Rapid Prototyping: Theory and Practice

Manufacturing Systems Engineering Series

Hamid R. Parsaei Series Editor

Rapid Prototyping:

Theory and Practice Kamrani, Ali K. , Nasr, Emad Abouel (Eds.) , 2005 ISBN: 0-387-23290-7

Computer-Aided Maintenance:

Methodologies and Practices Lee, Jay; Wang, Ben (Eds.), 1999 ISBN: 0-412-62970-4

Rapid Response Manufacturing:

Contemporary methodologies, tools and technologies Dong, Jian (John) (Ed.), 1997 ISBN: 0-412-78010-0

Occupational Ergonomics:

Principles and applications Tayyari, Fariborz, Smith, James L. , 1997 ISBN: 0-412-58650-9

Integrated Product, Process and Enterprise Design

Wang, Ben (Ed.), 1997 ISBN: 0-412-62020-0

Manufacturing Decision Support Systems

Parsaei, Hamid R.; Hanley, Thomas R.; Kolli, S.S. (Eds.), 1996 ISBN: 0-412-57040-8

Rapid Prototyping: Theory and Practice

Edited by

Ali Kamrani, Ph.D.

Industrial Engineering Department University of Houston Houston, TX, USA

and

Emad Abouel Nasr

Industrial Engineering Department University of Houston Houston, TX, USA

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10: 0-387-23290-7 ISBN-13: 9780387232904 ISBN-10: 0-387-23291-5 (e-book) ISBN-13: 9780387232911

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

987654321

SPIN 11328148

springeronline.com

Preface

The current marketplace is undergoing an accelerated pace of change that challenges companies to innovate new techniques to rapidly respond to the everchanging global environment. A country's economy is highly dependent on the development of new products that are innovative with shorter development time. Organizations now fail or succeed based upon their ability to respond quickly to changing customer demands and to utilize new innovative technologies. In this environment, the advantage goes to the firm that can offer greater varieties of new products with higher performance and greater overall appeal.

At the center of this environment is a new generation of customers. These customers have forced organizations to look for new methods and techniques to improve their business processes and speed up the product development cycle. As the direct result of this, the industry is required to apply new engineering philosophy such as *Rapid Response to Manufacturing* (RRM). RRM concept uses the knowledge of previously designed products in support of developing new products.

The RRM environment is developed by integrating technologies such as feature-based CAD modeling, knowledge-based engineering for integrated product and process design and direct manufacturing concepts. Product modeling within RRM requires advanced CAD technology to support comprehensive knowledge regarding the design and fabrication of a product. This knowledge-intensive environment utilizes knowledge-based technologies to provide a decision support utility throughout the design life cycle. Direct manufacturing uses rapid prototyping, tooling and manufacturing technologies to quickly verify the design and fabricate the part.

Rapid Prototyping (RP) is a technique for direct conversion of three dimensional CAD data into a physical prototype. RP allows for automatic construction of physical models and has been used to significantly reduce the time for the product development cycle and to improve the final quality of the designed product. Before the application of RP, computer numerically controlled (CNC) equipments were used to create prototypes either directly or indirectly using CAD data. CNC process consists of the removal of material in order to achieve the final shape of the part and it is in contrast to the RP operation since models are built by adding material layers after layers until the whole part is constructed. In RP process, thin-horizontal-cross sections are used to transform materials into physical prototypes. Steps in RP process are illustrated in Figure 1.

Figure 1. Generic RP Process

Depending on the quality of the final prototype, several iterated is possible until an acceptable model is built. In this process, CAD data is interpreted into the Stereolithugraphy data format. Stereolithugraphy or "stl" is the standard data format used by most RP machines. By using "stl", the surface of the solid is approximated using triangular facets with a normal vector pointing away from the surface in the solid. An example of triangulated surface using the stl format is illustrated in Figure 2.

Figure 2. Triangulated surface

Since chordal deviation is used to approximate real mathematical surface, it is important to minimize this deviation to better approximate the real surface. This impact the size of the required triangles and it will also increase the processing time. Figure 3 illustrate the stages of product development using RP technologies.

Figure 3. Integrated RP and Product Development Cycle

A wide range of technologies are developed to transform different materials into physical parts. For RP process, materials are categorized into liquid, solid and powdered. A process that has been widely used by many industries is the SLA or Stereolithography Apparatus RP Process. SLA is a liquid-based process. The material vat is part of the machine and is only removed if the liquid resin replaced. The SLA process uses the Ultraviolet laser beams to solidify the liquid polymer as it traces each layer. The part and the support are built simultaneously. The finished part is then manually removed, cleaned and finally post-cured using ultraviolet chamber. Another known process is the Fused Deposition Modeling or FDM. FDM is a solid-based process. The build material is melted inside an extrusion head where the temperature is contorted based on the type of the material used (ABS, wax, etc.). This semi-liquid material is then extruded and deposited layerby-layer. The finished part is then manually removed and cleaned. Selective Laser Sintering (SLS) is a powder-based process. A CO_2 laser is raster scanned across the surface of the powder, melting and bonding the power together. In this process the part is built inside the powered material which can then be brushed off and reused. Sample parts are illustrated in Figure 4.

