Programmieren lernen ohne Kopfschmerzen

Danilo Sieren

Python

Programmieren lernen ohne Kopfschmerzen

Danilo Sieren

Dein Code, deine Freiheit
Vom ersten Skript bis zur intelligenten Automatisierung in
deiner Cloud

Einfach erklart

Python

Programmieren lernen ohne Kopfschmerzen
Danilo Sieren

Auflage 1

Inhaltsverzeichnis

Vorwort

Warum dieses Buch dein Leben verandern wird

Kapitel 1

Die Grundsteinlegung - Dein Start in die Welt von Python
Kapitel 2

Die Anatomie der Sprache - Tiefer in die Strukturen
Kapitel 3

Logik & Entscheidungen - Wenn der Code anfangt zu denken
Kapitel 4

Funktionen & Modularitat - Dein Code als Werkzeugkasten
Kapitel 5

Die Welt der Daten - Listen, Dicts & Sets

Kapitel 6

Fehler & Ausnahmen - Wenn es knallt, aber richtig
Kapitel 7

Objektorientierte Programmierung (OOP) - Die Welt in Klassen denken
Kapitel 8:

Datei-Operationen & Persistenz - Dein Code lernt niemals zu vergessen.
Kapitel 9

HTTP & APIs - Dein Code lernt zu kommunizieren
Kapitel 10

Multithreading & AsynclO - Dein Code lernt Multitasking
Kapitel 11

Benutzeroberflachen (GUIs) - Dein Code bekommt ein Gesicht
Kapitel 12

Datenbanken (SQL) - Datenmanagement wie die Profis
Kapitel 13

Web-Frameworks (FastAPl) - Deine Cloud im Browser.

Kapitel 14

Data Science & Visualisierung - Verstehe deine Cloud-Daten
Kapitel 15

Deployment & Ausblick - Deine Cloud wird erwachsen

Der Ultimative Python-Architekt Cheat Sheet
Mini-Cloud-Zentrale.

Nachwort
Ein Blick zurtick

Kapitel 16

Impressum

Vorwort

Warum dieses Buch dein Leben verandern wird

Schon, dass du da bist.

Wenn du dieses Buch aufgeschlagen hast, dann
wahrscheinlich deshalb, weil du die Schnauze voll davon
hast, nur ein Passagier in der digitalen Welt zu sein. Du hast
vielleicht schon unsere Reise durch die Welt der privaten
Clouds, die Zahmung von Windows und die Freiheit von
Linux mitgemacht. Du weil3t jetzt, wie man Systeme
absichert und konfiguriert. Aber heute zlinden wir die
nachste Stufe. Heute lernst du, wie man Systeme erschafft.

Unter uns: Programmieren lernen hat einen schlechten Ruf.
Viele denken an blasse Gestalten in dunklen Kellern, die
kryptische Zeichenketten in schwarze Bildschirme hammern
und Unmengen an Energy-Drinks konsumieren. Vergiss
dieses Bild. Programmieren ist im 21. Jahrhundert das, was
das Lesen und Schreiben im Mittelalter war: Es ist die
ultimative Befreiung.

Python ist dein digitaler Dietrich

In den letzten Jahren haben wir erlebt, wie Software immer
mehr Kontrolle Uber unser Leben ubernimmt. Algorithmen
entscheiden, was wir sehen, Abos entscheiden, was wir
nutzen durfen, und Cloud-Giganten entscheiden, wo unsere
Daten liegen. Mit Python nimmst du das Heft des Handelns
wieder selbst in die Hand.

Stell dir Python wie ein Schweizer Taschenmesser vor, das
niemals stumpf wird. Du willst 5.000 PDF-Dateien in deiner
Cloud nach einem bestimmten Wort durchsuchen? Ein

Zehnzeiler in Python erledigt das in Sekunden. Du willst dein
Smart Home steuern, ohne dass ein Server in Ubersee
mitlauscht? Python ist die Losung. Du willst eine Kl nutzen,
die nur auf deinem Rechner lauft? Python ist die Sprache,
die sie versteht.

Ein Gesprach unter Freunden

Ich verspreche dir eines: Dieses Buch wird dich nicht mit
akademischer Theorie langweilen. Wir schreiben hier kein
Lehrbuch fur eine Prafung, sondern einen Battle Plan fur
echte Anwender. Wir werden Python so besprechen, wie wir
es unter Freunden bei einem guten Kaffee tun wurden -
locker, ehrlich, mit vielen Beispielen aus der Praxis und
ohne unnotiges Fachchinesisch.

