi-
cal from either class of individual, since mosquitos are not vaccinated). The birth rate
is π , the background death rate is µ and γk is the death rate due to malaria (k = U, V ).
Thus, the model is

dM
dt

= � − βM YU M − βM YV M − µM M

dN
dt

= βM YU M + βM YV M − µM N
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Fig. 1.1. Schematic representation of the model, representing both unprotected and “successfully
vaccinated” individuals, as well as mosquitos. The background mortalities for humans µ (in all
compartments) and mosquitos µM (in both compartments), as well as disease-induced mortality
for humans γU , γV (in the infected compartments) are not drawn in, for conciseness.

dXU

dt
= (1 − εp)π − µXU − βU N XU + ωXV + hU YU + δU QU

dXV

dt
= εpπ − µXV − (1 − ψ)βV N XV − ωXV + hV YV + δV QV

dYU

dt
= βU N XU − (µ + γU + αU + hU )YU + ωYV

dYV

dt
= (1 − ψ)βV XV − (µ + γV + αV + hV )YV − ωYV

dQU

dt
= αU YU − (µ + δU )QU + ωQV

dQV

dt
= αV YV − (µ + δV )QV − ωQV .

The model is illustrated in Fig. 1.1.
With the notation ξk = µ + γk + αk + hk (k = U, V ), 1/ξK is the total duration

of the infectious period for unprotected and “successfully vaccinated” individuals, re-
spectively. It is expected that the recovery rates αV , hV will increase due to the vaccine,
but that the disease-induced death rate γV will decrease. It follows that the total dura-
tion of the infectious period for vaccinated individuals may either increase or decrease.
It is also expected that the rate of infection βV will not increase.

1.3 Analysis

The disease-free equilibrium satisfies M̄ = �/µM , X̄U = [π(µ(1 − εp) + ω)]/
[µ(µ + ω)], X̄V = εpπ/(µ + ω) and N̄ = ȲU = ȲV = Q̄U = Q̄V = 0.
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Thus, the proportion of the population that is successfully vaccinated, S, satisfies
S = X̄V /(X̄U + X̄V ) = εpµ/(µ + ω). In particular, X̄U = (π/µ)(1 − S) and
X̄V = (π/µ)S.

At the disease-free equilibrium, the Jacobian matrix is J =

µM 0 0 0 −βM M̄ −βM M̄ 0 0
0 −µM 0 0 βM M̄ βM M̄ 0 0
0 −βU X̄U −µ ω hU 0 δU 0
0 −(1 − ψ)βV X̄V 0 −µ − ω 0 hV 0 δV
0 βU X̄U 0 0 −ξU ω 0 0
0 (1 − ψ)βU X̄V 0 0 0 −ξV − ω 0 0
0 0 0 0 αU 0 −µ − δU ω

0 0 0 0 0 αV 0 −µ − δV − ω


.

Thus, det(J − �I ) = −(µM + �)(µ + �)(µ + ω + �)(µ + δU + �)(µ + δV +
ω + �) det M , where

M =
 −µM − � βM M̄ βM M̄

βU X̄U −ξU − � ω

(1 − ψ)βV X̄V 0 −ξV − ω − �

 .

Thus, the largest eigenvalue for J will be the largest eigenvalue for M . The vanish-
ing determinant condition gives −µMξU (ξV + ω) + (1 − ψ)βV βMω X̄V M̄ + (1 −
ψ)ξU βV βM X̄V M̄ + (ξV + ω)βU βM X̄U M̄ = 0. Hence,

(1 − ψ)βV βM M̄(ξU + ω)

µMξU (ξV + ω)
X̄V + βU βM M̄

µMξU
X̄U = 1 .

Individuals who are vaccinated with disease-modifying vaccines have the poten-
tial to become infected and cause secondary infections. Such individuals may have a
reduced rate of infection, but will have an increased survival time. The reproduction
number in a population with vaccination is RV , in contrast to R0, the basic reproduc-
tion number in an unvaccinated population.

If there is no vaccine, S = 0, so X̄V = 0, X̄U = π/µ and hence the vanish-
ing determinant condition gives R0 = π�βU βM/µµ2

MξU . If the entire population is
successfully vaccinated, S = 1 and ω = 0, so X̄V = π/µ, X̄U = 0 and hence the
vanishing determinant condition gives RV = (1 − ψ)(π�βV βM/µµ2

MξV ). Thus, the
population reproduction number is RP = (1 − S)R0 + S RV . See [4, 7, 13–15].

To estimate the minimum coverage levels pc for an imperfect disease-modifying
vaccine, when RP = 1, this last equation can be rearranged to produce

S = εpcµ

µ + ω
= 1 − R0

RV − R0
.

