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Glossary

Algae A group of chiefly aquatic plants (e.g., seaweed, pond scum, stonewort, phy-
toplankton) that contain chlorophyll and may passively drift, weakly swim, grow on
a substrate, or establish root-like anchors (steadfasts) in a water body.

Anaerobic digestion Decomposition of biological wastes by micro-organisms,
usually under wet conditions, in the absence of air (oxygen), to produce a gas
comprising mostly methane and carbon dioxide.

Animal feeding operation (AFO) An agricultural enterprises where animals are
kept and raised in confined situations. AFOs congregate animals, feed, manure,
urine, dead animals, and production operations on a small land area. Feed is brought
to the animals rather than the animals grazing or otherwise seeking feed in pastures,
in fields, or on rangeland. Winter feeding of animals on pasture or rangeland is not
normally considered an AFO.

Anoxia The absence of dissolved oxygen.

Bacterioplankton The bacterial component of the plankton that drifts in the water
column.

Benthic organisms Organisms living in association with the bottom of aquatic
environments (e.g., polychaetes, clams, snails).

Best Management Practices (BMPs) Effective, practical, structural, or nonstruc-
tural methods that are designed to prevent or reduce the movement of sediment,
nutrients, pesticides, and other chemical contaminants from the land to sur-
face or ground water, or which otherwise protect water quality from potential
adverse effects of agricultural activities. These practices are developed to achieve
a cost-effective balance between the water quality protection and the agricultural
production (e.g., crop, forage, animal, forest).

Bioenergy Useful, renewable energy produced from organic matter – the conver-
sion of the complex carbohydrates in organic matter to energy. Organic matter may
either be used directly as a fuel, processed into liquids and gasses, or be a residual
of processing and conversion.
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xxx Glossary

Biogas A combustible gas derived from decomposing biological waste under
anaerobic conditions. Biogas normally consists of 50–60% methane. See also
landfill gas.

Biomass Any organic matter that is available on a renewable or recurring basis,
including agricultural crops and trees, wood and wood residues, plants (includ-
ing aquatic plants), grasses, animal residues, municipal residues, and other residue
materials. Biomass is generally produced in a sustainable manner from water and
carbon dioxide by photosynthesis. There are three main categories of biomass –
primary, secondary, and tertiary.

Bioreactor A container in which a biological reaction takes place. As used in
this book, a bioreactor is a container or a trench filled with a biodegradeable car-
bon source used to enhance biological denitrification for removal of nitrate from
drainage water.

Biosolids Nutrient-rich soil-like materials resulting from the treatment of domestic
sewage in a treatment facility. During treatment, bacteria and other tiny organisms
break sewage down into organic matter, sometimes used as fertilizer.

Cellulosic ethanol Ethanol that is produced from cellulose material; a long chain
of simple sugar molecules and the principal chemical constituent of cell walls of
plants.

Chlorophyll Pigment found in plant cells that are active in harnessing energy
during photosynthesis.

Conservation Reserve Program (CRP) CRP provides farm owners or operators
with an annual per-acre rental payment and half the cost of establishing a perma-
nent land cover, in exchange for retiring environmentally sensitive cropland from
production for 10–15 years. In 1996, Congress reauthorized CRP for an additional
round of contracts, limiting enrollment to 36.4 million acres at any time. The 2002
Farm Act increased the enrollment limit to 39 million acres. Producers can offer
land for competitive bidding based on an Environmental Benefits Index (EBI) dur-
ing periodic signups or can automatically enroll more limited acreages in practices
such as riparian buffers, field windbreaks, and grass strips on a continuous basis.
CRP is funded through the Commodity Credit Corporation (CCC).

Conservation practices (CPs) Any action taken to produce environmental
improvements, particularly with respect to agricultural nonpoint source emissions.
The term is used broadly to refer to structural practices, such as buffers, as well as
nonstructural preactices, such as in-field nutrient management planning and appli-
cation. Conservation practice standards have been developed by NRCS and are
available at http://www.nrcs.usda.gov/Technical/Standards/nhcp.html

Corn stover Corn stocks that remain after the corn is harvested. Such stocks are
low in water content and very bulky.