Wir werden tief graben. Wir begnugen uns nicht damit, dass
etwas funktioniert. Wir wollen wissen, warum es
funktioniert. Jedes Kapitel ist ein Puzzleteil auf deinem Weg
vom Anfanger zum souveranen Anwender. Wir haben uns
ein ehrgeiziges Ziel gesetzt: 15 Kapitel, vollgepackt mit
Wissen, Hintergrundinfos und echten Projekten, die dein
digitales Leben in deiner Cloud bereichern werden.

Deine Reise beginnt jetzt

Du musst kein Mathe-Genie sein, um Python zu lernen. Du
brauchst nur Neugier und die Bereitschaft, Dinge
auszuprobieren. Programmieren ist ein Handwerk, genau
wie Tischlern oder Kochen. Man lernt es, indem man die
Spane fliegen lasst oder sich mal die Finger verbrennt - aber
am Ende steht ein Werkstlck, auf das man stolz sein kann.

In den kommenden Kapiteln werden wir deine Arbeitsweise
revolutionieren. Wir bauen Brucken zwischen Windows,
Linux und macOS. Wir lassen Skripte fur uns arbeiten,

wahrend wir den Feierabend genielRen. Und wir sorgen
daflr, dass dein Computer endlich genau das tut, was du
willst - und nicht das, was ein Konzern in Redmond oder
Cupertino fur dich vorgesehen hat.

Bist du bereit, die Kontrolle uber die Maschine zu
ubernehmen? Dann lass uns keine Zeit verlieren. Die erste
Zeile Code wartet schon auf dich.

Willkommen in der Freiheit. Willkommen in der Welt von
Python.

Lass uns loslegen!

Danilo Sieren

Kapitel 1

Die Grundsteinlegung - Dein Start in die Welt von
Python

1.1 Warum ausgerechnet Python?

Bevor wir die erste Zeile Code in den Editor hammern,
mussen wir mal kurz daruber reden, was wir hier eigentlich
tun. Wenn du dich heute entscheidest, Python zu lernen,
dann ist das so, als wurdest du entscheiden, eine
Weltsprache zu lernen - aber eine, die nicht nur Menschen
verstehen, sondern auch fast jede Maschine auf diesem
Planeten.

Unter uns: Programmieren hat oft diesen Beigeschmack von
"Mathe-Genie im dunklen Keller". Aber Python bricht mit
diesem Klischee. Es wurde Ende der 80er Jahre von einem
Niederlander namens Guido van Rossum erfunden. Und
weillt du, was sein Ziel war? Er wollte eine Sprache
schaffen, die so einfach zu lesen ist wie Englisch. Er war ein
groBer Fan der britischen Komikertruppe "Monty Python"
(daher auch der Name!), und diesen Humor und die
Leichtigkeit merkt man der Sprache bis heute an.

Python ist eine High-Level-Sprache. Das bedeutet im
Grunde nur, dass sie sehr weit weg von den Nullen und
Einsen der Hardware ist und sehr nah an unserer
menschlichen Sprache. Wenn du in einer Sprache wie C++
sagen willst, dass der Computer "Hallo" sagen soll, musst du
ihm erst erklaren, wie er den Speicher verwaltet, welche
Bibliotheken er laden soll und wo das Semikolon hinkommt.
In Python sagst du einfach: print("Hallo"). Fertig. Das ist
Freiheit.

Die Philosophie: "The Zen of Python"

Wusstest du, dass Python eine eigene Philosophie hat?
Wenn du spater in deinem Terminal mal import this
eingibst, erscheint ein Gedicht namens "The Zen of Python".
Darin stehen Satze wie: ,Beautiful is better than ugly” oder
~Simple is better than complex”. Das ist genau unser Ansatz
in diesem Buch. Wir wollen keine komplizierten Monster-
Programme bauen, sondern elegante Losungen, die wir auch
in zwei Jahren noch verstehen, wenn wir sie in deiner
Cloud wieder ausgraben.

1.2 Die Werkstatt einrichten: Installation und
Umgebung

So, genug der Vorrede. Ein Handwerker braucht eine
saubere Werkbank. Da wir in unseren vorherigen Projekten
dein Windows-System schon gehartet und optimiert haben,
nutzen wir diese Starke jetzt aus.

