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Preface

As the pace and breadth of research intensifies, organic synthesis is playing an increasing-
ly central role in the discovery process within all imaginable areas of science: from phar-
maceuticals, agrochemicals, and materials science to areas of biology and physics, the
most impactful investigations are becoming more and more molecular. As an enabling
science, synthetic organic chemistry is uniquely poised to provide access to compounds
with exciting and valuable new properties. Organic molecules of extreme complexity can,
given expert knowledge, be prepared with exquisite efficiency and selectivity, allowing
virtually any phenomenon to be probed at levels never before imagined. With ready ac-
cess to materials of remarkable structural diversity, critical studies can be conducted that
reveal the intimate workings of chemical, biological, or physical processes with stunning
detail.

The sheer variety of chemical structural space required for these investigations and
the design elements necessary to assemble molecular targets of increasing intricacy place
extraordinary demands on the individual synthetic methods used. They must be robust
and provide reliably high yields on both small and large scales, have broad applicability,
and exhibit high selectivity. Increasingly, synthetic approaches to organic molecules
must take into account environmental sustainability. Thus, atom economy and the over-
all environmental impact of the transformations are taking on increased importance.

The need to provide a dependable source of information on evaluated synthetic
methods in organic chemistry embracing these characteristics was first acknowledged
over 100 years ago, when the highly regarded reference source Houben-Weyl Methoden
der Organischen Chemie was first introduced. Recognizing the necessity to provide a
modernized, comprehensive, and critical assessment of synthetic organic chemistry, in
2000 Thieme launched Science of Synthesis, Houben-Weyl Methods of Molecular
Transformations. This effort, assembled by almost 1000 leading experts from both in-
dustry and academia, provides a balanced and critical analysis of the entire literature
from the early 1800s until the year of publication. The accompanying online version of
Science of Synthesis provides text, structure, substructure, and reaction searching capa-
bilities by a powerful, yet easy-to-use, intuitive interface.

From 2010 onward, Science of Synthesis is being updated quarterly with high-qual-
ity content via Science of Synthesis Knowledge Updates. The goal of the Science of
Synthesis Knowledge Updates is to provide a continuous review of the field of synthetic
organic chemistry, with an eye toward evaluating and analyzing significant new develop-
ments in synthetic methods. A list of stringent criteria for inclusion of each synthetic
transformation ensures that only the best and most reliable synthetic methods are incor-
porated. These efforts guarantee that Science of Synthesis will continue to be the most
up-to-date electronic database available for the documentation of validated synthetic
methods.

Also from 2010, Science of Synthesis includes the Science of Synthesis Reference
Library, comprising volumes covering special topics of organic chemistry in a modular
fashion, with six main classifications: (1) Classical, (2) Advances, (3) Transformations, (4)
Applications, (5) Structures, and (6) Techniques. Titles will include Stereoselective Synthesis,
Water in Organic Synthesis, and Asymmetric Organocatalysis, among others. With expert-
evaluated content focusing on subjects of particular current interest, the Science of Syn-
thesis Reference Library complements the Science of Synthesis Knowledge Updates,
to make Science of Synthesis the complete information source for the modern synthetic
chemist.
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The overarching goal of the Science of Synthesis Editorial Board is to make the suite
of Science of Synthesis resources the first and foremost focal point for critically evaluat-
ed information on chemical transformations for those individuals involved in the design
and construction of organic molecules.

Throughout the years, the chemical community has benefited tremendously from
the outstanding contribution of hundreds of highly dedicated expert authors who have
devoted their energies and intellectual capital to these projects. We thank all of these in-
dividuals for the heroic efforts they have made throughout the entire publication process
to make Science of Synthesis a reference work of the highest integrity and quality.

