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Preface

This book grew out of lectures the author gives at the Technische Universität Dresden.
These lectures are entitled “Computational Methods for Reinforced Concrete Structures” and
“Design of Reinforced Concrete Structures.” Reinforced concrete is a composite of concrete
and reinforcement connected by bond. Bond is a key item for the behavior of the composite
which utilizes compressive strength of concrete and tensile strength of reinforcement while
leading to considerable multiple cracking. This makes reinforced concrete unique compared
to other construction materials such as steel, wood, glass, masonry, plastic materials, fiber
reinforced plastics, geomaterials, etc.

Numerical methods like the finite element method on the other hand disclose a way for
a realistic computation of the behavior of structures. But the implementations generally
present themselves as black boxes in the view of users. Input is fed in and the output has to
be trusted. The assumptions and methods in between are not transparent. This book aims to
establish transparency with special attention for the unique properties of reinforced concrete
structures. Appropriate approaches will be discussed with their potentials and limitations
while integrating them in the larger framework of computational mechancis and connecting
aspects of numerical mathematics, mechanics, and reinforced concrete.

This is a wide field and the scope has to be limited. The focus will be on the behavior of
whole structural elements and structures and not on local problems like tracking single cracks
or mesoscale phenomena. Basics of multiaxial material laws for concrete will be treated but
advanced theories for multiaxial concrete behavior are not a major subject of this book. Such
theories are still a field of ongoing research which by far seems not to be exhausted up to
date.

The book aims at advanced students of civil and mechanical engineering, academic teach-
ers, designing and supervising engineers involved in complex problems of reinforced concrete,
and researchers and software developers interested in the broad picture. Chapter 1 describes
basics of modeling and discretization with finite element methods and solution methods for
nonlinear problems insofar as is required for the particular methods applied to reinforced
concrete structures. Chapter 2 treats uniaxial behavior of concrete and its combination with
reinforcement while discussing mechanisms of bond and cracking. This leads to the model
of the reinforced tension bar which provides the basic understanding of reinforced concrete
mechanisms. Uniaxial behavior is also assumed for beams and frames under bending, nor-
mal forces and shear which is described in Chapter 3. Aspects of prestressing, dynamics
and second-order effects are also treated in this chapter. Chapter 4 deals with strut-and-tie
models whereby still a uniaxial material behavior is assumed. This chapter also refers to
rigid plasticity and limit theorems.

Modeling of multiaxial material behavior within the framework of macroscopic contin-
uum mechanics is treated in Chapter 5. The concepts of plasticity and damage are described
with simple specifications for concrete. Multiaxial cracking is integrated within the model of
continuous materials. Aspects of strain softening are treated leading to concepts of regular-
ization to preserve the objectivity of discretizations. A bridge from microscopic behavior to
macroscopic material modeling is given with a sketch of the microplane theory. Chapter 6
treats biaxial states of stress and strain as they arise with plates or deep beams. Reinforce-
ment design is described based on linear elastic plate analysis and the lower bound limit
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VI Preface

theorem. While the former neglects kinematic compatibility, this is involved again with
biaxial specifications of multiaxial stress–strain relations including crack modeling.

Slabs are described as the other type of plane surface structures in Chapter 7. But in
contrast to plates their behavior is predominantly characterized by internal forces like bending
moments. Thus, an adaption of reinforcement design based on linear elastic analysis and the
lower bound limit theorem is developed. Kinematic compatibility is again brought into play
with nonlinear moment–curvature relations. Shell structures are treated in Chapter 8. A
continuum-based approach with kinematic constraints is followed to derive internal forces
from multiaxial stress–strain relations suitable for reinforced cracked concrete. The analysis
of surface structures is closed in this chapter with the plastic analysis of simple slabs based
on the upper bound limit theorem. Chapter 9 gives an overview about uncertainty and in
particular about the determination of the failure probability of structures and safety factor
concepts. Finally, the appendix adds more details about particular items completing the core
of numerical methods for reinforced concrete structures.

Most of the described methods are complemented with examples computed with a soft-
ware package developed by the author and coworkers using the Python programming lan-
guage.

• Programs and example data should be available under www.concrete-fem.com. More
details are given in Appendix F.

These programs exclusively use the methods described in this book. Programs and methods
are open for discussion with the disclosure of the source code and should give a stimulation
for alternatives and further developments.

Thanks are given to the publisher Ernst & Sohn, Berlin, and in particular to Mrs. Clau-
dia Ozimek for the engagement in supporting this work. My education in civil engineering,
and my professional and academic career were guided by my academic teacher Prof. Dr.-Ing.
Dr.-Ing. E.h. Dr. techn. h.c. Josef Eibl, former head of the department of Concrete Structures
at the Institute of Concrete Structures and Building Materials at the Technische Hochschule
Karlsruhe (nowadays KIT – Karlsruhe Institute of Technology), to whom I express my grat-
itude. Further thanks are given to former or current coworkers Patrik Pröchtel, Jens Hartig,
Mirko Kitzig, Tino Kühn, Joachim Finzel and Jörg Weselek for their specific contributions.
I appreciate the inspiring and collaborative environment of the Institute of Concrete Struc-
tures at the Technische Unversität Dresden. It is my pleasure to teach and research at this
institution. And I have to express my deep gratitude to my wife Caroline for her love and
patience.