Der Python-Interpreter: Das Herzstuck

Wie ich schon im Vorwort erwahnt habe, ist Python eine
interpretierte Sprache. Stell dir das so vor: Du schreibst
ein Rezept (deinen Code). Der Python-Interpreter ist der
Koch. Er liest das Rezept Zeile fur Zeile und setzt es sofort
um. Er wartet nicht, bis das ganze Menu fertig geschrieben
ist, sondern fangt direkt an zu arbeiten.

Die Installation unter Windows (Der souverane Weg):
Wir nutzen natudrlich nicht den Microsoft Store (wir erinnern
uns: wir wollen Unabhangigkeit!). Wir nutzen unsere
PowerShell.

1. Offne die PowerShell als Administrator.

2. Tippe ein: winget install Python.Python.3.12 (oder die
aktuellste Version).

3. Ganz wichtig: Wenn du doch den grafischen Installer
nutzt, aktiviere unbedingt das Kastchen "Add Python
to PATH".

Was bedeutet "PATH"? Das ist ein kleiner, aber feiner
technischer Hintergrund. Wenn du in der Konsole python
tippst, muss Windows wissen, in welchem dunklen Ordner
auf der Festplatte das Programm eigentlich liegt. "PATH" ist
wie ein Adressbuch fur Windows. Steht Python darin, findet
Windows es sofort. Wenn nicht, schreit dich die Konsole an:
"Befehl nicht gefunden". Und das wollen wir am fruhen
Morgen nicht, oder?

Visual Studio Code: Dein Cockpit

Wir konnten Python-Code auch im Windows-Editor (Notepad)
schreiben, aber das ware, als wurde man versuchen, mit
einem Loffel einen Garten umzugraben. Es geht, macht aber
keinen Spals. Wir nutzen Visual Studio Code (VS Code).
Es ist schlank, gehort zwar zu Microsoft, ist aber in weiten
Teilen Open Source und das absolute Standard-Werkzeug fur
Python-Entwickler weltweit.

. Installation: winget install
Microsoft.VisualStudioCode

. Extensions: Sobald VS Code offen ist, drucke Strg +
Umschalt + X. Suche nach "Python" (von Microsoft) und
installiere es. Jetzt bekommt dein Editor "Augen" - er
erkennt Fehler, wahrend du tippst, und macht dir
Vorschlage (IntelliSense). Das ist wie ein Co-Pilot, der
neben dir sitzt.

1.3 Das erste Projekt in deiner Cloud

Hier schlagen wir die Bricke zu deinem ersten Buch. Wir
speichern unseren Code niemals einfach nur auf C:\. Wir
speichern ihn dort, wo er sicher ist: in deiner Cloud.

1. Erstelle in deinem synchronisierten Cloud-Ordner ein
neues Verzeichnis:
Programmierung/Python_Masterclass.

2. Offne diesen Ordner in VS Code (Datei > Ordner
offnen).

3. Erstelle eine neue Datei namens start.py.

Warum die Endung .py? Das ist das Signal fur das
Betriebssystem: "Achtung, hier kommt Python-Code!".

1.4 Variablen - Die Umzugskartons deines
Programms

Jetzt wird es ernst. Wir fangen an zu programmieren. Das
wichtigste Konzept in jeder Sprache sind Variablen.

Unter Freunden erklart: Eine Variable ist wie ein
Umzugskarton. Du klebst ein Etikett drauf (den Namen) und
legst etwas hinein (den Wert). Spater kannst du den Karton
offnen, nachschauen was drin ist oder den Inhalt
austauschen.

Schreib mal folgendes in deine start.py:

Python

benutzername = "Abenteurer"
alter = 25

status = "online"
print(benutzername)

Was passiert hier im Hintergrund? Python ist extrem
schlau. In anderen Sprachen (wie Java oder C) musstest du
dem Computer erst sagen: "Achtung, jetzt kommt eine
Zahl!" oder "Achtung, jetzt kommt Text!". Python schaut sich
den Inhalt an und weils es von selbst. Das nennt man
dynamische Typisierung.

e benutzername ist ein String (Zeichenkette) -
erkennbar an den Anfuhrungszeichen.

e alter ist ein Integer (Ganzzahl).

e status ist wieder ein String.

Ein kleiner Tipp am Rande: Nenne deine Variablen
niemals einfach a, b oder x1. Wenn du in drei Monaten dein
Skript in deiner Cloud offnest, hast du keine Ahnung mehr,
was X1 war. Nenne sie rechnungs_betrag oder

letzter login. Dein "Zukunfts-lch" wird dir dankbar sein.