The Editorial Board July 2010
E. M. Carreira (Zurich, Switzerland) E. Schaumann (Clausthal-Zellerfeld, Germany)
C. P. Decicco (Princeton, USA) M. Shibasaki (Tokyo, Japan)

A. Fuerstner (Muelheim, Germany) E. ]J. Thomas (Manchester, UK)

G. A. Molander (Philadelphia, USA) B. M. Trost (Stanford, USA)

P.J. Reider (Princeton, USA)
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Volume Editors’ Preface

The field of biocatalysis, defined as the use of enzymes for the transformation of unnatu-
ral compounds, dates back almost a century and in its infancy it was driven by curiosity
about biochemical pathways and enzyme mechanisms. It was mainly during the 1980s
that the enormous catalytic potential of enzymes was recognized for the asymmetric syn-
thesis of unnatural, high-value targets. Subsequently, the increasing demand for environ-
mentally compatible procedures paved the way for the application of biocatalysts for low-
cost bulk chemicals. The ability to develop the next generation of biocatalysts was en-
abled by major technology advances in the biosciences, which triggered several distinct
innovation waves:!!

— In the 1980s, only crude commercial enzyme preparations from the food, detergent,
and tanning industries were available, and their use for stereoselective synthesis had
much of a black-box approach. Aiming to broaden the arsenal of enzymatic reactions,
chemists began to screen whole microbial cells in the search for novel activities in the
1990s, but enzyme isolation was still a cumbersome task.

- Rapid advances in molecular biology widened the quantitative understanding of bioca-
talytic systems by means of genomics, proteomics, and metabolomics. These advances
facilitated the sequence-based search and subsequent production of suitably tagged en-
zymes via cloning and overexpression into a reliable host, which has become simple
and affordable enough to be carried out by chemists.

- The exponential growth in the availability of crystal structures of proteins has signifi-
cantly contributed to the understanding of enzyme mechanisms, which allows biocata-
lysts to be tuned for improved selectivity and stability under process conditions by site-
directed mutagenesis. Exploitation of the “catalytic promiscuity” of proteins has often
led to unprecedented catalytic activities.

- New methods for activity testing enable high-throughput screening of large libraries of
mutant enzymes generated through selective pressure by directed evolution.

- In the near future, the search for a desired catalytic activity, which is generally guided
by sequence analogy today, will include the third dimension of a desired catalytic site
derived from crystal structures to accommodate the transition state of almost any or-
ganic transformation.?

— The compatibility of enzymes with each other has enabled the design of highly effi-
cient synthetic cascades, thereby avoiding the separation of sensitive intermediates.®l
It is expected that the ever-increasing complexity of cascade design will merge with
the field of metabolic engineering, which allows the use of renewable carbon sources
more efficiently as alternatives to petroleum-based platform chemicals.

As a result of these developments, it is now possible to obtain biocatalysts that catalyze a
much more diverse range of synthetic transformations, including asymmetric amination
of ketones (transaminases), C—C bond formation (aldolases, oxynitrilases), oxidation
(amine/alcohol oxidases, P450 monooxygenases, Baeyer-Villiger monooxygenases), and
reduction (ene reductases, amino acid dehydrogenases), as well as new enzymes for hy-
drolysis (nitrilases, nitrile hydratases, epoxide hydrolases). The increased availability of
new biocatalysts will become even more prominent in the next five years as new biocata-
lyst platforms (e.g., imine reductases, alkyltransferases, halogenases) move from academ-
ic laboratories into practical application.

One impact of this rapidly changing landscape will be that process and medicinal
chemists will have additional options for replacing expensive or toxic chemical reagents
with more selective and sustainable biocatalysts. Although replacing a chemical reagent
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with a biocatalyst represents a significant step forward for biocatalysis, more transforma-
tive opportunities are presented when the use of a biocatalyst enables a new synthetic
route to the target molecule to be developed. Such routes can be more efficient and cost
effective, since they cut out steps in the synthesis and hence reduce costs and waste.
Thus, the synthetic chemists of the future will be able to redesign their routes to target
molecules using biocatalysts that can catalyze reaction steps not achievable by alterna-
tive chemical approaches. Increasingly, chemo- and biocatalysts will be used in concert
to develop efficient and telescoped reaction processes including dynamic kinetic resolu-
tion and deracemization reactions.