Thus, the threshold disease-modifying vaccine coverage level is

pc = (µ + ω)(µ + γV + αV + hV )[µµ2
M (µ + γU + αU + hU ) − βU βM�π ]

εµβM�π [(1 − ψ)βV (µ + γU + αU + hU ) − βU (µ + γV + αV + hV )]
. (1.1)
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Fig. 1.2. The relationship between the relative rate of infection, the relative duration of infection
and the vaccine efficacy. A disease-modifying vaccine which reduces the duration of infection
will always lead to a decrease in secondary infections, regardless of the efficacy of the vaccine.
More surprisingly, a vaccine which increases the duration of infection can still result in an over-
all decrease in secondary infections, but the outcome depends on the rate of infection and the
efficacy of the vaccine. There is a duration “shoulder,” such that vaccines that increase the dura-
tion of infection slightly will still result in a net decrease in secondary infections. However, as
the duration of infection increases, the number of secondary infections will increase, unless the
rate of infection is lowered accordingly. This is critical for low-efficacy vaccines.

Vaccination programs whose coverage levels exceed this proportion of the population
are likely to eradicate the disease.

Once a vaccine is introduced, the number of secondary infections will increase
if RP > R0 (i.e., if the population reproduction number after the introduction of a
vaccine is greater than the reproduction number currently). This occurs when

(1 − S)R0 + S RV > R0
βV

βU
>

ξV

(1 − ψ)2ξU
.

This is illustrated in Fig. 1.2.
Clearly, if the rate of infection and the duration of infection both decrease, then

there will always be a decrease in the number of secondary infections. More surpris-
ingly, for a given efficacy of the vaccine, there is a duration “shoulder,” such that a
small increase in the duration of infection will still decrease the number of secondary
infections, even if the rate of infection is unchanged. However, if the duration of in-
fection is increased beyond this shoulder, then it is crucial that the rate of infection be
decreased accordingly. This is critical for low-efficacy vaccines.

The “shoulder” occurs when the relative duration of infection satisfies

1/ξV

1/ξU
= 1

(1 − ψ)2

for a given vaccine efficacy ψ . For example, a 20% efficacious vaccine could accomo-
date an increase in the duration of infection by as much as 1.5625 times the current
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duration of infection, with no reduction in the rate of infection and still result in a de-
crease in secondary infections. However, a 20% efficacious vaccine that increased the
duration of infection by a factor of 4 would lead to an increase in secondary infections
unless the rate of infection for the vaccinated population were reduced to 40% of the
current rate of infection.

1.4 Discussion

A vaccination program implementing a disease-modifying malaria vaccine in an en-
demic area should have a minimum coverage level pc, as estimated by (1.1). If the
proportion of the population that can be vaccinated exceeds pc, then such a vaccina-
tion program is likely to result in the eradication of the disease.

Furthermore, reducing the transmission probability of such a disease-modifying
vaccine is crucial, for vaccines whose duration of infection increases significantly.
While it is expected that a disease-modifying vaccine would increase the recovery
rates, it would also decrease the rate of disease-induced mortality, so the total duration
of the infectious period for a vaccinated individual may either increase or decrease. If
this duration decreases, then the number of secondary infections will always decrease,
regardless of the vaccine efficacy, so long as the rate of infection does not increase.

There is a duration “shoulder,” such that the number of secondary infections will
always decrease if the duration increases within this shoulder. However, an increase
beyond the “shoulder” will lead to an increase in secondary infections, unless the rate
of infection of the vaccine is lowered accordingly. This is critical for low-efficacy
vaccines.

It should be noted that these results primarily apply to areas in which malaria is
endemic. A disease-modifying malaria vaccine with a high duration of infection (for
example, one which drastically reduced disease-induced mortality, but which had neg-
ligible effect on the recovery rates) might be quite desirable for a temporary outbreak
of malaria in the developed world, if the prospect of reinfection is negligible. In en-
demic areas however, such a vaccine would likely make the situation worse. It follows
that low-efficacy vaccines which result in high durations of infection but which do not
significantly lower the rate of infection should not be used in endemic areas.
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Modeling of the Invasion of a Fungal Disease over a
Vineyard
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2 INRA-CR de Bordeaux, UMR INRA-ENITA en Santé végétale, BP 81, 33883 Villenave
d’Ornon, France; calonnec@bordeaux.inra.fr

Summary. The spatiotemporal spreading of a fungal disease over a vineyard is investigated
using a susceptible-exposed-infected-removed (SEIR)-type model coupled with a set of partial
differential equations describing the dispersal of the spores. The model takes into account both
short and long range dispersal of spores and growth of the foliar surface. Results of numerical
simulations are presented. A mathematical result for the asymptotic behavior of the solutions is
given as well.