Dann lass uns die Armel noch ein Stick weiter
hochkrempeln. Wir haben gerade die Umzugskartons
(Variablen) kennengelernt, aber jetzt schauen wir uns an,
was wir alles in diese Kartons hineinpacken konnen und wie
Python mit diesen Inhalten jongliert.

Denk dran: Wir wollen Tiefe. Wir kratzen nicht nur an der
Oberflache, wir wollen verstehen, wie die Zahnrader
ineinandergreifen.

1.5 Die Materie: Datentypen und ihre
Geheimnisse

Wenn du in der Kuche stehst, musst du wissen, ob du
gerade mit Mehl, Milch oder Eiern arbeitest. Du kannst Eier
nicht wie Mehl sieben. In Python ist das genauso. Jedes
Stuck Information hat einen "Typ", und dieser Typ bestimmt,
was du damit machen darfst.

In Python gibt es vier "Grundnahrungsmittel”, die du in- und
auswendig kennen musst:

1.5.1 Strings (Zeichenketten) - Die
Geschichtenerzahler

Alles, was in Anfuhrungszeichen steht, ist ein String. Ob
"Hallo", 'Python ist toll' oder sogar "123".

. Wichtig: "123" ist fGr Python kein Wert, mit dem man
rechnen kann, sondern nur ein Textbild der Zahlen 1
und 2 und 3.

. Profi-Tipp: Du kannst in Python Strings mit einem
Pluszeichen zusammenfugen. vorname = "Max" und
nachname = "Mustermann". Ein print(vorname + " " +
nachname) ergibt "Max Mustermann". Wir nennen das
Konkatenation. Klingt kompliziert, heilst aber nur
"Aneinanderhangen".

1.5.2 Integers (Ganzzahlen) - Die Buchhalter

Das sind Zahlen ohne Komma: 5, -10, 1000000. Python ist
hier extrem grofSzugig. Wahrend andere Sprachen bei sehr
groRen Zahlen "Gberlaufen" und verrickte Ergebnisse
liefern, rechnet Python so lange weiter, bis dein
Arbeitsspeicher voll ist. Du kdnntest theoretisch die Anzahl
der Atome im Universum in einen Integer packen, und
Python wurde nicht mal mit der Wimper zucken.

1.5.3 Floats (Gleitkommazahlen) - Die
Prazisionskunstler

Sobald ein Punkt ins Spiel kommt, wird es ein Float: 3.14,
10.0, -0.001.

Achtung: Wir nutzen in der Programmierung immer
den Punkt, niemals das Komma (das ist der
amerikanische Standard).

Hintergrund-Wissen: Floats sind manchmal ein
bisschen "zickig". Da Computer binar rechnen (nur 0
und 1), konnen sie manche Dezimalzahlen nicht exakt
darstellen. Wenn du 0.1 + 0.2 rechnest, kommt in
Python (und fast allen anderen Sprachen) manchmal
0.30000000000000004 raus. Das ist kein Fehler von
Python, sondern ein physikalisches Limit der
Computerchips. Fur unsere Cloud-Skripte ist das meist
egal, aber es ist gut, das mal gehort zu haben, oder?

1.5.4 Booleans (Wahrheitswerte) - Die
Tursteher

Es gibt nur zwei: True (Wahr) und False (Falsch). Sie sind
die Grundlage fur jede Logik. "Ist die Datei in deiner Cloud

vorhanden?" -> True. "Ist der Benutzer eingeloggt?" ->
False. Merke dir: Booleans werden in Python immer
grollgeschrieben!

1.6 Interaktion: Dein Programm lernt
zuzuhoren

Ein Programm, das nur Text ausgibt, ist wie ein Monolog.
Langweilig. Wir wollen einen Dialog! Wir wollen, dass der

Benutzer (also du oder deine Freunde) dem Programm
etwas mitteilen kann. Dafir gibt es den Befehl input().

Schreib das mal in deine start.py:
Python

name = input("Wie heilst du eigentlich? ")
print("Schon dich kennenzulernen, " + name + "I")
Was hier passiert (Tiefenanalyse): Der Computer halt
an dieser Stelle buchstablich den Atem an. Er wartet, bis du
etwas tippst und die Enter-Taste druckst. Alles, was du

tippst, wird als String in der Variable name gespeichert.