The conversion of an unnatural substrate in a laboratory or industrial process is of-
ten limited by the low performance of commercial “off-the-shelf” biocatalysts, which not
long ago required an extensive search from biodiversity for an enzyme variant that is suf-
ficiently effective and stable for an economical operation. In this respect, directed in vitro
evolution has emerged as a powerful technology enabling us to improve essentially any
desired property of an enzyme, including its substrate scope, stereoselectivity, catalytic
efficiency, robustness to organic solvents, high substrate concentration, pH extremes,
and elevated temperatures, or other external factors frequently dictated by optimum pro-
cess conditions. Since the proof-of-principle stage two decades ago, significant develop-
ments with respect to advanced mutagenesis technologies, smart library design, high-
throughput-screening methodology, and the introduction of powerful computer algo-
rithms for the prediction of new enzyme function have revolutionized our abilities to rap-
idly create tailor-made enzymes with optimized properties. The exponential growth in
the field of enzyme engineering by evolutive techniques and semi-rational design, draw-
ing from a rapidly increasing wealth of (genome) sequences, protein X-ray structures, and
biochemical data, is currently lifting the traditional limitations of enzymes as practical
catalysts for synthetic organic chemistry and for the development of sustainable biocata-
lytic processes of the future.

As a consequence, it is now routinely possible to adapt enzymes to a specific reaction
of interest with predefined process conditions rather than vice versa, as proven by the
many success stories including the introduction of various new industrial processes on
large scale that are based on specifically designed biocatalysts. Successful reports of en-
zymes being designed in silico (“theozymes”) to catalyze unnatural reactions are already
emerging. Although computational enzyme design is in its infancy and its impact on bio-
catalysis still limited, such methods point the way for the future and promise deeper in-
sights into the origins of efficient enzymatic catalysis.

One way to promote the use of biocatalysis when designing synthetic routes to chem-
ical targets is to embrace the concept of “biocatalytic retrosynthesis”.l The fundamental
premise of biocatalytic retrosynthesis is that target molecules are disconnected into
smaller fragments based upon the increased availability of engineered biocatalysts to cat-
alyze the forward synthetic reactions. Retrosynthesis is a standard tool used by organic
chemists when designing novel synthetic routes, but biocatalysts are rarely considered
during this design process; this is not surprising, since only recently has a diverse toolbox
of biocatalysts become generally available. The now routine application of protein engi-
neering and directed evolution for the creation of novel, robust biocatalysts has radically
changed the landscape. With the current rate of progress, it is clear that during the next
few years the number of biocatalysts available for use will greatly increase. One area
where biocatalysis is having a major impact is in the synthesis of chiral amines. In the fu-
ture, the synthesis of enantiomerically pure chiral amines will develop along similar lines
to asymmetric ketone reduction, i.e. biocatalysts will become the preferred method of
choice rather than a replacement for traditional chemical approaches in second-genera-
tion processes.
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We believe that this broad contemporary overview on the state-of-the-art in enzymat-
ic methods for asymmetric synthesis will be a useful portal for anyone interested in ap-
plying biocatalysis as a highly potent, selective, and sustainable technology complemen-
tary to metal catalysis and organocatalysis, and that this three-volume set will be a valu-
able addition to the acclaimed suite of Science of Synthesis resources as part of the Reference
Library, which has an approach orthogonal to the original concept of focusing on product
types rather than methodology. We as editors have benefited enormously from the excel-
lent scientific expertise of the many authors from all over the world, and we are grateful
for their outstanding efforts and their precious time dedicated to the successful comple-
tion of this unique project. Finally, we also would like to express our sincere appreciation
to the entire editorial team at Thieme for their extraordinary efforts made toward a seam-
less handling of manuscripts throughout the entire publication process, but in particular
for the excellent collaboration with volume coordinators Alex Russell, Toby Reeve, Mat-
thew Weston, and Mark Smith, and not least to our colleague Joe Richmond for his initia-
tive.

Volume Editors October 2014

K. Faber (Graz, Austria)
W.-D. Fessner (Darmstadt, Germany)
N. J. Turner (Manchester, UK)

1l Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K, Nature (Lon-
don), (2012) 485, 185.

2 Steinkellner, G.; Gruber, C. C.; Pavkov-Keller, T.; Binter, A.; Steiner, K; Winkler, C.; Lyskowski, A.;
Schwamberger, O.; Oberer, M.; Schwab, H; Faber, K.; Macheroux, P.; Gruber. K., Nature Commun.,
(2014) 5, 4150; DOI: 10.1038/ncomms5150.

B Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions, Riva, S.; Fess-
ner, W.-D., Eds.; Wiley-VCH: Weinheim, Germany, (2014).

