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Preface

Arguably, one of the important challenges in modeling, whether statistical or

physical, is the presence and availability of “big data” and the advancement of

“big simulations.” With an increased focus on the Earth’s resources, energy, and

the environment comes an increased need for understanding, modeling, and

simulating the processes that take place on our planet. This need is driven by a

quest to forecast. Forecasting is required for decision making and for addressing

engineering-type questions. How much will temperature increase? How much

original oil is in place? What will be the volume and shape of the injected CO2

plume? Where should one place a well for aquifer storage and recovery? The

problems are complex; the questions and their answers are often simple.

In addressing such complex problems, uncertainty becomes an integral com-

ponent. The general lack of understanding of the processes taking place and the

lack of data to constrain the physical parameters of such processes make fore-

casting an exercise in quantifying uncertainty. As a result, forecasting methods

often have two components in modeling: a stochastic and a physical component.

Physical models produce deterministic outcomes or forecasts; hence, they lack

the ability to produce realistic models of uncertainty in such forecasts. On the

other hand, stochastic processes can only mimic physics, and although they pro-

duce models of uncertainty, these often present poor physical realism or, worse,

are physically implausible. The challenge in many forecasting problems is to find

the right middle ground for the intended purpose: produce physically realistic

models that include the critical elements of uncertainty and are therefore able to

answer the simple questions posed.

To some extent, geostatistical methods can historically be framed within this

context of forecasting and within the quest for realism and truth. In the past,

applications were mostly in the area of subsurface geology, in particular min-

eral resources, and then later oil and gas resources (as well as groundwater and

hydrogeology). Perhaps a key recognition early on was that an assumption of

independently and identically distributed (IID) samples taken from a spatially

distributed phenomenon, such as an ore body, is a geologically (“physically”)

unrealistic assumption. Mineral grades show a clear spatial structure that is the

direct result of the physical genesis of such deposits. The goal of geostatistics then

(and still) was not to model the genesis of that deposit by means of a physical

process, but to produce estimates based on a model of spatial continuity that is

as realistic as possible. The predominant model was the semivariogram, which

vii
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is a statistical model, not a physical one, yet captures some elements of phys-

ical variability. Management of mineral resources constitutes a data-rich envi-

ronment. Although the semivariogram is a rather limited model for describing

complex physical realities, the presence of a large amount of drill holes (actual

observations of physical reality) made this model of spatial continuity a plausible

and successful one in the early stages of applications of geostatistics. The second

major application, at least historically, is the modeling of subsurface reservoirs,

where direct observations (wells) are sparse and the purpose is to forecast flow

in porous media, which in itself requires physical models. In this way, two phys-

ical realities are present: the physics of deposition of clastics (sedimentation) or

carbonates (growth), and the physics of fluid flow in porous media. Realism is

sought in both cases. Many publications showed that geological models of the

subsurface that were built based on multi-Gaussian processes (and the semivar-

iogram as a basic parameter) lack geological realism in order to produce realistic

forecasts of flow. Although any such evaluation is dependent on the nature of the

flow problem considered, it appears to be the case in the large majority of prac-

tical flow-forecasting problems. A second problem in data-poor environments

concerns the inference of semivariogram parameters. With data based on only

a few wells, at best, one can infer some vertical semivariogram properties, but

modelers were left to guess most other modeling parameters.

As a consequence, at least in reservoir modeling, Boolean (or object-based)

models became fashionable because of their geological realism and flow-

forecasting ability. Such models were calibrated from a richness of information

available in analog outcrop models. The 1990s saw an expansion of geostatistical

techniques in the traditional fields as well as application in several nongeological

areas, in particular the environmental sciences. Considering the International

Geostatistics Congress proceedings as a particular sample, one finds in the 1988

Avignon Congress only ∼10% of applications outside traditional fields, whereas

in the 2000 Cape Town Congress, environmental applications alone cover

about ∼20% of the papers. The 1990s therefore saw a shift in geostatistics that

was twofold. Firstly, the early applications and theory that developed around

semivariograms, various flavors of kriging, and multi-Gaussian simulation,

including hard and soft data, were rapidly maturing. Secondly, the International

Geostatistics Congress, which is held every 4 years and had long been the single

platform for dissemination of novel research, saw its unique role wane because

of the advent of more application-focused conferences (e.g. Petroleum Geo-

statistics, geoENV, and Spatial Statistics). In terms of research, and particularly in