Figure 4. Sample RP parts

As Rapid Prototyping (RP) technology becomes more mature, it is beginning to lend itself to other applications such as rapid tooling and rapid manufacturing. Some traditional tool making methods are considering the use of RP technologies to directly or indirectly fabricate tools. The Indirect method of rapid tooling (RT) uses the RP pattern as mold. This is considered as a good alternative to the traditional mold making since it is more efficient and requires less lead-time. This approach is also less expensive and allows for quick validation of designs. In direct RT method, the RP process is used for direct fabrication of the tools. In summary, rapid tooling is described as a process which uses an RP model as:

1. A pattern to create mold quickly (e.g. sand casting),

viii

- 2. Copy an RP form into a metal (e.g. investment casting), and
- 3. Uses the RP process directly to fabricate a limited volume of tools.

The next natural evolution of RP technology is Rapid Manufacturing (RM). RM is the automated fabrication of products directly from CAD digital data. RM methods are categorized into the following three categories:

- 1. One-Time Use Parts
 - Resemble the minimum required functionality of the final part.
 - Developed in batch-size of one and used for short duration.
 - High Cost.
- 2. Individually Customized Parts
 - Developed in batch-size of one for an indefinite period of time.
 - Durability of the parts is an issue and is based on the material used and its properties.
 - High Cost.
- 3. Multiple Item Production Runs
 - Methods for rapidly manufacture low volume production runs.
 - Not economically efficient to create mass quantities of identical parts using rapid manufacturing

In summary, various RP, RT and RM solutions are available and it is difficult for any organization to know which one is the most appropriate. It is recommended that companies compare and investigate advantages and disadvantages for all available methods and then select the one that is most suitable for their operational needs.

The purpose of this edited book is to provide a comprehensive collection of the latest research and technical work in the area of Rapid Prototyping, rapid tooling and rapid manufacturing. This book is developed to serve as a resource for researcher and practitioners. It can also be used as a text book for advanced graduate studies in product design, development and manufacturing. In chapter 1, Kridle gives an introduction to structure and properties of engineering materials, testing methods used to determine mechanical properties, and techniques that can be used to select materials for rapid prototyping. In chapter 2, Abouel Nasr and Kamrani will introduce a new methodology for feature extraction and information communication using IGES data. In chapter 3, Lim and Zein will introduce DICOM (Digital Imaging and Communications in Medicine) data format. DICOM is becoming a global information standard that is being used by virtually every medical profession that utilizes images within healthcare industry. Automatic feature recognition from CAD solid systems highly impacts the level of integration. Non contact-based reverse engineering is discussed in chapter 4 by Creehan and Binanda. In chapter 5, Desai and Binanda present the contacted-based reverse engineering process. In chapter 6 Kim and Nnaji present a discussion on virtual assembly. This chapter will discuss how assembly operation analysis can be embedded into a service-oriented collaborative assembly design environment and how the integrated process can help a designer to quickly select robust assembly design and process for rapid manufacturing. A new innovative RP process is presented by Frank in chapter 7. A description of how CNC milling can be used for rapid prototyping is presented in this chapter. The proposed methodology uses a layer-based approach for machining for automatic machining of common manufactured part geometries. Khoshnevis and Asiabanpour will introduce the SIS process in chapter 8. The Selective Inhibition of Sintering or SIS process is a new RP method that, like many other RP processes, builds parts in a layer-by-layer fabrication basis. The process works by joining powder particles through sintering in the part's body, and by sintering inhibition at the part boundary. In Chapter 9, Khoshnevis and Hwoang present Contour Crafting. CC is a mega scale fabrication technology based on Layered Manufacturing process (LM). This fabrication technique is capable of utilizing various types of materials to produce parts with high surface quality at high fabrication speed. Method for strategic justification of RP technologies is presented in chapter 10 by Narian and Sarkis. Wilson and Rosen give a discussion on a method for selection of a RM technology under the geometric uncertainty inherent to mass customization. This topic is presented in chapter 11. Specifically, they define the types of uncertainty inherent to RM, propose a method to account for this uncertainty in a selection process and propose a method to select a technology under uncertainty. In chapter 12, Gad El Mola and Parsaei present a methodology for selecting the best RP solution technique using Analytical Hierarchy Process (AHP).

Ali K. Kamrani, Ph.D.

To Sonia and Arshya

Acknowledgments

We would like to thank authors that participated in this project. We would also like to thank Mr. Steven Elliot and Ms. Rose Antonelli from Springer (US) publishing for giving us the opportunity to fulfill this project.