4 Turner, N. ].; O’Reilly, E., Nature Chem. Biol., (2013) 9, 285.
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pl1 —
211 Cyanohydrin Formation/Henry Reaction
K. Steiner, A. Glieder, and M. Gruber-Khadjawi

Enantiopure cyanohydrins and B-nitro alcohols serve as versatile building blocks for a
broad range of chemical and enzymatic reactions, resulting in highly valuable products
for many applications. Hydroxynitrile lyases comprise a diverse group of enzymes that
catalyze the reversible cleavage of cyanohydrins to carbonyl compounds and hydrogen
cyanide. The enzymes have been studied broadly concerning their substrate scope, specif-
icity, structure, and reaction mechanism, and many have been successfully applied and
engineered for the synthesis of cyanohydrins from laboratory to industrial scale. Both R-
and S-cyanohydrins are accessible from a broad variety of substrates and, in most cases,
high yields and enantiopurities can be obtained after enzyme and reaction engineering.
Recent progress in the development and optimization of heterologous expression sys-
tems make recombinant hydroxynitrile lyases available in the quantities needed for in-
dustrial production. The procedures for safe handling of cyanides are also well-defined
and established. In addition, some hydroxynitrile lyases are able to catalyze the nonnatur-
al asymmetric Henry reaction. Although the enzyme activities are rather low, the enzy-
matic synthesis of enantiopure [-nitro alcohols shows promising results.

HCN OH

R'" "CN

OH

R2NO.
2 o R! J*\*r R?

NO,

Keywords: hydroxynitrile lyase - cyanohydrin - nitroaldol - f-nitro alcohol - Henry reac-
tion - enantioselectivity - enzyme engineering

p31 —
21.2 Aldol Reactions
P. Clapés

The asymmetric aldol addition reaction is a cornerstone transformation in organic chem-
istry and one of the most useful methods for C—C bond formation. Aldolases and catalytic
antibodies catalyze aldol and retroaldol reactions with high stereoselectivity and catalytic
efficiency. Therefore, they constitute very useful tools in chemical research and the pro-
duction of complex, multifunctional chiral compounds, such as carbohydrates and amino
acids, as well as their derivatives and analogues. In addition, carboligating enzymes and
antibodies offer a unique tool to perform asymmetric C—C bond formation in a sustaina-
ble, environmentally benign fashion. This review describes the different methodologies
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and procedures used for enzymatic C—C bond formation by aldol reaction. These include
the asymmetric catalytic aldol additions of dihydroxyacetone phosphate (DHAP), 1-hy-
droxyalkan-2-ones (i.e., dihydroxyacetone, hydroxyacetone, and 1-hydroxybutan-2-one),
pyruvate, glycine, acetaldehyde, and glycolaldehyde as the nucleophilic components to
a variety of electrophilic aldehyde structures.

aldolase

O O or
catalytic antibody
B
RZ

R' = diverse; R% = H, OH, NH,, F, Me, Et, SMe; R® = H, OH, Me, Et, CO,~, CH,OH, CH,OPO3%~

Keywords: asymmetric C—C bond formation - aldol additions - DHAP dependent aldol-
ases - D-fructose 6-phosphate aldolase - DHAP mimics - transketolases - pyruvate aldolases -
glycine aldolases - catalytic antibodies - self- and cross-aldol additions - 2-deoxy-D-ribose
5-phosphate aldolase - dihydroxyacetone phosphate (DHAP) - dihydroxyacetone - hy-
droxyacetone - 1-hydroxybutan-2-one - pyruvate - glycine - glycolaldehyde - alkylalde-
hydes - hydroxyaldehydes - aminoaldehydes

p93 —
2.1.3 Acyloin, Benzoin, and Related Reactions
M. Pohl, C. Wechsler, and M. Miller

This chapter gives a broad overview of different thiamine diphosphate (ThDP) dependent
enzymes and their applicability in organic synthesis as a practical alternative to tradition-
al cross-coupling reactions. Complementary to known nonenzymatic umpolung reac-
tions, enzymatic versions of the benzoin condensation, the asymmetric cross-benzoin
condensation, the resolution of racemic 2-hydroxy ketones via C—C bond cleavage, the
synthesis of bis(a-hydroxy ketones), the homocoupling of aliphatic aldehydes, the Stetter
reaction, and aldehyde-ketone cross-benzoin reactions have been developed. The broad
diversity of the products from enzymatic transformations is nicely complemented by
the possible subsequent diversity-oriented chemistry. Starting from simple, commercial-
ly available aldehydes, many different chiral building blocks can be selectively obtained
in a few steps, thus mimicking the diversity-oriented biosynthesis of natural biosynthetic
pathways.