Key words: SEIR model, dispersal, diffusion, large time behavior.

2.1 Introduction

Integrated pest management offers an attractive alternative to routine chemical appli-
cation by treating only in response to disease risk indicators. Powdery mildew, caused
by the fungus Uncinula necator, is the most economically important and widespread
disease of grapevines. For this disease, the main factor of risk is a timing of the attack
early in the season combined with the phenological stage of the host. The leaves are
the first to be infected, and there is a spatial relationship between maps of frequency
of leaves diseased early in the season with maps of frequency of bunches with high
severity [4,8]. A better knowledge of the mechanisms of the disease propagation could
help to improve its control at the plot scale by tailoring treatments to local specific
needs, or at the estate scale by treating only specific plots.

We aim at building a mathematical model of this fungal epidemic with a particular
stress on the dispersal mechanism of the spores produced by the colonies of fungus.
Already much work has been done on the subject of dispersal for various kinds of dis-
persers such as animals, seeds and spores (see, e.g., [6,10,11] and references therein).

In particular, we want to investigate the role of a dual dispersal mechanism in which
the spores produced may either disperse inside the vine stock and germinate near the
colony (short range dispersal) or may be lifted up above the vine rows and fall far from
the colony (long range dispersal).
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Our goal is to build a model which is a simpler version, and consequently easier
to analyse, of a much more elaborate one [5]. This latter model couples a mechanistic
model for the growth of each vine stock in the vineyard with a dispersal model using
ray-tracing-like techniques at the vine stock scale and a distribution law at the vineyard
scale for the spores escaping the vine stock.

In [13], the authors considered a two-dimensional (2D) spatial model based upon
such a dual dispersal mechanism using diffusion theory coupled with a Vanderplank
equation [12]. Using this Vanderplank equation leads to delay equations that com-
plexify the mathematical analysis of the model. Instead, in this chapter, we will use
a susceptible, exposed, infectious, removed (SEIR) compartmental model as used in
classical epidemiology (see, e.g., [1, 3]) to take into account the local extension of the
disease. In the nonspatial case, a comparison between these two approaches can be
found in [9].

During an epidemic lasting a whole season from bud break until grape matura-
tion, the growth of the host cannot be neglected. We include a description of the host
growth in our model. We also take into consideration the specific spatial organisation
of vineyards that are made of several separate rows.

This chapter is organised as follows. After having described the model, we perform
a mathematical analysis and present numerical simulations.

2.2 The Model

The vectors of a fungal disease are the spores produced by the colonies of fungus
that lie on the vegetal tissue, which may be leaves, buds, fruits, etc. We assume for
simplicity that the time variation of the surface of a colony can be neglected. Then as
in [9] we consider the unit of disease to be a colony and the host to be a site, that is the
surface occupied by a colony.

The cycle of the epidemic is as follows: when spores fall upon the vegetal tissue,
they may create a new colony which will produce spores after some latency period and
during some sporulating period.

Let � be a regular 2D spatial domain. Let t be the time and let x denote the position
of some point in �. We will use the following notation for the state variables.

As in the case of a SEIR model, the total density N of sites susceptible to host a
colony of fungus at (x, t) is subdivided into healthy H , latent L , sporulating I and
removed (postinfectious) R.

We want to devise a model that takes into account multiple ranges of dispersal for
the spores in order to investigate their different roles for the spreading of the epidemic.
Spores may disperse separately or as infection units (packages of spores). For simplic-
ity, we only take into account two ranges for dispersal: a short range (spores disperse
inside the vine stock where they come from), and a longer range (spores disperse at
the vineyard scale). Let S(x, t) denote the density of spores produced by the colonies.
The spores’ total density S is subdivided acccording to the range of dispersal; the short
range dispersal spore density S1 and the longer range one S2. They are produced by a
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sporulating colony with rate rp > 0 and may disperse at short range with a constant
probability F ∈ [0, 1] and at longer range with probability (1 − F).

We assume that the spores disperse according to a diffusion process with Fickian
diffusion coefficient D1 > 0 (short range) or D2 > D1 > 0 (longer range) as in [13].
Using Fickian diffusion for long range dispersal may seem unrealistic at first. But the
spores are not necessarily taken away along dominating wind directions. The dispersal
is also due to turbulence that provides the energy to tear off the spores from the leaves.