Contents

List of Figures	xxiii
List of Tables	xxix
Contributors	xxxi
Chapter 1: Material Properties and Characterization Ghassan T. Kridli.	1
1.1. Structural Properties of Materials	2
1.1.1. Crystalline Structures	2
1.1.2. Non-crystalline (Amorphous) Structures	5

1.1.2. Non-crystalline (Amorphous) Structures	5
1.2. Engineering Material Classification	6
1.2.1. Metals	6
1.2.2. Ceramics and Glass	7
1.2.3. Polymers	7
1.2.4. Composite Materials	8
1.3. Mechanical Properties of Materials	9
1.3.1 Uniaxial Tension Test	9
1.3.1.1. Tensile Modules	10
1.3.1.2. Engineering Stress	11
1.3.1.3. Engineering Strain	13
1.3.1.4. Ductility	14
1.3.1.5. True Stress and True Strain	14
1.3.2. Toughness Tests	15
1.3.3. Hardness Tests	16
1.3.4. Flexure Tests	16
1.3.5. Creep Test	17
1.4. Polymers used in Rapid Prototyping	18
1.5. Material Selection	20

Part I. Direct and Indirect Data Input Formats

Chapter 2: IGES Standard Protocol for Feature Recognition	
CAD System	25
Emad Abouel Nasr and Ali Kamrani	
2.1. History and Overview	26
2.2. Standard data format	27
2.2.1. Data transfer in CAD/CAM Systems	27
2.2.2. Initial Graphics Exchange Specifications (IGES)	29
2.2.2.1. Structure of IGES File	30
2.2.2.1.1. Start Section	31
2.2.2.1.2. Global section	31
2.2.2.1.3. Directory entry section (DE)	31
2.2.2.1.4. Parameter data section (PD)	32
2.2.2.1.5. Terminate section	32
2.3. The Feature extraction Methodology	33
2.3.1. Conversion of CAD data files into Object	
Oriented Data structure	34
2.3.1.1. Basic IGES entities	34
2.3.2. The Overall object-oriented data structure of	07
the proposed methodology	37
2.3.2.1. Geometry and topology of B-rep	41
2.3.2.1.1. Classification of Edges	41
2.3.2.1.2. Classification of loops	42
2.5.2.2. Definition of the Data Fields of the	44
2.2.2.2. Algorithms for Extracting Coometric Entities from	44
CAD File	44
2.3.2.3.1. Algorithm for extracting entries from directory	
and parameter sections	46
2.3.3.3.2. Algorithm for extracting the basic entities	
of the designed part	47
2.3.3.4 Extracting Form Features from CAD Files	49
2.3.3.4.1. An Example for identifying the concave	
edge/faces	51
2.3.3.4.2. Algorithm for determining the concavity	
of the edge	51
2.3.3.4.3. Algorithms for feature extraction	
(Production rules)	52
2.4. An Illustrative Example	54
2.5. Summary	60

	xvii
Chapter 3: The Digital Imaging and Communications in Medicine (DICOM): Description, Structure and Applications Jinho (Gino) Lim and Rashad Zein	63
3.1. Introduction	64
3.1.1. History	64
3.1.2. The scope of current DICOM Standards	67
3.2. DICOM structure	67
3.2.1. Entity- Relationship models	68
3.2.2. DICOM components	70
3.2.3. DICOM Format	72
3.3. Current applications	75
3.4. Use of DICOM in Radiation Treatment Planning	78
3.5. Potential use of DICOM as a tool in various Industries	83
3.6. Summary	84
Chapter 4: Reverse Engineering: A Review & Evaluation of Non-Contact Based Systems Kevin D. Creehan and Bopaya Bidanda	87
4.1. Introduction	88
4.2. Non-contact reverse engineering Techniques	89
4.2.1. Reverse Engineering Taxonomy	89
4.2.2. Active Technique – Laser Scanning	91
4.2.3. Passive Technique – Three-Dimensional Photogrammetry	94
4.2.4. Medical Imaging	96
4.2.4.1. Magnetic Resonance Imaging	96
4.2.4.2. Computed Tomography	98
4.2.4.3. Ultrasound Scanning	99
4.2.4.4. Medical Image Data File	99
4.2.4.5. Three-Dimensional Reconstruction	101
4.3. Applications	102
4.4. Relationship to rapid prototyping	104
Chapter 5: Reverse Engineering: A Review & Evaluation of	
Contact Based Systems	107
Salil Desai and Bopaya Bidanda	
5.1. Introduction	108
5.1.1. Need for reverse engineering	108
5.2. Contact Based Reverse Engineering Systems	109
5.3. Coordinate Measuring Machine (CMM)	110
5.3.1. Types of CMM Configurations	111

xviii

5.3.1.1. Bridge Type	111
5.3.1.1.1. Applications	111
5.3.1.2. Gantry type	112
5.3.1.2.1. Applications	113
5.3.1.3. Cantilever Type	113
5.3.1.3.1. Applications	114
5.3.1.4. Horizontal Arm Type	114
5.3.1.4.1. Applications	114
5.3.1.5. Articulated Arm Type	115
5.3.1.5.1. Applications	115
5.3.2. Specifications of Coordinate Measuring machines	116
5.3.2.1. Control types	116
5.3.2.2. Mounting options	116
5.4. CMM Measurement process	117
5.4.1. Data Collection Procedure for CMM	118
5.4.2. Digitization from the Surface	119
5.4.3. Preprocessing of The Point Clouds	119
5.4.3.1. Point processing as applied to a Knee Joint	120
5.4.4. Surface fitting	121
5.5. Performance Parameters of CMMs	121
5.5.1. Scanning speed	121
5.5.2. CMM probe accuracy	122
5.5.3. CMM Rigid Body Errors	123
5.5.4. CMM Structural Deformations	124
5.6. Integration of CMM data into other design and	
manufacturing System Software	124
5.7. Recent advances in CMM technology	125
5.7.1. Reverse Engineering method based on	
Haptic Volume Removal	125
5.7.2. Nano CMM	127