terms of the development of new methods, a drive toward non-Gaussian model

development can be observed, perhaps now scattered over various areas of sci-

ence and presented in various disjunctive conferences and journals. Some of the

non-Gaussian methods still rely on semivariograms (or covariance functions in

the statistical literature), such as the pluri-Gaussian methods or Karhune–Loeve

expansions, whereas others rely on developments in the field of image analysis.
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The Markov Random field (MRF), although its theory was originally developed

in the 1980s, saw a proliferation of applications in both spatial and space–time

modeling. The development of methods remained classical, however: data were

used to fit parametric models, whether semivariograms, MRF parameters, or

using traditional statistical methodologies (e.g., maximum likelihood and least

squares); models were then used for estimation, or for simulation by sampling

posterior distributions. Development of theoretical models is clearly based

on probability theory and its extension such as Bayesian methods.

Multiple-point geostatistics, abbreviated throughout the literature as MPS,

was primordially born out of a need to address the issue of lack of physical real-

ism as well as the lack of control in the simulated fields in traditional modeling. As

Matheron stated in his seminal contribution, parameters of traditional statistical

models need not have a physical equivalent. Although for a theoretical proba-

bilistic model there may be a “true” parameter, such as the Poisson intensity 𝜃,

there exists no physical property in the real world known as 𝜃. One only has a set

of true point locations within a domain when studying point processes. The data

are the only physical reality. The goal of MPS is to mimic physical reality, and

the vehicle to achieve this is the training image. Perhaps the name “multiple-

point” suggests that this is a field of study that focuses on higher-order statistics

only, but this is only partially true. The second component, namely the source

of such statistics (an order of 2 or higher), is the use of a representation of the

physical reality: the training image. We believe that the most important contri-

bution in this new field, and this first book, lies in the use of training images to

inform and hence include physical reality in stochastic modeling. This is a com-

pletely new contribution; it is, without exaggeration, a paradigm shift. Most of

the methods covered do not follow the traditional paradigm of first parametric

(or even nonparametric) modeling from data, then estimating or sampling from

the given parametric model, building on probability theory only. We propose

methods that skip this intermediate step (of parameterized or nonparametric

models) and directly lift what is desired, whether it is the estimate or the sample

or realization from the training images. The methods we propose are therefore

no longer solely steeped in statistical science or probability theory (as is most of

geostatistics); we borrow from computer science as well and create hybridization

between these fields. For that reason, some would no longer term this “geostatis-

tics”. Labels are but labels; what matters is the content behind them.

This book is therefore a book about spatial and spatiotemporal modeling in

the physical sciences (sedimentology, mineralogy, climate, environment, etc.).

We do not claim any applications (yet) in other areas where spatial statistics are

used (e.g., health or finance), although such applications are likely to occur in

the future. This book is therefore all about practice and solving real problems, not

to create more theory. The primary goal of engineering is to address engineer-

ing questions; it is not just the creation of stochastic models. However, within

stochastic modeling itself, the goal is not the posterior probability distribution
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function (pdf) or the model parameters; rather, it is the estimates of that reality

or the simulation of that reality. All other intermediate steps, whether inferring

parameters or assessing convergence of samples, are but intermediate steps to

the creation of a physical reality.

This book is constructed in three major parts. In Part I, we provide by means

of a virtual case, a motivation and illustration of what MPS is, the major con-

ceptual elements of MPS, what it aims to achieve, and how training images are

generated and used. Part I therefore also serves as a platform to review some

assumptions that are fundamental to spatial and spatio-temporal modeling. The

aim is to illustrate that a simple problem of spatial estimation and simulation can

be solved with and without random function theory.

In Part II, we cover quite exhaustively the various technical details of the

methodologies and algorithms currently developed in this field. Starting from

basic building blocks in statistical science and computer science, the glue of algo-

rithmic development, we provide an overview of most existing algorithms. We

treat important concepts in modeling such as nonstationary and multivariate

modeling, the evaluation of consistency between data and model, the construc-

tion of training images, and how such training images can be used to formulate

and solve spatial inverse problems.

In Part III, we provide the application of these methods to three major applica-

tion areas: reservoir modeling, mineral resources modeling, and climate science.

