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Chapter 1

Figure I.1.1 (left) Walker Lake exhaustive digital

elevation map (size: 260×300 pixels) grid; and (right)

100 extracted sample data. The colorbar represents

elevation in units of ft.

Figure I.1.2 Visualization of the 80 paths taken by

hikers of two types: (left) minimal effort; and (right)

maximal effort. The color indicates how frequently

that portion of the path is taken, with redder color

denoting higher frequency.

Figure I.1.3 Histograms of the cumulative elevation

gain and path length for the minimal- and maximal-

effort hiker. Cumulative elevation gain in units of ft,

path length in units of grid cells.

Chapter 2

Figure I.2.1 Example loss functions; the most

common choice is the parabola (least squares).

Figure I.2.2 (a) A single unique truth; (b) some

sample data taken from it; and (c) its histogram. The

goal is to estimate the value at the unsampled

location marked with X.

Figure I.2.3 (a) Rock density in a homogeneous layer

of a carbonate reservoir; and (b) rock density in a

heterogeneous deltaic reservoir.

Figure I.2.4 Omnidirectional semivariogram of Z.

Figure I.2.5 Semivariogram of the exhaustive Walker

Lake data set versus the sample variogram.



Figure I.2.6 (a) Global kriging using all 50 sample

data at all estimated locations; (b) a local moving

neighborhood; (c) using a minimum of 12 samples;

and (d) using penalty. Parts (a–c) are calculated using

SGEMS (Remy et al., 2008), and (d) is calculated

using the R-package RGeostats.

Figure I.2.7 Simple trend case study: (left) the

unknown truth (one realization, see Equation

(I.2.38)); and (right) the sample data.

Figure I.2.8 (left) OLS estimate of trend; (middle) a

universal kriging estimate based on the OLS estimate

of trend; and (right) a universal kriging estimate

based on the two-step procedure (using R-package

RGeostats).

Chapter 3

Figure I.3.1 An analog data set considered relevant

for the domain being modeled. The size of this image

(250 × 250) need not be the same as the model grid

size.

Figure I.3.2 (a) Artifacts induced by using a moving

neighborhood; and (b) corrected by using finite

domain kriging and by requiring a minimum of 12

neighboring points.

Figure I.3.3 Comparing the estimates obtained by (a)

using a 150 × 150 size training image and (b) using a

250 × 250 size training image.

Figure I.3.4 Minimum error maps (kriging variances)

compared to the kriging variance obtained using

global ordinary kriging.

Figure I.3.5 (a) Reference case and (b) 100-sample

data.



Figure I.3.6 (a–b) Two visually dissimilar training

images each with their estimated map from 100

sample data (c–d).

Figure I.3.7 Omnidirectional empirical

semivariograms for the two training images (a)

Figure I.3.6(a) and (b) Figure I.3.6(b) along with

fitted semivariograms using package RGeoS. Both

have nugget 0, a range of approximately 35, and sill

of 0.985.

Figure I.3.8 (a) An exhaustive DEM deemed

representative for the Walker Lake area. The size of

the training image is 400 × 400. (b) the result of a

simple smoother applied to (a).

Figure I.3.9 (a) A training image for the simple trend

case; and (b) its auxiliary variable.

Figure I.3.10 Three nonstationary training images (b)

for the simple trend case using the OLS estimate (a)

as an auxiliary variable.

Figure I.3.11 Biharmonic spline (a) to create the

domain auxiliary variable for the Walker Lake with

three nonstationary training images (b–d) generated

with direct sampling.

Figure I.3.12 Comparing the estimates obtained by

(a) spatial estimation with training images; (b)

universal kriging; and (c) ordinary kriging with local

moving neighborhood.

Figure I.3.13 The empirical raw (a) and residual (b)

semivariograms computed for the nonstationary case.

The automatic semivariogram fitting function in

RGeostat was used. The number of pairs used for the

calculation are plotted next to the experimental

semivariogram.



Figure I.3.14 (a) Estimate for Walker Lake using

universal kriging with training image in Figure

I.3.11(b); (b) path for minimal effort and (c) path for

maximal effort.

Chapter 4

Figure I.4.1 (a–c) Three sequential Gaussian

simulations of the Walker Lake case.

Figure I.4.2 (a) Exhaustive Walker Lake image; (b) a

Gaussian sample constrained to 5% of randomly

sampled data from (a); and (c) the same Gaussian

law, but now only constrained to 0.1% of the

exhaustive image.