Part II. Methods and Techniques

Chapter 6: VIRTUAL ASSEMBLY ANALYSIS ENHANCING RAPID PROTOTYPING IN	
COLLABORATIVE PRODUCT DEVELOPMENT	133
Kyoung-Yun Kim and Bart O. Nnaji	
6.1. History and Overview	134
6.2. Modern Design and product development	136
6.2.1 Rapid product development	136
6.2.2 Internet-enabled collaboration	137
6.2.3 Inevitable impact on assembly and joining Operations	138

6.3. Collaborative Virtual Prototyping and simulation	140
6.4. Service-oriented Collaborative Virtual Prototyping and Simulation	140
6.5. Virtual Assembly analysis	143
6.5.1 Service-Oriented VAA architecture and Components	144
6.5.2 VAA tool	145
6.5.2.1. Assembly design formalism and assembly design	
model generation	146
6.5.3. Assembly analysis model (AsAM) generation	147
6.5.4. Pegasus Service Manager	149
6.5.5. e-Design Brokers	150
6.5.6. Service Providers	150
6.6. Implementations	151
6.7. Contributions	159
6.8. Conclusions	160
Charter 7. Solution Provid Prototomines Constitutes	
Chapter /: Subtractive Rapid Prototyping: Creating a	165
Completely Automated Process for Rapid Machining	105
Matthew C. Frank	
7.1. Background	166
7.2. Related Work	168
7.3. Assumptions	169
7.4. Overview of the CNC-RP Process	170
7.5. Approach to setup Planning	174
7.6. Approach to Tool Selection	178
7.7. Challenges with Rapid Fixturing	180
7.8. General System model	184
7.9. Example parts using CNC-RP	185
7.10. Economics of CNC-RP	189
7.11. Limitations and Future Work	192
7.12. Summary	1 9 4
Charter 9. SET ECTIVE INITION OF SINTEDING	107
Behrokh Khoshnevis and Bahram Asiabannour	197
8.1. Introduction	197
8.2. The sis process materials	202
8.3. The sis process machine path generation	204
8.3.1. Step 1: slicing algorithm	204
8.3.2. Step 2: machine path generation	206
8.4. The SIS process optimization	210
8.5. Physical part fabrication	216
8.6. Powder waste Reduction	217
8.7. Vision for future Research	218

xix

Chapter 9: Contour Crafting: A Mega Scale Fabrication	
Technology	221
Behrokh Khoshnevis and Dooil Hwang	
9.1. Introduction	222
9.1.1. CC Process error analysis	223
9.1.2. CC Applications	226
9.1.2.1. Ceramic part Fabrications	226
9.1.2.2. CC machine structure for Ceramics Processing	227
9.1.2.3. Preparing ceramic Paste	227
9.1.2.4. Prefabricated Ceramic Parts	228
9.1.2.5. Fabrication of pre-functional piezoelectric lead zirconate titanate (PZT) ceramic components	
and thermo-plastic parts	228
9.1.2.6. Design considerations	230
9.1.2.7. Experiments	230
9.1.3. Construction Automation	234
9.1.3.1. Challenges faced by Construction industry Today	235
9.1.3.2. The current state of automation in construction sites	236
9.1.3.3. Barriers for construction automation	237
9.1.3.4. The needs for an innovative construction process	238
9.1.3.5. CC concrete formwork design	239
9.1.3.6. Physical properties of CC formwork material	241
9.1.3.7. CC nozzle geometry	242
9.1.3.8. Fabrication of vertical concrete formwork	244
9.1.3.9. Placing fresh concrete	245
9.1.3.10. Results	247
9.1.3.11. Extraterrestrial construction	248
9.1.4. Conclusion	249
Part III. Economic Analysis	
Chapter 10: Strategic Justification of Rapid Prototyping Systems Rakesh Narain and Joseph Sarkis	253
10.1 Introduction	254

10.1. Introduction	254
10.2. Investment justification factors	256
10.2.1. Strategic and Operational Benefits	256
10.2.2. Cost	257
10.2.3. Systems Characteristics and Factors	258
10.2.3.1. Inter- and Intra-Firm Adaptability	258
10.2.3.2. Platform Neutrality and Interoperability	258
10.2.3.3. Scalability	258
10.2.3.4. Reliability	258