Die Stolperfalle fur Anfanger: Nehmen wir an, du willst
das Alter des Benutzers abfragen und dazu 10 Jahre
addieren.

Python

alter_text = input("Wie alt bist du? ")
Das hier wird einen Fehler werfen:
neues_alter = alter_text + 10

Warum? Weil input() immer Text liefert. Auch wenn du 25

tippst, bekommt Python "25". Und Text + Zahl funktioniert
nicht. Das ist, als wlurdest du versuchen, "Apfel" + 10 zu
rechnen.

Die Losung: Type Casting (Die Verwandlung) Wir
mussen Python sagen: "Nimm diesen Text und verwandle
ihn in eine echte Zahl!"

Python

alter _zahl = int(alter_text)

neues alter = alter_zahl + 10
print("In 10 Jahren bist du " + str(neues_alter))

Hier siehst du int() (macht aus Text eine Zahl) und str()
(macht aus einer Zahl wieder Text fiir das print). Das ist wie
beim Kochen: Manchmal musst du die gefrorenen Zutaten
erst auftauen (umwandeln), bevor du sie in den Topf werfen
kannst.

1.7 Die Python-Arithmetik: Mehr als nur Plus
und Minus

Da wir Python spater nutzen wollen, um vielleicht
Datenmengen in deiner Cloud zu analysieren oder
Rechnungen zu automatisieren, mussen wir wissen, wie
man richtig rechnet. Python ist ein Taschenrechner auf
Steroiden.

Die Klassiker kennst du: +, -, *, /. Aber Python hat noch ein
paar Spezialtricks:

1. Ganzzahl-Division (//): Wenn du 7 // 3 rechnest,
kommt 2 raus. Der Rest wird einfach weggeworfen.
Perfekt, wenn du wissen willst, wie viele volle Pakete du
aus einer Menge an Dateien machen kannst.

2. Modulo (%): Das ist der Restwert-Operator. 7 % 3
ergibt 1. (Denn 7 geteilt durch 3 ist 2, Rest 1). Das ist
super nutzlich, um zum Beispiel zu prufen, ob eine Zahl
gerade oder ungerade ist (zahl % 2 == 0).

3. Exponentiation (**): Du willst wissen, was 2 hoch 10
ist? Tipp einfach 2 ** 10. (Spoiler: Es ist 1024, die Basis
fur unsere Kilobytes!).

1.8 Kommentare: Nachrichten an dein
Zukunftiges Ich

Bevor wir diesen Block beenden, mussen wir uber Ordnung
reden. In unseren vorherigen Blchern haben wir gelernt, wie
wichtig Dokumentation ist. In Python nutzen wir dafur das

Raute-Symbol #.

Alles, was hinter einer # steht, ignoriert Python komplett.
Das ist nur fur dich.

Python

Hier berechnen wir die Speicherkapazitat in meiner
Cloud

gigabyte = 500

megabyte = gigabyte * 1024 # Umrechnungfaktor
1024

Sei nicht faul mit Kommentaren. Wenn du in einem halben
Jahr ein komplexes Skript 6ffnest, wirst du dich fragen:
"Welches Genie hat das geschrieben und was hat er sich
dabei gedacht?". Kommentare beantworten dir diese Frage.

1.9 Listen - Die Container-Schiffe deiner Daten

Stell dir vor, du hast nicht nur einen Umzugskarton
(Variable), sondern einen ganzen Fuhrpark davon, die alle
zusammengehoren. In Python nennen wir das eine Liste.
Das ist eines der machtigsten Werkzeuge, die du jemals
besitzen wirst.

Warum brauchen wir das? Uberleg mal: Wenn du die Namen
von 50 Dateien in deiner Cloud speichern willst, mochtest

du nicht 50 Variablen wie dateil, datei2 etc. anlegen. Das
ware Wahnsinn. Du legst eine Liste an.

Python

meine_dateien = ["Urlaub.jpg", "Rechnung.pdf",
"Notizen.txt"]

1.10 Der tiefe Blick: Wie Listen wirklich
funktionieren

Unter Freunden erklart: Eine Liste in Python ist wie ein Regal
mit nummerierten Fachern. Aber Vorsicht - jetzt kommt die
erste grolse Hurde fur jeden Programmieranfanger: Python
fangt bei 0 an zu zahlen.

. Das erste Element (Urlaub.jpg) liegt im Fach O.
. Das zweite Element (Rechnung.pdf) liegt im Fach 1.
. Das dritte Element liegt im Fach 2.