Figure I.4.3 (a) Realizations of Walker Lake

generated with direct sequential simulation

conditioned to 5% of conditioning data; and (b)

sequential Gaussian simulation (Figure I.4.2(b)) for

comparison. Although DSSIM realizations often show

better connected high and low values, they display a

similar amorphous character as multi-Gaussian

models.

Figure I.4.4 Two Gaussian realizations (G1 and G2)

and three rules diagrams (A–C), resulting in

unconditional pluri-Gaussian realizations (a–c) (after

(Mariethoz et al., 2009).

Chapter 5

Figure I.5.1 (Left) A page from the book Bouvard et

Pécuchet, by Gustave Flaubert, published in 1881

(English version published by H. S. Nichols in 1896).

(Right) a direct sampling realization of one page.

Figure I.5.2 (a–c) Three conditional realizations of

Walker Lake digital elevation map using direct

sampling.



Figure I.5.3 (a) Walker Lake exhaustive data

categorized; (b) corresponding 100 sample data; and

(c) training image, categorized.

Figure I.5.4 (a–c) Three SNESIM realizations

conditioned to the 100-point data.

Figure I.5.5 Probability maps for each category, (a)

lake, (b) foothill and (c) mountain, obtained from

calibration on the training image and its auxiliary

variable.

Figure I.5.6 (a–c) Three SNESIM realizations

constrained to both point data and soft probabilities.

Figure I.5.7 The use of exemplars in computer

graphics applications. Models are carved out from

unconditional 3D blocks of exemplar-based textures,

of size 10243 voxels. For computational efficiency,

only the voxels that need to be displayed are

simulated. 2D exemplars are used to generate 3D

models. Exemplars are shown as small inserts (Dong

et al., 2008).

Figure I.5.8 Illustration of a basic unconditional

“patch-based” algorithm. (a) Training image; (b) set

of unique patches extracted from it; (c) stage of

simulation where two non-overlapping patches have

been simulated; and (d) selection (random) of one of

the two patches that best fit (in terms of some

distance) the local data event.

Figure I.5.9 Illustration of quilting of two patterns

along a raster path.

Figure I.5.10 Illustration of image quilting along a

raster path. (a) Raster path starts at some corner;

and (b) a next pattern is selected based on a small

overlap and quilted with the previous pattern; see

Figure I.5.8. (c–d) This procedure is continued along



the next row. (e) Training image used for this

example.

Figure I.5.11 Three realizations of Walker Lake using

image quilting.

Chapter 6

Figure I.6.1 Comparison of the experimental

semivariogram of a representative realization from

the three sets of realizations considered, along

different directions. Blue: east-west semivariograms.

Red: north-south semivariograms.

Figure I.6.2 Path statistics (PL = path length, CEG =

cumulative elevation gain) calculated for minimal

effort for the multi-Gaussian (MG) set.

Figure I.6.3 Path statistics (PL = path length, CEG =

cumulative elevation gain) calculated for maximal

effort for the multi-Gaussian (MG) set.

Figure I.6.4 Path statistics (PL = path length, CEG =

cumulative elevation gain) calculated for minimal

effort for the direct-sampling (DS) set.

Figure I.6.5 Path statistics (PL = path length, CEG =

cumulative elevation gain) calculated for maximal

effort for the direct-sampling (DS) set.

Figure I.6.6 Path statistics (PL = path length, CEG =

cumulative elevation gain) calculated for minimal

effort for the image-quilting (IQ) set.

Figure I.6.7 Path statistics (PL = path length, CEG =

cumulative elevation gain) calculated for maximal

effort for the image-quilting (IQ) set.

Figure I.6.8 Elevation along a path taken by a hiker

walking on an MG model and a hiker walking on a DS

model, for a maximal-effort hiker.



Chapter 8

Figure II.2.1 Regular grid in different dimensions.

Top: 1D temporal grid representing 120 years of daily

rainfall measures in Sydney, Australia. Middle: 2D

grid of a satellite image of the Sundarbans region,

Bangladesh. Bottom: 3D grid representing the

hydrofacies in an alluvial aquifer in the Maules Creek

valley, Australia.

Figure II.2.2 Illustration of the grid representation

using IDs. The number inside each cell is the node ID.