10.2.3.5. Ease of Use	259
10.2.3.6. Customer Support	259
10.3. Issues and Models for Evaluation and Justification of RP	259
10.3.1. The Analytical Network Process (ANP) Methodology 10.3.1.1. Step 1: Setting up the Network	260
Decision Hierarchy	261
10.3.1.1.1. The Planning Horizon	263
10.3.1.2. Step 2: Pairwise Comparisons	263
10.3.1.3. Step 3: Calculate Relative Importance	
Weights	264
10.3.1.4. Step 4: Form a Supermatrix	265
10.3.1.5. Step 5: Arrive at a Converged set of Weights	265
10.4. Summary and Discussion	267
Chapter 11: SELECTION OF RAPID MANUFACTURING	
TECHNOLOGIES UNDER EPISTEMIC	
UNCERTAINTY	271
Jamal O. Wilson and David Rosen	
11.1. Introduction	272
11.2. Uncertainty and its representations	273
11.3. Selection for rapid manufacturing	277
11.4. Illustrative example: direct production of caster wheels	281
11.5. Illustrative example: direct production of hearing aid shells	286
11.6. Closure	289
Chapter 12: Economic Analysis of Rapid Prototyping Systems Khaled Gad El Mola, Hamid Parsaei,	293
and Herman Leep	
12.1. Introduction	294
12.2. Recent Literature on Justification Techniques	295
12.3. Analytic Hierarchy Process and Expert Choice	299
12.4. Analytical Model to Justify Advanced Manufacturing	
Technologies	301
12.4.1. Identify the competitive criteria and their measures	302
12.4.2. Structuring the hierarchy	302
12.4.3. Determine the overall weight for each alternative and	
select the alternative that has the highest weight	303
12.5. An Illustrated Example	305
12.6. Summary	315

Index

319

List of Figures

Figure 1-1. Schematic of common crystal structure	3
Figure 1-2. Thermal expansion behavior of crystalline materials	4
Figure 1-3. Examples of crystal imperfections	4
Figure 1-4. Structures for Crystalline and Non-Crystalline Materials	5
Figure 1-5. Thermal expansion behavior of an amorphous material	6
Figure 1-6. Polymer Structures	8
Figure 1-7. Uniaxial tensile test specimen shape	10
Figure 1-8. Load-displacement behavior in metals and polymer	11
Figure 1-9. Normal load, Pn, and shear loads, Ps	12
Figure 1-10. Schematic showing the original and the deformed sizes	
of the gage section of a uniformly stretched tensile	
test specimen	13
Figure 1-11. Schematic of the specimen setup in Charpy impact test	15
Figure 1-12. Schematic of test specimen, loading, and support	
in flexure tests	17
Figure 2-1. Solid Modeling technology evolutions	28
Figure 2-2. Translation using a Neutral File	29
Figure 2-3. IGES translators	30
Figure 2-4. IGES file structure	31
Figure 2-5. Structure of Directory Section	32
Figure 2-6. Structure of Parameter Data Section	33
Figure 2-7. Structure of the proposed methodology	36
Figure 2-8. Flowchart of extraction and classification of features	37
Figure 2-9. Hierarchy of classes and attributes of the designed object	38
Figure 2-10. Simple and Compound Features	39
Figure 2-11. Convex and Concave Features and Edges	40
Figure 2-12. Classification of Interior and Exterior Form Features	40
Figure 2-13. Classifications of Convex Features	41
Figure 2-14. The surface normal vectors	42
Figure 2-15. Classification of Edges	43
Figure 2-16. Classification of Loops	43
Figure 2-17. The Direction of Edge	49

xxiv

Figure 2-18 A concave Edge Example	50
Figure 2-10. STEP THROUGH	50
Figure 2-20 STEP THROUGH POLIND CORNER	52
Figure 2-20. STEP TIMOUGH ROUTE CORRER	55
Figure 3-1 \triangle CT image	5 7 64
Figure 3-2. The DICOM communications protocol model	66
Figure 3-3. F.P. model	60
Figure 3.4 DICOM components	70
Figure 3-4. DICOM components.	70
Figure 3-5. A DICOM hander as displayed by MDIero	72
Figure 3-0. A DICOM licadel as displayed by Mixielo.	75
Figure 3-7. A sample of a Transfer Syntax OID.	74
Figure 3-6. The way DICOM defines the interface	13
Figure 3-9. DICOM images in the dental field.	/0
Figure 3-10. A DICOM image displayed in DICOM wORKS.	80
Figure 3-11. DICOM image information in text format.	80
Figure 3-12. Displaying a treatment plan using CERK.	82
Figure 3-13. Dose volume histogram (DVH).	82
Figure 3-14. DICOM applications in rapid prototyping.	84
Figure 4-1. Reverse engineering taxonomy2.	91
Figure 4-2. The triangle formed between the laser, the scanned part,	~
and the sensors.	92
Figure 4-3. Three-dimensional laser scanners.	93
Figure 4-4. The triangles formed between the multiple image	
Perspectives	94
Figure 4-5. Samsung SCC-B2305 CCD camera	96
Figure 4-6. General Electric 3.0 Tesla Signa VH MRI scanner.	97
Figure 4-7. General Electric Sytec 1800i CT scanner.	99
Figure 4-8. Relationship between reverse engineering	
and rapid prototyping.	104
Figure 5-1. Examples of Bridge type CMMs.	112
Figure 5-2. Examples of Gantry type CMMs.	113
Figure 5-3. Examples of Cantilever type CMMs.	113
Figure 5-4. Dual Arm Type Horizontal CMM.	114
Figure 5-5. Articulated Arm Type CMM.	115
Figure 5-6. Schematic Diagram for a CMM.	117
Figure 5-7. Scanning Probe path.	118
Figure 5-8. Re-sampling process for mesh generation.	118
Figure 5-9. CMM scanning process.	119
Figure 5-10. Point cloud before and after preprocessing.	120
Figure 5-11. Measurement accuracy during slow and fast speed scanning	122
Figure 5-12. Haptic volume sculpting based reverse engineering.	126
Figure 5-13. Construction of a Nano CMM.	128
Figure 5-14. Prototype of the Nano CMM.	129
Figure 5-15. Construction and prototype of a nanoprobe.	129
• • • •	

