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Preface 

The current marketplace is undergoing an accelerated pace of change that 
challenges companies to innovate new techniques to rapidly respond to the ever- 
changing global environment. A country's economy is highly dependent on the 
development of new products that are innovative with shorter development time. 
Organizations now fail or succeed based upon their ability to respond quickly to 
changing customer demands and to utilize new innovative technologies. In this 
environment, the advantage goes to the firm that can offer greater varieties of new 
products with higher performance and greater overall appeal. 

At the center of this environment is a new generation of customers. These 
customers have forced organizations to look for new methods and techniques to 
improve their business processes and speed up the product development cycle. As 
the direct result of this, the industry is required to apply new engineering 
philosophy such as Rapid Response to Manufacturing (RRM). RRM concept uses 
the knowledge of previously designed products in support of developing new 
products. 

The RRM environment is developed by integrating technologies such as 
feature-based CAD modeling, knowledge-based engineering for integrated product 
and process design and direct manufacturing concepts. Product modeling within 
RRM requires advanced CAD technology to support comprehensive knowledge 
regarding the design and fabrication of a product. This knowledge-intensive 
environment utilizes knowledge-based technologies to provide a decision support 
utility throughout the design life cycle. Direct manufacturing uses rapid 
prototyping, tooling and manufacturing technologies to quickly verify the design 
and fabricate the part. 

Rapid Prototyping (RP) is a technique for direct conversion of three 
dimensional CAD data into a physical prototype. RP allows for automatic 
construction of physical models and has been used to significantly reduce the time 
for the product development cycle and to improve the final quality of the designed 
product. Before the application of RP, computer numerically controlled (CNC) 
equipments were used to create prototypes either directly or indirectly using CAD 
data. CNC process consists of the removal of material in order to achieve the final 
shape of the part and it is in contrast to the RP operation since models are built by 
adding material layers after layers until the whole part is constructed. In RP 



process, thin-horizontal-cross sections are used to transform materials into 
physical prototypes. Steps in RP process are illustrated in Figure 1. 
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Figure I .  Generic RP Process 

Depending on the quality of the final prototype, several iterated is possible 
until an acceptable model is built. In this process, CAD data is interpreted into the 
Stereolithugraphy data format. Stereolithugraphy or "stl" is the standard data 
format used by most RP machines. By using "stl", the surface of the solid is 
approximated using triangular facets with a normal vector pointing away from the 
surface in the solid. An example of triangulated surface using the st1 format is 
illustrated in Figure 2. 

Figure 2. Triangulated surface 
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A wide range of technologies are developed to transform different materials 
into physical parts. For RP process, materials are categorized into liquid, solid and 
powdered. A process that has been widely used by many industries is the SLA or 
Stereolithography Apparatus RP Process. SLA is a liquid-based process. The 
material vat is part of the machine and is only removed if the liquid resin replaced. 
The SLA process uses the Ultraviolet laser beams to solidify the liquid polymer as 
it traces each layer. The part and the support are built simultaneously. The finished 
part is then manually removed, cleaned and finally post-cured using ultraviolet 
chamber. Another known process is the Fused Deposition Modeling or FDM. 
FDM is a solid-based process. The build material is melted inside an extrusion 
head where the temperature is contorted based on the type of the material used 
(ABS, wax, etc.). This semi-liquid material is then extruded and deposited layer- 
by-layer. The finished part is then manually removed and cleaned. Selective Laser 
Sintering (SLS) is a powder-based process. A C02 laser is raster scanned across the 
surface of the powder, melting and bonding the power together. In this process the 
part is built inside the powered material which can then be brushed off and reused. 
Sample parts are illustrated in Figure 4. 

Figure 4. Sample RP parts 

As Rapid Prototyping (RP) technology becomes more mature, it is beginning 
to lend itself to other applications such as rapid tooling and rapid manufacturing. 
Some traditional tool making methods are considering the use of RP technologies 
to directly or indirectly fabricate tools. The Indirect method of rapid tooling (RT) 
uses the RP pattern as mold. This is considered as a good alternative to the 
traditional mold making since it is more efficient and requires less lead-time. This 
approach is also less expensive and allows for quick validation of designs. In 
direct RT method, the RP process is used for direct fabrication of the tools. In 
summary, rapid tooling is described as a process which uses an RP model as: 

1. A pattern to create mold quickly (e.g. sand casting), 



2. Copy an RP form into a metal (e.g. investment casting), and 
3. Uses the RP process directly to fabricate a limited volume of tools. 

The next natural evolution of RP technology is Rapid Manufacturing (RM). 
RM is the automated fabrication of products directly from CAD digital data. RM 
methods are categorized into the following three categories: 

I .  One-Time Use Parts 
Resemble the minimum required functionality of the final part. 
Developed in batch-size of one and used for short duration. 
High Cost. 

2. Individually Customized Parts 
Developed in batch-size of one for an indefinite period of time. 
Durability of the parts is an issue and is based on the material used 
and its properties. 
High Cost. 

3. Multiple Item Production Runs 
Methods for rapidly manufacture low volume production runs. 
Not economically efficient to create mass quantities of identical parts 
using rapid manufacturing 

In summary, various RP, RT and RM solutions are available and it is difficult 
for any organization to know which one is the most appropriate. It is 
recommended that companies compare and investigate advantages and 
disadvantages for all available methods and then select the one that is most 
suitable for their operational needs. 