Blue axis represents the real coordinate system. Red

axis represents the coordinate system in units of

nodes.

Figure II.2.3 Mask applied over southeastern

Australia to limit the modeled area to the landmass

and exclude the water bodies.

Figure II.2.4 From left to right: original image, red

component, green component, blue component, and

the intensity of all three components (corresponding

to the norm of a 3D vector), which results in

grayscale intensity values.

Figure II.2.5 Representation of colorspaces: (a) RGB

colorspace that requires three components; and (b)

grayscale space, 1D.

Figure II.2.6 Different types of templates.

Figure II.2.7 A data event corresponding to the

rightmost template of Figure II.2.6.

Figure II.2.8 Multivariate template and

corresponding multivariate data event.

Figure II.2.9 Illustration of a convolution for a binary

variable.



Figure II.2.10 Illustration of a convolution for a

continuous variable. From left to right: original

image, pattern sought for, convolution result, and

threshold-based selection. The two right images are

the result of a convolution of the left image using the

pattern N. N is enlarged 30 times for better

visualization. On the convolution figure, dark values

represent lower convolution values (hence, high

similarity with N).

Figure II.2.11 Tree-based classification of the

different life forms. From Haeckel, E. (1866).

Generelle Morphologie der Organismen: allgemeine

Grundzüge der organischen Formen-Wissenschaft,

mechanisch begründet durch die von C. Darwin

reformirte Decendenz-Theorie, Berlin, downloaded

from http://en.wikipedia.org/wiki/Ernst_Haeckel

Figure II.2.12 Schematic representation of tree

storage for a binary variable and a simple four-node

template.

Figure II.2.13 Example TI and all of the individual

data events that compose it, considering a simple

four-node template.

Figure II.2.14 Complete search tree with all counters

corresponding to the storage of the TI shown in

Figure II.2.13.

Figure II.2.15 Search tree omitting zero-occurrence

counters, corresponding to the storage of the TI

shown in Figure II.2.13.

Figure II.2.16 Compact search tree with collapsing of

singleton branches, corresponding to the storage of

the TI shown in Figure II.2.13.

Figure II.2.17 Data events storage in a list,

corresponding to the storage of the TI shown in



Figure II.2.13.

Figure II.2.18 Representation of the filters used in

the FILTERSIM algorithm and illustration of the

computation of a filter score for a given data pattern.

Modified from Zhang, T., et al. (2006). With kind

permission from Springer Science and Business

Media.

Figure II.2.19 Representation of a pattern database

in a distance space. The patterns originating from the

TI (left) are represented in 2D space (right). Figure

(a) from Honarkhah and Caers (2010). With kind

permission from Springer Science and Business

Media.

Figure II.2.20 A TI and two realizations (from a total

of 50) generated with three algorithms: DISPAT,

CCSIM (see Chapter II.3), and sequential indicator

simulations (SISIMs; Deutsch and Journel, 1992).

Figure II.2.21 Cluster-histograms of patterns (CHPs)

derived by first clustering the patterns of the TI, then

classifying the patterns of the realizations based on

these clusters. Each image is a prototype

representing a cluster of patterns, and the numbers

above each prototype are the frequencies associated

to this cluster for each of the four cases considered

(TI, DISPAT, CCSIM, and SISIM).

Figure II.2.22 Spatial cumulants of orders 3, 4, and 5

computed on a simple binary image. Next to each

cumulant map, the corresponding lag vectors are

displayed. Reprinted from Mustapha, H. and R.

Dimitrakopoulos (2010). With permission from

Elsevier.

Figure II.2.23 Illustration of the Hausdorff distance

between two sets A and B.



Figure II.2.24 Examples of geometric transformations

applied to N. (a) Original data event N. (b) 45°

rotation. (c) 80° rotation. (d) Factor 2 affinity along

the X-axis. (e) Factor 0.5 affinity along the X-axis.

Modified from Huysmans, M. and A. Dassargues

(2011). With kind permission from Springer Science

and Business Media.

Figure II.2.25 Illustration of the use of proximity

transform as a more relevant comparison between

patterns. (a) Patterns compared by counting the

number of mismatching nodes. (b) The same patterns

after proximity transform can be compared using an

Euclidean norm, which is more appropriate to

distinguish the distance between the objects

compared.