The last part serves as an illustration of the methodology development in Part I; it

should not be seen as an exhaustive list of applications but, rather, as a template

for future development.

Accompanying this book is a website with a collection of training images

and example test cases: http://www.trainingimages.org. In the book, we pro-

vide a reference list per chapter. For a complete and updated reference list,

please visit the website http://www.trainingimages.org. PowerPoint slides of all

figures in the book can also be accessed and downloaded at www.wiley.com/go/

caers/multiplepointgeostatistics.

http://www.trainingimages.org
http://www.trainingimages.org
http://www.wiley.com/go/caers/multiplepointgeostatistics
http://www.wiley.com/go/caers/multiplepointgeostatistics
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Concepts





C H A P T E R 1

Hiking in the Sierra Nevada

1.1 An imaginary outdoor adventure company:
Buena Sierra

As is the case for any applied science, no geostatistical application is without

context. This context matters; it determines modeling choices, parameter choices,

and the level of detail required in such modeling. In this short first chapter, we

introduce an imagined context that has elements common to many applications

of geostatistics: sparse local data, indirect (secondary) or trend information, a

transfer function or decision variable, as well as a specific study target. The idea of

doing so is to remain general by employing a synthetic example whose elements

can be linked or translated into one’s own area of application.

Consider an imaginary hiking company, Buena Sierra, a start-up company

interested in organizing hiking adventures in the Sierra Nevada Mountains in the

area shown in Figure I.1.1(left). The company drops customers over a range of

locations to hike over a famous but challenging mountain range and meets them

at the other end of that range for pickup. Customers require sufficient supplies

in what is considered a strenuous trip over rocky terrain, with high elevation

changes on possibly hot summer days. Imagine, however, that this area lies in

the vicinity of a military base; hence, no detailed topographic or digital elevation

model from satellite observation is available at this point. Instead, the company

must rely on sparse point information obtained from weather stations in the

area, dotted over the landscape; see Figure I.1.1(right). We consider that the

exact elevation of these weather stations has been determined. The company

now needs to plan for the adventure trip. This would require determining the

quantity of supplies needed for each customer, which would require knowing the

length of the path and the cumulative elevation gain because both correlate well

with effort. The hike will generally move from west to east. The starting location

can be any location on the west side from grid cell (100,1) to grid cell (180,1)

(see Figure I.1.2).

To make predictions about path length and cumulative elevation gain, a small

routing computer program is written; although it simplifies real hiking, the pro-

gram is considered adequate for this situation. More advanced routing could be

applied, but this will not change the intended message of this imaginary example.

Multiple-point Geostatistics: Stochastic Modeling with Training Images, First Edition. Gregoire Mariethoz and Jef Caers.
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4 Chapter 1

Figure I.1.1 (left) Walker Lake exhaustive digital elevation map (size: 260×300 pixels) grid;

and (right) 100 extracted sample data. The colorbar represents elevation in units of ft.

The program requires as input a digital elevation map (DEM) of the area grid-

ded on a certain grid. The program has as input a certain point on the west side,

then walks by scanning for the direction that has the smallest elevation change.

The program simulates two types of hikers: the minimal-effort (lazy) hiker and

the maximal-effort (achiever) hiker. In both cases, the program assumes the

hiker thinks only locally, namely, follows a path that is based on where they

Figure I.1.2 Visualization of the 80 paths taken by hikers of two types: (left) minimal effort;

and (right) maximal effort. The color indicates how frequently that portion of the path is

taken, with redder color denoting higher frequency.
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Figure I.1.3 Histograms of the cumulative elevation gain and path length for the minimal- and

maximal-effort hiker. Cumulative elevation gain in units of ft, path length in units of grid cells.

are and what lies just ahead. The minimal hiker takes a path of local least resis-

tance (steepest downhill or least uphill). The achiever hiker takes a path of

maximal ascent (or minimal descent). Note that the computer program repre-

sents a deterministic transfer function: given a single DEM map, a single starting

point, and a specific hiker type, it outputs a single deterministic hiking route. If

the actual reference, Walker Lake, is used as input, then given starting locations

from grid cell (100,1) to (180,1) on the west side, a total of 80 outcomes are gen-

erated. These 80 outcomes can be shown as a histogram; see Figure I.1.3. The

resulting path statistics for both minimal effort and maximal effort are shown in

Table I.1.1, which are summarized with quantiles (the eighth lowest, or P10; the

40th lowest, or P50; and the 72nd lowest, or P90).