TK

PigD PDC

1) CDH HapD 0 R
R2 MenD AHAS R2
R! - [ R
HO RS Kgd RY O
BAL YerE

SeAAS SucA

1,2-addition BFD 1,4-addition

Keywords: regioselectivity - enantioselectivity - enzyme catalysis - C—C bond formation -
asymmetric Stetter reaction - asymmetric benzoin condensation - asymmetric enzyme
catalysis - thiamine diphosphate - stereocontrol - benzoins - acyloins - chiral resolution -
kinetic resolution
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214 Enzymatic Carboxylation and Decarboxylation
R. Lewin, M. L. Thompson, and |. Micklefield

Carboxylation reactions utilizing whole cells or purified carboxylase/decarboxylase en-
zymes enable the regioselective formation of new C—C bonds under more benign condi-
tions than are typically used in nonenzymatic transformations such as the Kolbe-Schmitt
reaction. A wide variety of substrates have been used in enzymatic carboxylation reac-
tions including phenols, styrenes, pyrroles, and indoles.

Enzymatic decarboxylation can be used to transform simple achiral carboxylic acid
substrates into more valuable homochiral building blocks through stereoselective C—H
or C—C bond formation. For example, arylmalonate decarboxylases catalyze the enantio-
selective decarboxylative protonation of o-aryl- and a-alkenylmalonic acids under mild
conditions and with excellent enantioselectivity. In addition, thiamine diphosphate de-
pendent decarboxylases catalyze C—C bond formation with a broad range of a-keto acid
and aldehyde substrates to produce homochiral a-hydroxy ketones.

OH carboxylase/decarboxylase
X KHCO3 or CO, OH
| HO o—'/ﬁ/
- 2L
N I\/\/

P -
X_ COH X
' \)< 2 arylmalonate decarboxylase \)\

/X" SCOgH " X7 COH

'
'
\
N

Keywords: carboxylation - Kolbe-Schmitt reaction - regioselectivity - whole-cell reac-
tion - C—C bond formation - enantioselectivity - decarboxylation - arylmalonate decar-
boxylase - malonic acids - stereoselectivity - enantioselective decarboxylative protonation

p159 —
2.1.5 Addition to C=N Bonds
A. llari, A. Bonamore, and A. Boffi

The Pictet-Spengler reaction consists of a Mannich-type cyclization in which an electron-
rich aromatic carbon attacks a C=N bond, in the form of an electrophilic iminium ion,
thus yielding a heterocyclic scaffold and generating a new asymmetric center. In this
chapter, the substrate scope and limitations of the best-known Pictet-Spenglerase en-
zymes are discussed in order to pave the way for development of a general biocatalytic
strategy for the stereoselective addition to the C=N bond.

HO

norcoclaurine

(6}
| X HO synthase NH
+ _— HO
N ; H NH>
R HO | AN
N

Keywords: Pictet-Spengler reaction - tetrahydroisoquinolines - indole alkaloids - stricto-
sidine synthase - norcoclaurine synthase - B-carbolines - azaindoles

R1
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2.2 Enzymatic C-Alkylation of Aromatic Compounds
L. A. Wessjohann, H. F. Schreckenbach, and G. N. Kaluderovic¢

C-Alkylation of aromatic groups, as in Friedel-Crafts chemistry, is an energetically diffi-
cult process with significant chemo- and regioselectivity problems, especially if other nu-
cleophiles, such as hydroxy groups or nitrogen atoms, are present in the substrate. Nature
provides alkylating enzymes that selectively transfer a methyl, prenyl, or glycosyl group
to carbon atoms of aromatic moieties under mild conditions, at room temperature, and
mostly with excellent chemo- and regioselectivity. In this review, current enzymatic pro-
cesses are highlighted and the increasing availability of cosubstrates, cofactors, and suit-
able enzymes is discussed as a prerequisite for scaling up such processes.