The purpose of this edited book is to provide a comprehensive collection of 
the latest research and technical work in the area of Rapid Prototyping, rapid 
tooling and rapid manufacturing. This book is developed to serve as a resource for 
researcher and practitioners. It can also be used as a text book for advanced 
graduate studies in product design, development and manufacturing. In chapter 1, 
Kridle gives an introduction to structure and properties of engineering materials, 
testing methods used to determine mechanical properties, and techniques that can 
be used to select materials for rapid prototyping. In chapter 2, Abouel Nasr and 
Kamrani will introduce a new methodology for feature extraction and information 
communication using IGES data. In chapter 3, Lim and Zein will introduce 
DICOM (Digital Imaging and Communications in Medicine) data format. DICOM 
is becoming a global information standard that is being used by virtually every 
medical profession that utilizes images within healthcare industry. Automatic 
feature recognition fiom CAD solid systems highly impacts the level of 
integration. Non contact-based reverse engineering is discussed in chapter 4 by 
Creehan and Binanda. In chapter 5, Desai and Binanda present the contacted-based 



reverse engineering process. In chapter 6 Kim and Nnaji present a discussion on 
virtual assembly. This chapter will discuss how assembly operation analysis can be 
embedded into a service-oriented collaborative assembly design environment and 
how the integrated process can help a designer to quickly select robust assembly 
design and process for rapid manufacturing. A new innovative RP process is 
presented by Frank in chapter 7. A description of how CNC milling can be used 
for rapid prototyping is presented in this chapter. The proposed methodology uses 
a layer-based approach for machining for automatic machining of common 
manufactured part geometries. Khoshnevis and Asiabanpour will introduce the SIS 
process in chapter 8. The Selective Inhibition of Sintering or SIS process is a new 
RP method that, like many other RP processes, builds parts in a layer-by-layer 
fabrication basis. The process works by joining powder particles through sintering 
in the part's body, and by sintering inhibition at the part boundary. In Chapter 9, 
Khoshnevis and Hwoang present Contour Crafting. CC is a mega scale fabrication 
technology based on Layered Manufacturing process (LM). This fabrication 
technique is capable of utilizing various types of materials to produce parts with 
high surface quality at high fabrication speed. Method for strategic justification of 
RP technologies is presented in chapter 10 by Narian and Sarkis. Wilson and 
Rosen give a discussion on a method for selection of a RM technology under the 
geometric uncertainty inherent to mass customization. This topic is presented in 
chapter 11. Specifically, they define the types of uncertainty inherent to RM, 
propose a method to account for this uncertainty in a selection process and propose 
a method to select a technology under uncertainty. In chapter 12, Gad El Mola 
and Parsaei present a methodology for selecting the best RP solution technique 
using Analytical Hierarchy Process (AHP). 

Ali K. Kamrani, Ph.D. 
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Chapter 1 

Material Properties and Characterization 

Ghassan T. Kridli 

Industrial and Manufacturing Systems Engineering Department, University of Michigan 
Dearborn, 4901 Evergreen Rd., Dearborn, MI, 48128 

Abstract: 

As the name indicates, rapid prototyping (RP) has traditionally 
been used to provide a physical representation of a product in a 
relatively short time. RP is performed by either material removal or 
material addition. In material-removal type RP processes, the part is 
produce by machining it is out of a block of material; mainly using 
computer numeric controlled (CNC) machining centers. In material- 
addition type RP, the prototype is made by adding layers of materials 
using one of the available RP technologies. 
Earlier prototyping materials and technologies were used to provide 
product designers with the ability to visualize the product, but with 
limited ability to assess the functional performance of the product. 
Nonetheless, prototyped parts also need to allow for design validation 
(assessment of the mechanical and physical behaviors); which 
indicates that the prototyping material should have the same 
characteristics as the production material. This was only available in 
limited situations where the prototyped parts were made using 
removal processes, casting processes, or metal spray deposition. 
However, recent advances in rapid prototyping technologies have 
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allowed the use of production type pol-ymers that can be used to assess 
the functional behavior of these materials. 
One of the shortcomings of testing prototyped products made of 
production type materials is that the material structure and the 
mechanical response of the prototyped part may not match those 
resulting from conventional processing (forming, molding, etc.) that is 
used to fabricate the actual product. This is caused by differences in 
processing conditions between RP and conventional processing. For 
example, if metal spray deposition is used for rapid prototyping 
purposes, the microstructure and level of porosity in the prototyped 
part are likely to be different from those of a cast or stamped product 
of the same size and shape. 
Therefore, the goal of this chapter is to provide an introduction to 
structure and properties of engineering materials, testing methods used 
to determine mechanical properties, and techniques that can be used to 
select materials for material-addition type rapid prototyping. 

Key words: 
Mechanical Properties, Mechanical Testing, Material Selection, Polymers 

1.1 Structural Properties of Materials 

The structure of materials affects their properties and service behavior. 
Based on their structure, materials can be classified as either crystalline or 
non-crystalline (or amorphous)'. Crystalline structures are organized 
structures in which atoms and molecules of solids arrange themselves in a 
regular and repeating manner that is called lattice. On the other hand, 
amorphous structures have some level of local order relative to their 
neighbors, but globally, they do not have an ordered structure like crystalline 
materials. Another difference between the two types of materials is related 
to their different thermal expansion behavior; this will be explained in more 
detail in sections 1.2.1 and 1.2.2. 

1.1.1 Crystalline Structures 

The lattice structure in a crystalline material is made up of a repeating 
order of atoms that is known as the unit cell. Common types of unit cells 
that are observed in metals include body-centered cubic (BCC), face- 
centered cubic (FCC), and hexagonal close packed (HCP). Figure 1-1 shows 
a schematic of the atom arrangement in each of these three aforementioned 