1.2 What lies ahead

The problem evidently is that no DEM is available. How, then, would one pro-

ceed with forecasting path length and cumulative elevation change, and thereby

make recommendations for Buena Sierra? We start in this Part I from very basic
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Table I.1.1 Summary statistics

Minimum effort

Cumulative elevation gain (ft) Path length (cell units)

Median P10–P90 Median P10–P90

Walker Lake reference 9862 9434–14,875 324 311–327

Maximum effort

Cumulative elevation gain (ft) Path length (cell units)

Median P10–P90 Median P10–P90

Walker Lake reference 37,783 35,335–47,731 331 323–333

notions on how to formulate a theory for these kinds of problems, and then we

present practical solutions based on that theory. This provides an opportunity

to review important notions and assumptions that are common to most spatial

prediction problems. The first such theory formulates spatial estimation, which

in geostatistics is known as kriging. It is well known that kriging provides an

overly smooth map, not reflecting the actual roughness of the terrain, and there-

fore any predictions of path length or elevation gain are biased. Such prediction

would require stochastic simulation, which also allows statements of uncertainty

about the calculated route statistics. Nevertheless, we will start with developing

kriging because we will show how the traditional kriging (Chapter I.2) can be

formulated without relying on the notions of expectation, probability, or ran-

dom function theory, as long as a training image is available (Chapter I.3). The

solution obtained is strikingly similar to traditional kriging, yet at no instance

will we rely on random function theory.

Next, we will review stochastic simulation, which traditionally has relied on

the same variogram and random function notions as kriging. In particular, we

will review Gaussian theory and some popular methods that have been derived

from this theory (Chapter I.4). Next, we will show, in a similar vein as for kriging,

that the random function theory is not needed to perform stochastic simulation

(Chapter I.5). We will present three alternative algorithms as an introduction to

the many algorithms presented in Part II. These methods are compared in their

ability to solve the practical problem discussed here (Chapter I.6).



C H A P T E R 2

Spatial estimation based on
random function theory

2.1 Assumptions of stationarity

In this chapter, we mostly review spatial estimation, a general term for estimat-

ing or guessing the outcome at unmeasured geographic locations from locations

where measurements (“hard data”) are available. As is the case for many statis-

tical methods of estimation, the specification of a criterion of “best” is required.

There will be only one guess or one estimate that can be given, once such a crite-

rion has been specified. The variable being considered in the example case is the

digital elevation map (DEM). One cannot directly estimate the path statistics.

Consider first a nonspatial problem, such as estimating the weight of a specific

chair in a classroom. To represent this problem, we introduce the following nota-

tion. The true weight of that chair is unknown, denoted as Z, a random variable

representing an unknown truth. A particular outcome, for example z = 7 kg, is

written with a small letter. Suppose that all other chairs in that room are simi-

lar to the chair in question and we know the weight of those chairs, denoted as{
z1, z2,… , zn

}
. Based on these data, we make a histogram of the set of chairs. In

doing so, an assumption is made: pooling all the weight data into a single plot,

such as a histogram, entails that they are “similar” or “comparable”. In probability

theory, this is often referred to as “the population”: a set of outcomes whose val-

ues can be grouped. They can be grouped for various reasons: similar origin, sim-

ilar manufacturer, similar species, similar geological layer, similar location, and

so on. However, such pooling requires a decision of what this reference popula-

tion is. If one would pool tables into the set of chairs, then such pooling will lead

to possibly very different results later on, and possibly very erroneous results. In

many geostatistics books, this pooling and the accompanying assumption have

been termed an “assumption of stationarity”.

Only once a decision of stationarity has been made can estimation based on

data proceed. Any guess – or, in statistical terms, any specific estimator – will be

some unique function of the data, returning a single value:

z∗ = g(z1, z2,… , zn) (I.2.1)

Multiple-point Geostatistics: Stochastic Modeling with Training Images, First Edition. Gregoire Mariethoz and Jef Caers.
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8 Chapter 2

Many functions g could be considered, hence we need to specify or state some

desirable properties for it. A property often stated as desirable is that of unbiased-

ness: namely, if a guess is made and denoted as Z∗ (that guess is not yet known;

it is therefore a random variable by itself), then unbiasedness can be stated based

on the notion of expectation:

Unbiasedness condition: E[Z − Z∗] = 0 (I.2.2)

Although this condition is common in many probability theory books, it is

nontrivial for most first readers. The question is often: what is this an expectation

of? What are we “averaging” over? To make such averaging feasible, one would

need repeated situations, yet there are no such repeated situations: there is only

one single specific chair with an actual weight that is estimated, and hence there

will be only one difference between the true weight and our guess. Hence, why

this “expectation”?