Figure II.2.26 Separation in indicators to compute

proximity transforms on patterns having more than

two categories. (a) Multicategory pattern, (b)

transformation into indicators, and (c) proximity

transform on indicators (modified from Arpat, 2005).

Figure II.2.27 (a) Fine-scale shale layers, (b)

connected components, (c) derived coarse grid with

edges, (d) indicator of presence of bottom edge, (e)

indicator of presence of right edge, (f) combined

edges code, (g) coding of edges. Modified from

Huysmans and Dassargues (2011).

Figure II.2.28 Steps of a sequential simulation with a

random path.

Figure II.2.29 Illustration of the random simulation

path.

Figure II.2.30 Left: typical L-shaped template used

for unilateral simulation starting in the lower-left

corner. Right: conditioning with a unilateral path. The



causal part of the template is in white, and the

noncausal part is in pink. Informed nodes

(conditioning data) are shown in green.

Figure II.2.31 Illustration of the unilateral simulation

path with the direction +X +Y.

Figure II.2.32 The effect of the path on the

simulation. Training image (Ganges delta,

Bangladesh), and simulation with random and two

unilateral paths in different directions. Simulations

obtained with the direct sampling algorithm.

Figure II.2.33 Illustration of a patch-based simulation

with a unilateral path.

Figure II.2.34 Principle of multiple grids. The left

column shows a simulation grid with the nodes

belonging to each multigrid level in a different color.

The right column shows the five-node templates

corresponding to each level (template for the first

level is not shown).

Figure II.2.35 Illustration of the effect of using or not

using multiple grids, with the same TI as in Figure

II.2.32. Simulations obtained with the SNESIM

algorithm.

Figure II.2.36 Servosystem with different intensities

applied to a 1D Brownian motion.

Chapter 10

Figure II.4.1 (a) Representation of a graph; (b) a

graph representation of a 3×3 neighborhood in the

grid; and (c) the various clique configurations of a

3×3 neighborhood.

Figure II.4.2 (a) Asymmetric neighborhood definition

and model formulation in MMM; and (b) an example

of choices on a neighborhood where higher-order



interaction is considered: the arrows indicate the

direction and the order in which interaction increases

(after Stien & Kolbjørnsen, 2011).

Figure II.4.3 Application of an MMM model to a

simple 2D binary training image. Results courtesy of

Odd Kolbjørnsen.

Figure II.4.4 Single-grid (left) versus multigrid (right)

ordering of the cells for the MMM formulation. In the

coarsest grid of the multigrid ordering, nodes 1 to 9

are colored green. Note that the same neighborhood

configuration can be maintained, rendering

parameter estimations more practical (modified from

Kolbjørnsen et al., 2014).

Figure II.4.5 Training image and simulated MMM

models. Results courtesy of Odd Kolbjørnsen (see also

Kolbjørnsen et al., 2014).

Chapter 11

Figure II.5.1 Three cases illustrating nonstationarity

in 1D: (a) stationary, (b) nonstationary with varying

mean, and (c) nonstationary with variable variance.

Figure II.5.2 Example of 2D nonstationarity based on

a satellite image of the Sundarbans region,

Bangladesh. (a) high-order nonstationarity in

continuous values, where both the univariate

distribution and the type of patterns vary from the

bottom to the top of the domain. (b) Similar type of

nonstationarity for a categorical variable.

Figure II.5.3 Nonstationary modeling using zones

with separate TIs. (a) The two TIs used. (b) The

prescribed zone for each TI. (c) One resulting

nonstationary realization.



Figure II.5.4 Nonstationary modeling using zones

using a continuous transition in the probability of

using a TI. (a) Two TIs used. (b) Probability of

choosing TI1 (black) or TI2 (white). (c) One resulting

nonstationary realization. (d) A posteriori map

indicating which TI was used for the simulation of

each node.

Figure II.5.5 The use of rotation and affinity zones

with SNESIM. Reprinted from Liu, Y. (2006). With

permission from Elsevier.

Figure II.5.6 Nonstationarity modeling with

probability aggregation using a soft probability map.

A uniform rotation of 45° is applied to the TI

patterns, and a tau = 1 is used with SNESIM.

Reprinted from Liu, Y. (2006). With permission from

Elsevier.

Figure II.5.7 Simulation using a mean-invariant

distance. (a) Multi-Gaussian stationary TI. (b)

Nonstationary data set (100 points data), with values

in a different range than those of the TI. (c) One

simulation with a mean-invariant distance. Circles

represent the location of the 100 conditioning data

(Mariethoz et al., 2010).