Figure 6-1. Rapid prototyping in product development.	137
Figure 6-2. Service triangular relationship.	142
Figure 6-3. Collaborative virtual prototype model generation.	142
Figure 6-4. Virtual assembly analysis.	143
Figure 6-5. Service-oriented VAA architecture.	145
Figure 6-6. Service transactions in VAA.	153
Figure 6-7. Assembly models for VAA.	154
Figure 6-8. Pegasus Service Manager.	155
Figure 6-9. VAA service provider.	155
Figure 6-10. Equivalent stress and deformation obtained from VAA	
Service	157
Figure 6-11. Aluminum concept car and body frames (Buchholz 43).	157
Figure 6-12. VAA for a welded extruded frame.	158
Figure 6-13. VAA for a hinge with three rivets.	159
Figure 7-1. Free-form surface being machined from two orientations.	171
Figure 7-2. Setup for CNC-RP.	172
Figure 7-3. Process steps for CNC-RP.	173
Figure 7-4. A sample part.	174
Figure 7-5. Model with sample cross section used for visibility mapping.	175
Figure 7-6. Visible ranges of one segment of a polygonal chain.	176
Figure 7-7. Layer-based toolpath boundaries.	177
Figure 7-8. Distance to the deepest visible segment at one orientation.	177
Figure 7-9. Tool length requirement.	175
Figure 7-10. Tool diameter requirement.	179
Figure 7-11. Cutter contact area for flat- and ball-end mill.	179
Figure 7-12. Comparison of traditional vs. feature-free fixturing.	181
Figure 7-13. Setup for Rapid Machining.	183
Figure 7-14. CNC-RP System Model.	184
Figure 7-15. Jack model.	185
Figure 7-16. Bone model.	186
Figure 7-17. Visibility orientations for the femur.	187
Figure 7-18. Finished prismatic model.	187
Figure 7-19. SLA model.	188
Figure 7-20. Example models.	190
Figure 7-21. Example part with non-orthogonal feature.	191
Figure 7-22. Parts with no feasible axis.	193
Figure 8-1. Stages of the SIS Process.	198
Figure 8-2. Extraction of the Fabricated Part.	198
Figure 8-3. The Selective Inhibition Sintering Alpha Machine.	200
Figure 8-4. Selective Inhibition Sintering Process Steps.	201
Figure 8-5. Water Evaporation in the Selected Area and Salt	
Wash Off to Extract the Part.	202
Figure 8-6. Salt Wash Off and Part Extraction.	203
Figure 8-7. Steps for a sample part production using KI solution	203
-	

xxvi

Figure 8-8. The Two Steps of Slicing and Machine Path Generation	204
Figure 8-9. Slicing Algorithm Steps.	205
Figure 8-10. Machine Path Generation Steps.	207
Figure 8-11. Hatch Path Generation Steps.	208
Figure 8-12. Visualization CAD model and the machine path (left)	210
Figure 8-13. IDEF0 Hierarchy for the SIS Process.	210
Figure 8-14. Roadmap for the SIS Process Properties Optimization.	211
Figure 8-15. Base Part.	212
Figure 8-16. Part Breaking Mechanism.	212
Figure 8-17. Shift X.	213
Figure 8-18. Part Breakdown for Surface Quality Rating.	214
Figure 8.19. General Form of the Component Desirability Function.	215
Figure 8- 20. 2.5D Parts Fabricated by the SIS Process.	216
Figure 8-21. 3D Parts Fabricated by the SIS Machine.	216
Figure 8-22. Current SIS Process Limitations: Waste Material.	217
Figure 8-23. Moveable Fingers Mask System.	217
Figure 8-24. The New Mask System Design (top) and Prototype (bottom)	218
Figure 9-1. Schematic of CC extrusion and filling process	222
Figure 9-2. Schematic of trowels and extrusion assembly	222
Figure 9-3. Cross-section comparisons of layered boundaries	223
Figure 9-4. Geometric description of local layered process error	224
Figure 9-5. Contour Crafting nozzle and some of 2.5D geometries and	
3D parts	226
Figure 9-6. CC system configurations for ceramic part fabrications	227
Figure 9-7. Demonstrations of CC constructability	228
Figure 9-8. Advanced ceramic structures.	229
Figure 9-9. An adapted CC system for fabricating pre-functional	
ceramic and thermoplastic parts.	230
Figure 9-10. Material feeding system with adjustable length (L)	
between rollers and heating barrel	213
Figure 9-11. Schematic of CC working platform to prevent	
thermal contraction	231
Figure 9-12. Schematic of die shape designs and sectional view of layers	232
Figure 9-13. Showing customized nozzle shape and its actual fabrication	232
Figure 9-14. Fabricated 2.5D geometries and two advanced	
structure shapes	233.
Figure 9-15. Pre-functional advance ceramic (Spiral PZT actuator)	234
Figure 9-16. Schematic of the automatic construction of	
a residential building.	235
Figure 9-17. A single task robot, Surf Robo.236	
Figure 9-18. The first automated construction system applied	
steel concrete structure.	237
Figure 9-19. Basic components of a typical wall formwork	240
Figure 9-20. Closer sections of wall form.	241
-	