methyltransferases (MTases)

=N
HoN . (0] N/_ NH,
LY

HO,C

g

Ar'-H Ar'-Me

(SAH)
SAM = S-adenosyl-L-methionine; SAH = S-adenosyl-L-homocysteine

prenyltransferases (PTases)

2 9%
o O n
prenyltransferase
Ar'—H — H
Ar'
o o n

1 1
o PP
o O

glycosyltransferases (GTases)

HO o
(dTDP-p-olivose)
glycosyltransferase HO 0
Ar'—H HO
1
9 9 _ o Ar
- /P\ /P\ o N
1071 0O
HO™ o1 oH /m’ Y
HO' o

(dTDP)

Keywords: transferases - alkylation - methylation - prenylation - glycosylation - phenolic
compounds - C—C bond formation - natural products - Friedel-Crafts-like reactions - elec-
trophilic aromatic substitution
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p213 —
2.3. Addition of Hydrogen to C=C Bonds: Alkene Reduction
K. Faber and M. Hall

Ene-reductases are flavoproteins which catalyze the asymmetric reduction of activated al-
kenes at the expense of a nicotinamide cofactor. The substrate scope is broad and in-
cludes a,p-unsaturated carbonyl compounds, carboxylic acid derivatives, and nitro com-
pounds, which upon reduction yield the corresponding saturated products in high enan-
tiopurity.

3 1 ene-reductase R! EWG
R R NAD(P)H H \(<
—_—
>:< R H
R? EWG R® R?

Keywords: asymmetric catalysis - ene reaction - enzyme catalysis - reduction - stereose-
lective synthesis

p261 —
2.3.2 Addition of Water to C=C Bonds
V. Resch and U. Hanefeld

While chemists struggle to find efficient methods to perform the asymmetric addition of
water, nature employs countless enzymes (called hydratases or hydro-lyases) to perform
this reaction using substrates with both activated and nonactivated double bonds. How-
ever, compared to the vast number of hydratases involved in metabolic pathways in na-
ture, only a few are described for their use in organic synthesis. Nevertheless, their poten-
tial in asymmetric catalysis has been recognized and some hydratases are used on a large
scale in industrial processes. Since hydratases perform the addition of water, water is
used as both a solvent and a reagent, opening up a very efficient and green route to both
secondary and tertiary alcohols. This chapter focuses on hydratases that catalyze interest-
ing reactions and are tested beyond their biochemical characterization.

R R
Y=+ o == MO
R2 R3 R2 R3
HO
R1/_/¥O . Hgo —_— ]
R2 R (0]
R2

Keywords: acetylene hydratase - aconitase - carotenoid hydratases - citraconase - fumar-
ase - hydratase - hydratase-tautomerase bifunctionality - hydro-lyase - kievitone hydra-
tase - limonene hydratase - linalool dehydrogenase-isomerase - malease - oleate hydra-
tase - phaseollidin hydratase - urocanase - water addition

p291 —
233 Addition of Ammonia and Amines to C=C Bonds
S. Bartsch and A. Vogel

Ammonia lyases and aminomutases catalyze the reversible, nonreductive, asymmetric
amination of a,-unsaturated carboxylic acids. They utilize ammonia and, to a lesser ex-
tent, substituted amines as substrates. The most common acceptors are fumarate and ar-
omatic a,p-unsaturated carboxylic acids. Typical products are optically pure o-amino
acids, but production of 3-amino acids is also described. No cofactor recycling is required
and, by using high concentrations of ammonia, conversion up to 100% can be reached
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with excellent enantioselectivity. Ammonia lyases comprise a very heterogeneous group
of enzymes from plants and microbes, showing diverse substrate selectivities and reac-
tion mechanisms. The most commonly used members are the aspartate and phenylala-
nine ammonia lyases.