Figure II.5.8 A nonstationary simulation is obtained

based on a stationary elementary TI and a rotation

tolerance field. The arrows in the channels allow

visualizing the rotation of the TI patterns.

Figure II.5.9 Rotation-invariant distances applied to a

3D case (Mariethoz and Kelly, 2011). (a) Rotation

field, interpolated based on discrete values (angles

shown in degrees). (b and c) Two possible elementary

TIs (categorical and continuous). (d and e) Two

corresponding realizations.



Figure II.5.10 Illustration of using a nonstationary TI

(a) without explicit nonstationary modeling. The

nonstationary patterns are evenly used on the entire

simulation domain, resulting in a stationary

simulation (b) with degraded spatial features.

Figure II.5.11 Nonstationarity modeling using control

maps. Given a, a' and b', the simulation algorithm

generates b, which is a nonstationarity simulation

presenting the same patterns as in a, and the same

relationship with b' than the relation a : a'.

Figure II.5.12 Nonstationarity modeling using control

maps (a′ b′), with a different nonstationarity in the

simulation (b) and in the TI (a).

Chapter 12

Figure II.6.1 Illustration of a multivariate convolution

involving different types of variables. Variable 1: red

band; variable 2: green band; variable 3: blue band;

and variable 4: delineation of two categories of color

intensity values (high intensity in black and low

intensity in white).

Figure II.6.2 Trivariate reference case. (a) Variable 1:

a transformed multi-Gaussian field (Zinn and Harvey,

2003). (b) Variable 2: moving average and shifting

applied to variable 1. (c) Variable 3: smoothing, then

thresholding of variable 1.

Figure II.6.3 (a–c) Scatterplots of all co-located

values, with variables considered two by two. Lower

half of the figure: conditional histograms illustrating

the co-located relationship with binary variable 3.

Figure II.6.4 3D scatterplot of all three variables in

the reference.



Figure II.6.5 The data available and the scatterplots

based on 50 collocated sample locations. Lower part

of the figure: conditional histograms to better

illustrate the relationship with binary variable 3.

Figure II.6.6 (a–c) Multivariate training images.

Figure II.6.7 (a–c) Scatterplot of all co-located values

in the training image, with variables considered two

by two. Lower half of the figure: conditional

histograms to better illustrate the relationship with

binary variable 3.

Figure II.6.8 3D scatterplot of all three variables in

the training image.

Figure II.6.9 (a–c) Reference (identical to Figure

II.6.2), shown here for comparison. (d–f) One

multivariate conditional realization obtained using

direct sampling. (g–i) The average of 10 conditional

realizations.

Figure II.6.10 (a–c) Scatterplot of all co-located

values in one realization. Lower half of the figure:

conditional histograms to better illustrate the

relationship with binary variable 3.

Figure II.6.11 3D scatterplot of all three variables in

the realization.

Figure II.6.12 Illustration of the image analogy

notation with a by-example filtering application.

Modified from Hertzmann, A., C. E. Jacobs, et al.

(2001).

Figure II.6.13 Identification of geological structures

from a georadar survey. A and A′: training image

(Bayer et al., 2011). B′: another georadar survey

taken in a similar geological environment. B:



simulated photograph honoring the relationship B :

B′.

Figure II.6.14 Scatterplots of (a) the multivariate

training images and (b) multivariate realization of

Figure II.6.13.
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Figure II.7.1 A simple object-based model of

channelized structures. Image obtained with the

TiGenerator software (Maharaja, 2008). Grid size:

250×250×100 nodes.

Figure II.7.2 An object-based model considering

variable channel width and depth, randomized

sinuosity, and different facies for the various

architectural elements (main channel and levees).

Image obtained with the FLUVSIM software (Deutsch

and Tran, 2002). Grid size: 250×250×100 nodes.

Figure II.7.3 Process-based reconstruction of the

Alameda Creek alluvial fan. Reprinted from

Paleoclimatic signature in terrestrial flood deposits.

Science 256(5065): 1775–1782. With permission from

AAAS.

Figure II.7.4 (a) Process-based modeling from tank

experiments (data courtesy of Saint Anthony Falls

Laboratory, University of Minnesota). (b)

Interpretation from the overhead photos (data

courtesy of Siyao Xu).