Figure 9-21. Excessive friction force causes some voids	
on extruded flow.	243
Figure 9-22. Specialized CC nozzle assemblies.	243
Figure 9-23. Extrusion flow control by new CC trowels.	244
Figure 9-24. A concrete wall form fabricated by the CC machine.	245
Figure 9-25. CC concrete placing procedures.	246
Figure 9-26. Placing concrete in layer by layer without using form ties.	247
Figure 9-27. A concrete wall made by CC machine.	248
Figure 11-1. Certainty Equivalent Determination.	275
Figure 11-2. Hurwicz Selection Criteria	276
Figure 11-3. The Word Formulation for Selection for Rapid	
Manufacturing	277
Figure 11-3. Summary of Steps for Selection for Rapid Manufacturing.	277
Figure 11-5. Model of steel caster wheel	282
Figure 11-6. Hearing Aid Shell.	286
Figure 12-1. Hierarchical Structure for Justification of Advanced	
Manufacturing Technologies	304
Figure 12-2. AHP Model for Selecting the Best AMT Alternative	306
Figure 12-3. A Graphical Pairwise Comparison of Economic	
and Non-Economic Benefits with Respect to	
the Overall Objective	307
Figure 12-4. A Numerical Pairwise Comparison of	
Non-Economic Criterion	308
Figure 12-5. Relative Weights with Respect to Non-Economic Benefits	308
Figure 12-6. A Verbal Pairwise Comparison of Economic Criterion	309
Figure 12-7. Relative Weights of Alternative with Respect to	
Product Change Response	311
Figure 12-8. Relative Weights of Alternatives with Respect to	
Design Time	311
Figure 12-9. Relative Weights of Alternatives with Respect to	
Cycle Time	312
Figure 12-10. Relative Weights of Alternatives with	
Respect to Delivery Reliability	312
Figure 12-11. Relative Weights of Alternatives with	
Respect to ROI	313
Figure 12-12. Relative Weights of Alternatives with Respect	
to Start-Up Costs	313
Figure 12-13. Relative Weights of Alternatives with respect	
to Tooling Costs	314

List of Tables

Table 1-1. Selected properties of relevant polymers	22
Table 2-1. Classification of Loops	44
Table 2-2. Definitions of classes and attributes	45
Table 2-3. Extraction of Vertices	55
Table 2-4. Extraction of Edges	55
Table 2-5. Extraction of Loops	57
Table 2-6. Extraction of Faces	58
Table 2-7. Extraction of Features	59
Table 2-8. Machining Information	60
Table 6-1. AsAM for welding	148
Table 6-2. AsAM for riveting	148
Table 7-1. Build and Post Process Times	188
Table 7-2. Comparison of Total Processing Time	188
Table 8-1. Part surface quality rating system	214
Table 9-1. Results of testing compressive strength	242
Table 10.1. Example Pairwise Comparison Matrix and resulting	
Relative Importance Weight for Strategic Metrics	264
Table 10-2. Initial Supermatrix	266
Table 11-1. Caster wheel dimensions	282
Table 11-2. Attribute Ratings	284
Table 11- 3. Alternative Merit Function Values for Scenario 1 and 2	285
Table 11-4. Hurwicz evaluation parameters	285
Table 11- 5. Hearing Aid Shell Dimensions	287
Table 11-6. Attribute Ratings	288
Table 11-7. Merit Function Values and Hurwitz factors	289
Table 12-1. Summary of Available Justification Approaches	300

Contributors

Ghassan T. Kridli, PhD Industrial and Manufacturing Systems Engineering Department, University of Michigan Dearborn, 4901 Evergreen Rd., Dearborn, MI, 48128.