The unbiasedness therefore invokes a second assumption of stationary: the

particular guessing procedure, if applied to (infinitely large) similar situations,

will have the property of being, on average, equal to the truth. Suppose now that

a reality exists where we would have many rooms, each such room containing a

set of chairs and a specific chair for which we want to estimate the weight. Then,

we need to assume that the situations presenting themselves in all these rooms

form yet another population: the population of rooms. Making such a population

requires, in a similar vein, an assumption of stationarity. The difficulty is that

these alternative-world rooms never exist or are never truly considered; they

are imaginary theoretical constructs.

A second condition often posed relates to our attitude toward making a mis-

take or the consequences of making errors. In the context of the chair, the par-

ticular person involved could reason as follows: overestimating the weight of the

chair may be of less concern, but underestimating the weight may lead to injury

upon attempting to lift it (supposing the estimating person has back problems).

Clearly, making errors, whether positive or negative, may have different conse-

quences. In the case of the chair, different attitudes may be taken. A thresholding

function could be defined, where underestimating has a given consequence (a

fixed hospital bill) over a certain weight value, or may gradually increase due

to the increasing severity of the injury. In general, there is a function L, termed

the loss function, quantifying our attitude to mistakes or to consequences of the

error z − z∗. This leads to a second property that could be deemed desirable for

any estimate or guess: minimize an expected loss, or,

E[L(Z − Z∗)] is minimal (I.2.3)

We return to the question: what are we averaging over? Averaging requires

repetition of similar situations. Again, we need to consider imaginary parallel
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Figure I.2.1 Example loss functions; the most common choice is the parabola (least squares).

universes where the same situation occurs; and now, as a third assumption

of stationarity, we assume that our attitude of loss will be similar in all those

situations.

The most common loss function is to assume a parabola, as in Figure I.2.1,

which is not necessarily applicable to the situation of the chair. The reason for

assuming this simple squared function is not necessarily practical or aligned with

reality, but rather is a mathematical convenience and driven by the elegance of

the resulting solution, namely,

min
Z∗

E[(Z − Z∗)2] ⇔ Z∗ = E [Z] (I.2.4)

In other words, the expected value minimizes a squared loss function. This

basic result is the foundation of least squares theory. A simple arithmetic average

is then an unbiased guess of the population mean (expected value), and, as stated

in many statistical books, this occurs under the condition of independently iden-

tically distributed (IID) data. The latter entails the first hypothesis of stationarity

(identically) and includes a kind of sampling that is not biased toward certain

values (independently). However, as stated above, two additional assumptions

of stationarity are required to get to this result.

In summary, the following stationarity hypotheses are needed to make any

estimation procedure feasible, whether nonspatial or spatial:

1 Pooling of data: the creation of populations

2 Properties of estimators are defined through expectation, referring to repeated

estimations in similar circumstances.

3 Loss incurred due to errors in the estimation (difference with the truth) refers

to repeated situations with a similar attitude of loss.

None of these hypotheses can be tested objectively with any data; they are

fundamental to the construction of the theory.
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2.2 Assumption of stationarity in spatial problems

If this sounds a little bit construed from a practical viewpoint, but perfectly sound

mathematically, then the situation becomes even more compelling when dealing

with a spatial context. In the nonspatial context, the data are considered multiple

alternative realizations or outcomes of the same truth: for example, the weight

of a chair, with the caveat of an assumption of stationarity. Indeed, otherwise

each chair would be “unique” and, in a way, a population on its own.

Consider analyzing the assumption of stationarity using the simple con-

structed example in Figure I.2.2: a single unique truth exists, and at a few loca-

tions, this unknown truth is known through its sample data. In notation, each

unmeasured geographic location is associated with an unknown truth, which we

denote as Z (x) , x = (x, y, z), or, if space–time is considered, x = (x, y, z, t). Z (x)

is considered to be a random function (as opposed to a random variable before).