Figure II.7.5 A process-mimicking model of an

alluvial reservoir using the FLUMY simulation

method (Lopez et al., 2008). The spatial organization

of the structural elements is based on physical

equations. Grid size: 500×500×200 nodes.



Figure II.7.6 Process-based (data courtesy of Exxon)

versus process-mimicking models (Michael et al.,

2010).

Figure II.7.7 Left: elementary training image (size:

50×50×50 nodes). Right: one realization using

rotation-invariant distances (size: 180×150×120

nodes). Rotation-invariant distances are considering

angles of +/− 90° in all directions.

Figure II.7.8 Left: elementary training image (size:

50×50×50 nodes). Right: one realization using

rotation-invariant distances (size: 180×150×120

nodes). Rotation-invariant distances are considering

angles of +/− 20° in all directions.

Figure II.7.9 Merging of compatible orthogonal data

events. Modified/Reprinted from Comunian, A., P.

Renard, et al. (2012). With permission from Elsevier.

Figure II.7.10 Method of perpendicular sections. (a)

Orthogonal training images. (b) The first sections

simulated are those that intersect at the location of

conditioning data (wells). (c) The remaining sections

are generated sequentially until (d) the entire 3D

volume is simulated (modified from Kessler et al.,

2013).

Figure II.7.11 Reconstruction of a partial image

based on the principle of training data. (a) Infrared

satellite data of the Pacific Ocean presenting gaps

(source: National Oceanic and Atmospheric

Administration (NOAA)). (b) One reconstruction

simulation based on (a); here, the data are used as

both training data and conditioning data. Dark blue

represents gaps, and darker blue represents

continents.



Figure II.7.12 (a) Lithological facies. (b) Sediment

grain size. (c) Sediment age since the time of

deposition.

Figure II.7.13 A multivariate training image made of

(a) a hydraulic conductivity field; and (b–f) snapshots

of contaminant distribution at different time stamps.
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Figure II.8.1 Illustration case involving as data: one

well, three possible training images, and two possible

trend models.

Figure II.8.2 (a) Single synthetic well datum; (b)

another synthetic well datum; (c) smoothing of the

first well datum; (d) smoothing of the second well

datum; (e) MDS plot based on the Euclidean distance

between the smoothed data; and (f) MDS plot based

on the Jensen–Shannon distance of the MPHs for

each well datum. Black crosses are the field well

data.

Figure II.8.3 Illustration of the concept of connected

components based on the Tropical Rainfall Measuring

Mission (TRMM) data, shown in (a). The continuous

variable representing accumulated rainfall in (b) is

converted to the binary variable (c) on which a

connected component analysis is applied (d); 1793

connected components are found for the category

corresponding to rainfall >1 mm/12 hours.

Figure II.8.4 Illustration of the connectivity function

based on the connected component analysis of Figure

II.8.3.

Figure II.8.5 Illustration of coherence maps for three

test cases. All cases are unconditional DS

realizations, with fraction of training image, f = 1,

threshold t = 0. (a) A categorical variable with n = 40



neighbor nodes. (b) A continuous variable with n = 20

neighbor nodes. (c) The same continuous variable

with n = 60 neighbor nodes. The color codes in the

coherence maps represent the IDs of the nodes in the

training image.

Figure II.8.6 Illustration of multiscale pyramids of a

single model.

Figure II.8.7 Case with a two wells (a) and simple

binary 3D stationary training image (b). Realization

of both CCSIM (c) and SNESIM (d) from a set of 50

realizations with each method.

Figure II.8.8 Top: local ANODI. Bottom: MDS plot

from global ANODI.

Figure II.8.9 Ensemble average for 50 CCSIM

realizations; and 50 SNESIM realizations.
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Figure II.9.1 A Gaussian prior and a simple tracer

problem. A tracer is injected at the left location, and

its arrival monitored at the right location. Various

Gaussian models are sampled from which the tracer

response is calculated.

Figure II.9.2 Studying the convergence of the gradual

deformation when changing the concentration curves

to earlier and later breakthrough times.

Figure II.9.3 An example of a new MPS realization

generated with SNESIM (c), based on an existing one

(a), using a spatial resampling of data points as well

as constrained to existing conditioning data at four

well locations (b). (d) Training image. The realization

grid is of dimension 100×100×40, and the training

image of dimension 150×200×80.