Emad Abouel Nasr

Industrial Engineering Department, Faculty of Engineering, University of Houston, 213 Engineering Building 2, Houston, TX 77204-4008.

Ali K. Kamrani, Ph.D. Industrial Engineering Department, Faculty of Engineering, University of Houston, 213 Engineering Building 2, Houston, TX 77204-4008.

Jinho (Gino) Lim, Ph.D. Industrial Engineering Department, University of Houston, 213 Engineering Building 2, Houston, TX 77204-4008.

Rashad Zein Industrial Engineering Department, University of Houston, 213 Engineering Building 2, Houston, TX 77204-4008.

Kevin D. Creehan, Ph.D. Center for High Performance Manufacturing, Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061.

Salil Desai, Ph.D. Department of Industrial & Systems Engineering, NC A&T State University, Greensboro, NC 27411.

Bopaya Bidanda, Ph.D. Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261 xxxii

Kyoung-Yun Kim, Ph. D. Department of Industrial and Manufacturing Engineering, Wayne State University, 4815 Fourth St., Detroit, MI 48201.

Bart O. Nnaji, Ph.D. US NSF Center for e-Design and Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 1526.

Matthew C. Frank, Ph.D. Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011.

Bahram Asiabanpour, Ph.D. Texas State University-San Marcos, TX 78666.

Behrokh Khoshnevis, Ph.D. Professor, Department of Industrial and Systems Engineering, University of Southern California, USA

Dooil Hwang, Ph.D. Research Associate, Information Sciences Institute, University of Southern California, US.

Rakesh Narain, Ph.D. Department of Mechanical Engineering, Motilal Nehru National Institute of Technology, Allahabad-211004, India.

Joseph Sarkis, Ph.D. Clark University, Graduate School of Management, 950 Main Street, Worcester, Massachusetts, 01610.

Jamal O. Wilson, Ph.D. Systems Realizations Laboratory, The G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405.

David Rosen, Ph.D. Systems Realizations Laboratory, The G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405.

Khaled M. Gad El Mola, Ph.D. Department of Industrial Engineering, University of Houston, Houston, TX 77204.

xxxiii

Hamid R. Parsaei, Ph.D.

Professor and Chairman, Department of Industrial Engineering, University of Houston, Houston, TX 77204.

Herman R. Leep, Ph.D.

Professor, Department of Industrial Engineering, University of Louisville, Louisville, KY 40292.

Chapter 1

Material Properties and Characterization

Ghassan T. Kridli

Industrial and Manufacturing Systems Engineering Department, University of Michigan Dearborn, 4901 Evergreen Rd., Dearborn, MI, 48128

Abstract:

As the name indicates, rapid prototyping (RP) has traditionally been used to provide a physical representation of a product in a relatively short time. RP is performed by either material removal or material addition. In material-removal type RP processes, the part is produce by machining it is out of a block of material; mainly using computer numeric controlled (CNC) machining centers. In materialaddition type RP, the prototype is made by adding layers of materials using one of the available RP technologies.

Earlier prototyping materials and technologies were used to provide product designers with the ability to visualize the product, but with limited ability to assess the functional performance of the product. Nonetheless, prototyped parts also need to allow for design validation (assessment of the mechanical and physical behaviors); which indicates that the prototyping material should have the same characteristics as the production material. This was only available in limited situations where the prototyped parts were made using removal processes, casting processes, or metal spray deposition. However, recent advances in rapid prototyping technologies have allowed the use of production type polymers that can be used to assess the functional behavior of these materials.

One of the shortcomings of testing prototyped products made of production type materials is that the material structure and the mechanical response of the prototyped part may not match those resulting from conventional processing (forming, molding, etc.) that is used to fabricate the actual product. This is caused by differences in processing conditions between RP and conventional processing. For example, if metal spray deposition is used for rapid prototyping purposes, the microstructure and level of porosity in the prototyped part are likely to be different from those of a cast or stamped product of the same size and shape.

Therefore, the goal of this chapter is to provide an introduction to structure and properties of engineering materials, testing methods used to determine mechanical properties, and techniques that can be used to select materials for material-addition type rapid prototyping.

Key words:

Mechanical Properties, Mechanical Testing, Material Selection, Polymers

1.1 Structural Properties of Materials

The structure of materials affects their properties and service behavior. Based on their structure, materials can be classified as either crystalline or non-crystalline (or amorphous)¹. **Crystalline structures** are organized structures in which atoms and molecules of solids arrange themselves in a regular and repeating manner that is called *lattice*. On the other hand, **amorphous structures** have some level of local order relative to their neighbors, but globally, they do not have an ordered structure like crystalline materials. Another difference between the two types of materials is related to their different thermal expansion behavior; this will be explained in more detail in sections 1.2.1 and 1.2.2.

1.1.1 Crystalline Structures

The lattice structure in a crystalline material is made up of a repeating order of atoms that is known as the *unit cell*. Common types of unit cells that are observed in metals include body-centered cubic (BCC), facecentered cubic (FCC), and hexagonal close packed (HCP). Figure 1-1 shows a schematic of the atom arrangement in each of these three aforementioned