2
R< )
ammonia lyase

R2
NH NH ammonia lyase R /Y COH
R J\/CO?H R2NH, Rt J\/COzH R2NH,

HN. o

Keywords: ammonia lyase - aminomutase - nonreductive amination - a,3-unsaturated
carboxylic acids - aspartase - 3-methylaspartate ammonia lyase - adenylosuccinate lyase -
argininosuccinate lyase - a-amino acids - }-amino acids

p313 —
2.3.4 Enzymatic Carbon—Carbon Bond-Forming Michael-Type Additions
E. M. Geertsema and G. |. Poelarends

This chapter gives an overview of practical biocatalytic procedures for C—C bond-forming
Michael(-type) additions suitable for organic synthesis purposes. Reported product yields,
workup and isolation methods, stereoselectivity, and availability of the applied enzymes
are assessed. All methodologies involve promiscuous enzyme activities, since natural en-
zyme-catalyzed C—C bond-forming Michael additions are extremely rare.

R]
R4 EWG

R’ EWG EWG biocatalyst R?
\l/ + Ra/g/ -~ R3 EWG
RZ

4
R® R RS

Keywords: enzyme catalysis - Michael addition - C—C bond formation - stereoselective
catalysis - enantioselectivity - diastereoselectivity - enzyme promiscuity - lipase - acylase -
proteinase - tautomerase

p335 —
241 Amino Acid and Amine Dehydrogenases
A. S. Bommarius and S. K. Au

a-Keto acids can be reductively aminated to a-amino acids via amino acid dehydrogenase
catalysis, with NAD(P)H as cofactor. Regeneration of the oxidized cofactor NAD(P)* back to
NAD(P)H is required for synthesis and is commonly achieved via formate dehydrogenase
catalyzed oxidation of formate to carbon dioxide or glucose dehydrogenase catalyzed ox-
idation of glucose to gluconic acid. Recently, amine dehydrogenases, which reductively
aminate ketones to amines, have been developed via protein engineering. Both amino
acid and amine dehydrogenases are exquisitely enantioselective, leading to (S)- or (R)-ami-
no acids or (R)-amines.

o amino acid dehydrogenase NH;
1JJ\ + NHg \ 1J\
R' T“CO.H R'  "COH
NADPH NADP*

\

coproduct cosubstrate
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o amine dehydrogenase NHo
R1JI\/R2 + NHg ~ R1J\/H2
NADPH NADP*

\

coproduct cosubstrate

Keywords: enantioselectivity - reductive amination - keto acids - a-amino acids - ketones -
amines

p359 —
2.4.2 Imine Reductases
F. Leipold, S. Hussain, S. P. France, and N. J. Turner

Imine reductases catalyze the asymmetric reduction of imines to the corresponding chi-
ral amines. The excellent enantioselectivities achieved in these conversions make this
biocatalyst an attractive addition to the toolbox for chiral amine synthesis. This chapter
details recent developments in the application of different classes of imine reductases in
the synthesis of chiral amines as well as amino acids.

,"’ . imine reductase ,"’ T
T e )
NT TR \H R

NAD(P)H NAD(P)*
or or
F420-H2 F420

Keywords: amines - 0-amino acids - imine reduction - reductive amination - tetrahydro-f3-
carbolines - tetrahydroisoquinolines - piperidines - pyrrolidines

p383 —
2.4.3 o-Transaminases
R. C. Simon, E. Busto, E.-M. Fischereder, C. S. Fuchs, D. Pressnitz, N. Richter, and W. Kroutil

Optically pure amines are prepared from the corresponding prochiral ketones via asym-
metric amination employing o-transaminases and selected amine donors.

o amine donor NH,

w-transaminase J\

R! R?2 R’

R2

up to >99% ee

Keywords: amination - aldehydes - amines - asymmetric catalysis - ketones - @-transami-
nases

p421 —
2.5.1 Ketone and Aldehyde Reduction
T. S. Moody, S. Mix, G. Brown, and D. Beecher

The modern organic chemist increasingly uses biotransformations to solve synthetic
problems. In particular, stereoselective reduction of prochiral ketones using enzymes
has moved from an academic curiosity to a commercial success. Bioreduction using both
whole-cell microbial and recombinant systems has proven to be a robust and reliable al-
ternative to other asymmetric chemical methods, resulting in green, economic, and scal-
able processes for the chemical industry. This review highlights bioreduction applica-
tions available to the modern practical chemist.
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CRED
JOI\ (alcohol dehydrogenase) JO\H
R! R? R! R?
prochiral single enantiomer
NAD(P)H NAD(P

CRED
or coenzyme

Keywords: asymmetric catalysis - alcohols - chiral compounds - green chemistry - reduc-
tion

coproduct cosubstrate

p459 —
25.2 Carboxylic Acid Reductase
A. S. Lamm, P. Venkitasubramanian, and |. P. N. Rosazza