The term “function” refers to the fact that the outcome associated with each x is

unique, and it also suggests a systematic variation (noting that “pure random” is

a specific form of such systematic variation). If a grid is specified, then we need

to deal only with a finite set of such Z (x): {Z (x) , x ∈ Grid}. At a finite set of

locations, samples are recorded: {z(x
𝛼
), 𝛼 = 1,… , n}.

Clearly, no repeated data exist on each Z (x), as is the case for the nonspatial

case. The only information available is measurements taken at a limited set of

locations. The assumption of stationarity that is needed to make any estimation

possible now requires including a geographical element, namely, an area over

which pooling of data is allowed. For example, if we make a histogram of sample

data over the area of study, then clearly we have made a geographical assumption

of stationarity: the data at a location in that area can be pooled into a single plot,

and that plot is meaningful.

We now return to the problem of estimation, in this case spatial estimation.

We would like to determine at each uninformed location a “best guess” of that

unknown value given some data. The problem is now spatial due to the indexing

Figure I.2.2 (a) A single unique truth; (b) some sample data taken from it; and (c) its

histogram. The goal is to estimate the value at the unsampled location marked with X.
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with x, hence the estimator becomes Z∗(x). If unbiasedness is a desirable prop-

erty, then

unbiasedness condition: E
[
Z (x) − Z∗(x)

]
= 0 (I.2.5)

What are we averaging over? One can imagine two types of averaging: in the

first, we could average spatially, meaning over all possible x. A second type of

averaging is over all possible similar situations that could possibly occur in the

universe. Again, to make this happen, we could invoke an alternate reality with

many parallel universes where a similar situation as in Figure I.2.2 occurs; and,

on average, over all the alternate realities, our guess would be equal to the truth.

2.3 The kriging solution

Now that some basic notions common to spatial estimation have been estab-

lished, as well as basic assumptions needed to use and apply probability theory

(expectation) to formulate such problems, we establish the most commonly used

spatial estimation method in geostatistics: kriging. This section is mostly a simple

review of basic equations of ordinary kriging, but perhaps with a more explicit

statement and discussion of their underlying assumptions. Later, we will rewrite

these equations without any use of expectation or random function theory.

2.3.1 Unbiasedness condition
We consider the situation in Figure I.2.2 where an estimate at only one location

is required. First, we specify the function in Equation (I.2.1) as a simple linear

sum:

z∗(x) =
n∑

𝛼=1

𝜆
𝛼
z(x

𝛼
) (I.2.6)

or, written in terms of random variables:

Z∗(x) =
n∑

𝛼=1

𝜆
𝛼
Z(x

𝛼
) (I.2.7)

Plugging this estimator into the unbiasedness condition

E[Z (x) − Z∗(x)] = 0 (I.2.8)

leads to

n∑
𝛼=1

𝜆
𝛼
E[Z(x

𝛼
)] = E [Z (x)] (I.2.9)
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Figure I.2.3 (a) Rock density in a homogeneous layer of a carbonate reservoir; and (b) rock

density in a heterogeneous deltaic reservoir.

Should the expected value be stationary, meaning constant over the domain,

then the unbiasedness condition becomes

n∑
𝛼=1

𝜆
𝛼
= 1 (I.2.10)

The assumption of a stationary expected value is rarely useful in practical mod-

eling. It assumes that a phenomenon under study can be decomposed as in

Figure I.2.3a, or, in mathematical terms:

Z (x) = M + R (x) (I.2.11)

where M is some unknown but spatially constant expected value (hence, a ran-

dom variable itself) and R (u) is often termed the residual, which is spatially

varying. In a Bayesian context, this expected value could have a prior itself

(Omre, 1987), but most times we assume this expected value to be a constant,

then

Z (x) = m + R (x) (I.2.12)
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Very few phenomena vary spatially in the same way as in Figure I.2.2, and

certainly not the DEM under study, with its systematic variation of mountain

and lake beds. In this context, one can propose an extension as follows:

Z (x) = m (x) + R (x) with E [R (x)] = 0 ∀x (I.2.13)

The phenomenon is now decomposed into two parts: (1) a slowly varying

expected value, often termed “trend”; and (2) a second part, R, that varies faster

than the first part and whose expected value equals zero – this is often termed the