Spores fall upon the vineyard with some deposition rate δ1 > 0 or δ2 > 0; we will
set δ1 = δ2 in the numerical simulations. We thus find the first set of equations of our
model that describes the production of spores by the colonies and their dispersal:

∂S1
∂t (x, t) = ∇. (D1∇S1(x, t)) − δ1S1(x, t) + rp F I (x, t)

∂S2
∂t (x, t) = ∇. (D2∇S2(x, t)) − δ2S2(x, t) + rp(1 − F)I (x, t)

(2.1)

for x ∈ � and t > 0.
Moreover, we assume that no spores come from outside the vineyard. The spores

produced by the fungus colonies should freely escape from the vineyard. To simulate
this, we choose a computing domain � with vine rows located at the center and sur-
rounded by a region with no vines. Then, if � is large enough with respect to diffusion
coefficients, spores do not reach the boundary and their densities at these points should
be equal to 0. Thus, we impose Dirichlet conditions on the boundary

S1(x, t) = S2(x, t) = 0 for x ∈ ∂� and t > 0. (2.2)

We also set nonnegative initial conditions

S1(x, 0) = S0
1(x) ≥ 0, S2(x, 0) = S0

2(x) ≥ 0 for x ∈ �. (2.3)

Let �r ⊂ � denote the area covered by the vine rows. We devise our model in
such a way that for all t > 0 and x ∈ �, N (x, t) equals 0 if x �∈ �r .

The powdery mildew epidemic has no impact upon the growth of the host. This
growth brings new sites available for colonization. We study the epidemic during one
single season; then we assume that the time variation of the total number of colony
sites inside the rows obeys a logistic law

∂ N
∂t

(x, t) = r N (x, t)
(

1 − N (x, t)
K

)
, for x ∈ �r , (2.4)

where r > 0 is the growth rate and K > 0 the carrying capacity. Although r and K are
constant for simplicity, we could introduce spatial heterogeneities for the host growth
assuming r and K depend on x . Provided r, K are bounded, our results can be easily
extended to handle this.

Next, the local evolution of the disease at some point x ∈ �r (inside a row) obeys
the classical SEIR model, whereas we set N (x, t) = L(x, t) = I (x, t) = R(x, t) = 0
for t ≥ 0 if x �∈ �r . Let p and i denote the mean duration of the latency and infectious
period respectively. Let E be the inoculum effectiveness (probability for the spores to
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succeed in creating a new colony upon a site). Taking into account (2.4), this yields the
second set of equations of our model for x ∈ �r :

∂ H
∂t (x, t) = −E(δ1S1(x, t) + δ2S2(x, t)) H(x,t)

N (x,t) + r N (x, t)
(

1 − N (x,t)
K

)
∂L
∂t (x, t) = +E(δ1S1(x, t) + δ2S2(x, t)) H(x,t)

N (x,t) − 1
p L(x, t)

∂ I
∂t (x, t) = + 1

p L(x, t) − 1
i I (x, t)

∂ R
∂t (x, t) = + 1

i I (x, t)

(2.5)

supplemented with nonnegative initial conditions

H(x, 0) = H0(x) ≥ 0, L(x, 0) = L0(x) ≥ 0,

I (x, 0) = I 0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0 for x ∈ �r (2.6)

The contact term in (2.5) is based upon a proportionate mixing assumption. Though
our model includes host growth, this assumption is in agreement with the under-
lying hypothesis of classical epidemiologic models in phytopathology (see Vander-
plank [12]) that states that the rate of increase of diseased tissue is proportional to the
amount of spores multiplied by the probability that these spores fall upon healthy tis-
sues. A similar approach for including host growth in a model of phytopathology but
with nonspatial delay equations can be found in [2].

2.3 Theoretical Results

We have the following existence result for our model.

Theorem 1 The system (2.1),(2.5) is well posed: let H0, L0, I 0, R0 be in L∞(�) and
S0

1 , S0
2 be in L2(�); the system posseses a unique componentwise nonnegative solution

that exists globally in time.

The proof of this theorem follows standard arguments (see, e.g., [7]) and will not
be detailed here.

The large time behavior of the solutions can be described as follows.

Theorem 2 If the hypothesis of the previous existence theorem is satisfied, then as t
goes to infinity, S1(x, t) and S2(x, t) converge to 0 in the L2(�) and H1

0 (�) norms.
And there are nonnegative functions H∞ and R∞ such that for all x ∈ �r , H∞(x) +
R∞(x) = K and

lim
t→+∞ H(x, t) = H∞(x)

lim
t→+∞ L(x, t) = lim

t→+∞ I (x, t) = 0

lim
t→+∞ R(x, t) = R∞(x).