This chapter highlights the versatility of carboxylic acid reductase and its ability to effi-
ciently catalyze the bioconversion of a wide range of natural and synthetic carboxylic
acids into their corresponding aldehydes and alcohols.

fe) carboxylic acid o
J]\ reductase J\ aldehyde reductase ~
R’ OH
R' TOH N\ R' "H N
natural and synthetic aldehydes: alcohols:
carboxylic acids: ATP AMP pharmaceuticals, NADH NAD* biofuels,
fatty acids, NADPH NADP*  fragrances, lubricants,
aromatic acids, flavors, food additives,
sugar-derived acids chemical precursors, emulsifiers,
stereospecific separations precursors

Keywords: alcohols - arylaldehyde oxidoreductase - biofuels - carboxylate reductase -
carboxylic acid reductase - enzymatic reduction - fatty acids - oxidoreductase - racemate
resolution

p479 —
2.6.1 Asymmetric Synthesis of Enantiopure Epoxides Using Monooxygenases
A. T Liand Z. Li

Monooxygenases catalyze the asymmetric epoxidation of different types of alkenes, pro-
viding a green and useful method to synthesize the corresponding epoxides in high enan-
tiomeric excess and good yield. The epoxidations catalyzed by styrene monooxygenase,
xylene monooxygenase, alkane monooxygenase, alkene monooxygenase, and cyto-
chrome P450 monooxygenase are reviewed in this chapter.

2 02
R . monooxygenase RZ (@]
R
R1§/ R(ﬂ”"Rﬁ
R* R

Keywords: asymmetric epoxidation - asymmetric synthesis - enzyme catalysis - mono-
oxygenase - chiral epoxides - green oxidation
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p507 —
26.2 Reactions Catalyzed by Halohydrin Dehalogenases
M. Majeric Elenkov, W. Szymariski, and D. B. Janssen

In some bacteria, halohydrin dehalogenases catalyze the conversion of vicinal halo alco-
hols, such as 1,3-dichloropropane or 3-chloropropane-1,2-diol, into epoxides, and thereby
play a role in the biodegradation of halogenated organic compounds. In the reverse reac-
tion, i.e. epoxide ring opening, various small anions can replace the halide, allowing the
synthesis of B-substituted alcohols, including p-hydroxynitriles and p-azido alcohols.
These remarkable catalytic properties have been modified by structure-based protein en-
gineering, making the enzymes suitable for diverse applications.

Nu~ OH

OH halohydrin dehalogenase (0] halohydrin dehalogenase
Ax < A

Keywords: epoxides - hydroxynitriles - microorganisms - alcohols - cyanides

p529 —
2.6.3 Expoxide Hydrolysis
R. Wohlgemuth

This chapter focuses on the selective biocatalytic ring opening of epoxides by water, lead-
ing to vicinal diols or other reaction products. This strategy is also used by nature to pre-
pare a range of important metabolites and natural products by epoxide hydrolase cata-
lyzed ring-opening reactions. The hydrolysis of easily accessible racemic epoxides to
enantiomerically pure epoxides or vicinal diols has become of increasing interest as a
method for preparing a great variety of chiral intermediates for the synthesis of pharma-
cologically active compounds, agrochemicals, flavors and fragrances, and metabolites.

inverting retaining
epoxide OH epoxide
hydrolase hydrolase
—_— HO B
R1
(0] O
R - retaining inverting R -~
epoxide epoxide
hydrolase OH hydrolase

R1J\/OH

O i [¢] 1
Ri epoxide hydrolase type 1 R . H010><R
R2
R? R?
rac R-epoxide S-diol

(0] . epoxide hydrolase type 2 o ; HO R
R R + “,
AN ZAN Ho A,
R? R?
rac S-epoxide R-diol
HO OH (S,5)-selective o (R,R)-selective HO OH
-, epoxide hydrolase l ) epoxide hydrolase
B T R1 R2 _—
R1 R2 R1 R2
(S,9)-diol (R,R)-diol

Keywords: epoxy compounds - oxiranes - epoxide hydrolase - diols - hydrolysis - resolu-
tion - ring opening
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