Wenn du also das erste Element ausgeben willst, schreibst
du print(meine_dateien[0]). Warum macht man das? Das
hat historische Grunde in der Informatik. Die Zahl in den
Klammern (der sogenannte Index) gibt eigentlich den
"Offset" an, also wie weit das Fach vom Anfang des Regals
entfernt ist. Das erste Fach ist 0 Einheiten vom Anfang
entfernt. Klingt logisch, wenn man mal druber nachdenkt,
oder?

1.11 Dynamik pur: Listen verandern

Das Geniale an Python-Listen ist, dass sie elastisch sind. Sie
wachsen und schrumpfen mit deinen Aufgaben.

. Elemente hinzufugen: Mit .append() packst du
etwas ans Ende. meine_dateien.append("Budget.xlsx").

. Elemente einfugen: Mit .insert(1, "Wichtig.doc")
drangelst du dich an eine bestimmte Stelle vor.

. Elemente loschen: Mit .remove("Rechnung.pdf")
wirfst du etwas raus. Oder mit del meine_dateien[0]
leerst du ein spezifisches Fach.

Tiefgrundiger Tweak: Listen-Slicing Das ist ein Feature,
das Python von vielen anderen Sprachen abhebt. Du kannst
"Scheiben" aus deiner Liste herausschneiden.
Angenommen, du hast eine Liste mit 10 Elementen und
willst nur die ersten drei: print(meine_dateien[0:3]). Das
sagt Python: "Gib mir alles ab Index 0 bis (aber nicht
einschlief8lich) Index 3."

1.12 Die Magie der Methoden: Was Objekte
alles konnen

Hier mussen wir mal kurz Gber ein wichtiges
Hintergrundkonzept reden: In Python ist alles ein Objekt.

Was heilst das? Stell dir vor, eine Variable ist nicht nur ein
toter Wert, sondern ein kleiner Roboter, der weils, was er
kann. Ein String-Roboter weils, wie er sich in
GrolBbuchstaben verwandelt. Ein Listen-Roboter weils, wie er
sich sortiert.

Python
text = "python ist super”

print(text.upper()) # Macht daraus "PYTHON IST
SUPER"

zahlen =[5, 2, 9, 1]
zahlen.sort()
print(zahlen) # Ergibt [1, 2, 5, 9]

Diese kleinen Helferlein nennen wir Methoden. Du erkennst
sie immer an dem Punkt hinter der Variable und den
Klammern am Ende. Sie sind der Grund, warum wir in
Python so verdammt schnell arbeiten konnen. Wir mussen
das Rad nicht neu erfinden; wir rufen einfach die richtige
Methode auf.

1.13 Ordnung ist das halbe Leben: Listen
sortieren und zahlen

Da wir in unseren Bluchern immer Wert auf Struktur gelegt
haben, ist die Sortierung in deiner Cloud ein Riesenthema.

. Herausfinden, wie lang eine Liste ist: Der Befehl
len(meine_dateien) gibt dir die Anzahl der Elemente
zuruck. Super wichtig, um zu prufen, ob dein Skript alle
Dateien erwischt hat.

. Haufigkeit zahlen:
meine_dateien.count("Urlaub.jpg") sagt dir, wie oft
dieser Name vorkommt.

. Umkehren: meine_dateien.reverse() dreht das ganze
Regal einfach um.

Ein kleiner Exkurs in die Speicherverwaltung (fur die
volle Power): Wenn du eine Liste kopieren willst, pass auf!
Wenn du schreibst liste_b = liste_a, dann erstellt Python
keine echte Kopie. Beide Namen zeigen auf dasselbe Regal
im Speicher. Anderst du etwas in liste_b, andert es sich

Logik, Strukturen und sauberen Code -, wird dich niemals im
Stich lassen.

Bleib neugierig. HOr nie auf, Fragen zu stellen. Und vor
allem: Behandle deinen Code weiterhin wie einen guten
Freund - mit Sorgfalt, Respekt und ab und zu einem
Augenzwinkern, wenn mal wieder eine Klammer fehlt.

Es war eine fantastische Zeit mit dir. Ich wunsche dir fur alle
deine kommenden Projekte in deiner Cloud und daruber
hinaus nur das Beste.

Viel Erfolg, Architekt! Das System gehort jetzt dir.

Damit ist das Buch offiziell abgeschlossen.

Danilo Sieren