“residual”. We first discuss to what extent this decomposition is useful or even

realistic. The decomposition would only be useful if the estimation or modeling

of the two components m and R is easier than the direct estimation or modeling

of Z. If this is not the case, then the decomposition is made purely for mathe-

matical reasons. Consider two phenomena shown in Figure I.2.3. The question

is whether it is useful to write each image as

z (x) = m (x) + r (x) ∀x ∈ A (I.2.14)

In Figure I.2.3(a), we can easily make such decomposition meaningful: a slowly

varying and highly varying decomposition is achieved. One can imagine that

modeling each component is easier than directly modeling the z-phenomenon.

This is no longer the case in Figure I.2.3(b). The trend in this image lies on cer-

tain channel properties (width and orientation), not on the image z itself. The

decomposition does not achieve an easier modeling task: the residual r looks

like z. From a purely mathematical point of view, all phenomena can be writ-

ten as a sum of two other phenomena; the more fundamental question lies in

whether this is meaningful, makes further modeling easier and, perhaps more

importantly, leads to better predictions in the given modeling context.

2.3.2 Minimizing squared loss
Consider now a case where the decomposition in Equation (I.2.13) is meaning-

ful for the phenomenon being studied. Next, we need a specification of loss, as

discussed in this chapter. Consider the following specification of loss:

Var[Z(x) − Z∗(x)] is minimal (I.2.15)

which simplifies in combination with the unbiasedness condition to

E[(Z (x) − Z∗(x))2] is minimal (I.2.16)

which, using Equation (I.2.13) and Equation (I.2.7), can be rewritten as

E
⎡⎢⎢⎣
(

E [Z (x)] + R (x) −
n∑

𝛼=1

𝜆
𝛼
(E[Z(x

𝛼
)] + R(x

𝛼
))

)2⎤⎥⎥⎦ is minimal (I.2.17)
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We can write the difference between truth and estimator as follows:

Z∗(x) − Z (x) =
n∑

𝛼=1

𝜆
𝛼
Z(x

𝛼
) − Z (x) =

n∑
𝛼=0

𝜆
𝛼
Z(x

𝛼
) =

n∑
𝛼=0

𝜆
𝛼
(E[Z(x

𝛼
)] + R(x

𝛼
))

(I.2.18)

with

𝜆0 = −1; x = x0 (I.2.19)

The unbiasedness condition can be written as follows:
n∑

𝛼=0

𝜆
𝛼
E[Z(x

𝛼
)] = 0 (I.2.20)

Some simple algebra then leads to

E[(Z (x) − Z∗(x))2] is minimal ⇔

E[(R (x))2] + 2
n∑

𝛼=1

𝜆
𝛼
E[R (x) R(x

𝛼
)] +

n∑
𝛼=1

n∑
𝛽=1

𝜆
𝛼
𝜆
𝛽
E[R(x

𝛼
)R(x

𝛽
)] is minimal

(I.2.21)

One notices how the expected value of Z has disappeared from the loss specifi-

cation, and only residual expectations remain. This is possible only because we

assume

E [Z (x)] = m (x) (I.2.22)

In other words, the expected value is not randomized (assumed to be a ran-

dom variable) itself. The combination of an unbiasedness condition and a loss

specification has resulted in the following minimization problem with linear

constraints:⎧⎪⎪⎨⎪⎪⎩
E[(R(x))2] +

n∑
𝛼=1

𝜆
𝛼
E[R(x)R(x

𝛼
)] +

n∑
𝛼=1

n∑
𝛽=1

𝜆
𝛼
𝜆
𝛽
E[R(x

𝛼
)R(x

𝛽
)] is minimal

n∑
𝛼=0

𝜆
𝛼
E[Z(x

𝛼
)] = 0

(I.2.23)

Using the Lagrange formalism, the following augmented function is being

minimized:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(𝜆
𝛼
, 𝛼 = 1,… , n;𝜇) = s(𝜆

𝛼
, 𝛼 = 1,… , n) + 𝜇

(
n∑

𝛼=0

𝜆
𝛼

E[Z(x
𝛼
)]

)
with s(𝜆

𝛼
, 𝛼 = 1,… , n;𝜇) = E[(R (x))2] + 2

n∑
𝛼=1

𝜆
𝛼
E[R(x)R(x

𝛼
)]

+
n∑

𝛼=1

n∑
𝛽=1

𝜆
𝛼
𝜆
𝛽
E[R(x

𝛼
)R(x

𝛽
)]

𝜆0 = −1; x0 = x

(I.2.24)
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Calculating and equating derivatives to zero result in the following systems of

linear equations with linear constraints:

⎧⎪⎪⎨⎪⎪⎩

n∑
𝛽=1

𝜆
𝛽
E[R(x

𝛼
)R(x

𝛽
)] + 𝜇 = E[R(x)R(x

𝛼
)] 𝛼 = 1,… , n

n∑
𝛽=1

𝜆
𝛽
E[Z(x

𝛽
)] = E[Z(x)]

(I.2.25)

The linear system of size (n + 1) × (n + 1) can be solved once the following terms

are specified:

E[R(x
𝛼
)R(x

𝛽
)]: the covariance of the residuals between different data locations

E[R(x)R(x
𝛼
)]: the covariance of the residual between data location

and the location to be estimated

E[Z(x
𝛼
)]: the expected value at the data locations

E[Z(x)]: the expected value at the location to be estimated

Several roadblocks are still in place to obtain any kind of numerical values for

these terms:
� There are no repeated data to estimate E[Z(x

𝛼
)] or E[Z(x)] without making

additional assumptions.
� Even if we had such repeated data, it is on Z, not on R, hence we cannot

estimate the above covariances of R.

It is clear that additional simplifications and assumptions need to be invoked

before any numerical calculations can be carried out. First, one could assume

the expected value to be the same at all geographical equations. This would

take care of the bottom two terms in the above list and also simplify the linear

constraint to

n∑
𝛽=1

𝜆
𝛽
= 1 (I.2.26)

Given a stationary expected value, one can in addition assume a stationary resid-

ual. If we introduce the notation of covariance for R as follows:

Cov[R(x′), R(x)] = E[R(x′)R(x)] (I.2.27)

Then, under an assumption of stationary expected value and stationary covari-

ance, the notation can be simplified as follows:

Cov[R(x′), R(x)] = CovR(x′ − x) (I.2.28)



16 Chapter 2

In other words, the covariance is only a function of the distance between geo-

graphical locations, not the exact place where geographically one is located. As

a consequence, the linear system now becomes

⎧⎪⎪⎨⎪⎪⎩

n∑
𝛽=1

𝜆
𝛽
CovR(x

𝛼
− x

𝛽
) + 𝜇 = CovR(x − x

𝛼
) 𝛼 = 1,… , n

n∑
𝛽=1

𝜆
𝛽
= 1

(I.2.29)

an (n + 1) × (n + 1) system of equations that is traditionally known as the ordi-

nary kriging system. Once the system is solved – namely, numerical values for 𝜆

and 𝜇 are obtained – then the minimum of Equation (I.2.16) can be algebraically

expressed as

varmin (x) = Var (Z) −
n∑

𝛼=1

𝜆
𝛼
CovR(x

𝛼
− x) − 𝜇 (I.2.30)

which is commonly known as the ordinary kriging variance. Next, we

deal with obtaining numerical values for the covariance terms to solve

Equation (I.2.29).

2.4 Estimating covariances

Solving the system of linear equations to estimate the unsampled value at the

location highlighted in Figure I.2.2 requires specifying covariance values in Equa-

tion (I.2.29). In traditional approaches, this calculation is only possible through

the assumption in Equation (I.2.28): “covariance is only function of the distance

between geographical locations”. This assumption allows pooling data pairs with

similar distance (exact distance replicates rarely exist with irregular data) into a

single scatterplot from which the covariance value can be calculated. This exer-

cise can be repeated for various distances. The very existence of this single scat-

terplot is an explicit statement or expression of stationarity: data from differ-

ent locations are pooled into one single plot. These covariance values are then

grouped based on distances calculated along the same (or similar for irregular

data) directions. The above linear system calls for covariances on R, not on Z.

For this simple case, this poses no problem, as the mean appears fairly constant

over the domain. More difficult situations are discussed in this section.

In geostatistics, semivariograms are commonly estimated. Without any

assumption of stationarity, these semivariograms are defined as follows:

2𝛾[R(x′), R(x)] = E[(R(x′) − R(x))2] (I.2.31)