Ulrich Häussler-Combe Dresden, in spring 2014
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Notations

The same symbols may have different meanings in some cases. But the different meanings
are used in different contexts and misunderstandings should not arise.

firstly used
General

•T transpose of vector or matrix • Eq. (1.5)
•−1 inverse of quadratic matrix • Eq. (1.13)
δ• virtual variation of •, test function Eq. (1.5)
δ• solution increment of • within an iteration of Eq. (1.70)

nonlinear equation solving
•̃ • transformed in (local) coordinate system Eq. (5.15)
•̇ time derivative of • Eq. (1.4)

Normal lowercase italics

as reinforcement cross section per unit width Eq. (7.70)
b cross-section width Section 3.1.2
bw crack-band width Section 2.1
d structural height Section 7.6.2
e element index Section 1.3
f strength condition Eq. (5.42)
fc uniaxial compressive strength Section 2.1

of concrete (unsigned)
fct uniaxial tensile strength of concrete Section 2.1
ft uniaxial failure stress – reinforcement Section 2.3
fyk uniaxial yield stress – reinforcement Section 2.3
fE probability density function Eq. (9.2)

of random variable E
gf specific crack energy per volume Section 2.1
h cross-section height Section 3.1.2
mx,my,mxy moments per unit width Eq. (7.8)
n total number of degrees of freedom Section 1.2

in a discretized system
nE total number of elements Section 3.3.1
ni order of Gauss integration Section 1.6
nN total number of nodes Section 3.3.1
nx, ny, nxy normal forces per unit width Eq. (7.8)
p pressure Eq. (5.8)
pF failure probability Eq. (9.18)
p̄x, p̄z distributed beam loads Eq. (3.58)
r local coordinate Section 1.3
s local coordinate Section 1.3
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XII Notations

sbf slip at residual bond strength Section 2.4
sbmax slip at bond strength Section 2.4
t local coordinate Section 1.3
t time Section 1.2
tx, ty, txy couple force resultants per unit width Eq. (7.67)
u specific internal energy Eq. (5.12)
vx, vy shear forces per unit width Eq. (7.8)
w deflection Eq. (1.56)
w fictitious crack width Eq. (2.4)
wcr critical crack width Section 5.7.1
z internal lever arm Section 3.5.4

Bold lowercase roman

b body forces Section 1.2
f internal nodal forces Section 1.2
p external nodal forces Section 1.2
n normal vector Eq. (5.5)
t surface traction Section 1.2
tc crack traction Eq. (5.123)
u displacement field Section 1.2
υ nodal displacements Section 1.2
wc fictitious crack width vector Eq. (5.122)

Normal uppercase italics

A surface Section 1.2, Eq. (1.5)
A cross-sectional area of a bar or beam Eq. (1.54)
As cross-sectional area reinforcement Example 2.4
At surface with prescribed tractions Section 1.2, Eq. (1.5)
Au surface with prescribed displacements Eq. (1.53)
C material stiffness coefficient Eq. (2.32)
CT tangential material stiffness coefficient Eq. (2.34)
D scalar damage variable Eq. (5.106)
DT tangential material compliance coefficient Eq. (5.160)
DcT tangential compliance coefficient Eq. (5.132)

of cracked element
DcLT tangential compliance coefficient of crack band Eq. (5.132)
E Young’s modulus Eq. (1.43)
E0 initial value of Young’s modulus Eq. (2.13)
Ec initial value of Young’s modulus of concrete Section 2.1
Es initial Young’s modulus of steel Section 2.3
ET tangential modulus Eq. (2.2)
F yield function Eq. (5.64)
FE distribution function of random variable E Eq. (9.1)
G shear modulus Eq. (3.8)
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Notations XIII

G flow function Eq. (5.63)
Gf specific crack energy per surface Eq. (2.7)
I1 first invariant of stress Eq. (5.20)
J determinant of Jacobian Eq. (1.67)
J2, J3 second, third invariant of stress deviator Eq. (5.20)
Lc characteristic length of an element Eq. (6.32)
Le length of bar or beam element Section 1.3
M bending moment Section 3.1.2
N normal force Section 3.1.2
P probability Eq. (9.1)
T natural period Eq. (3.211)
V shear force Section 3.1.2
V volume Section 1.2, Eq. (1.5)

Bold uppercase roman

B matrix of spatial derivatives of shape functions Section 1.2, Eq. (1.2)
C material stiffness matrix Eq. (1.47)
CT tangential material stiffness matrix Eq. (1.50)
D material compliance matrix Eq. (1.51)
DT tangential material compliance matrix Eq. (1.51)
E coordinate independent strain tensor Eq. (8.15)
G1,G2,G3 unit vectors of covariant system Eq. (8.16)
G1,G2,G3 unit vectors of contravariant system Eq. (8.17)
I unit matrix Eq. (1.85)
J Jacobian Eq. (1.20)
K stiffness matrix Eq. (1.11)
Ke element stiffness matrix Eq. (1.61)
KT tangential stiffness matrix Eq. (1.66)
KTe tangential element stiffness matrix Eq. (1.65)
M mass matrix Eq. (1.60)
Me element mass matrix Eq. (1.58)
N matrix of shape functions Section 1.2, Eq. (1.1)
Q vector/tensor rotation matrix Eq. (5.15)
S coordinate independent stress tensor Eq. (8.24)
T element rotation matrix Eq. (3.109)
Vn shell director Section 8.1
Vα,Vβ unit vectors of local shell system Eq. (8.2)

Normal lowercase Greek

α tie inclination Eq. (3.157)
αE , αR sensitivity parameters Eq. (9.13)
α coefficient for several other purposes
β shear retention factor Eq. (5.137)
β reliability index Eq. (9.12)
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XIV Notations

βt tension stiffening coefficient Section 2.7
ε uniaxial strain Section 1.4, Eq. (1.43)
ε strain of a beam reference axis Section 3.1.1, Eq. (3.4)
ε1, ε2, ε3 principal strains Section 5.2.3
εct concrete strain at uniaxial tensile strength Section 2.1
εcu concrete failure strain at uniaxial tension Eq. (5.152)
εc1 concrete strain at Section 2.1

uniaxial compressive strength (signed)
εcu1 concrete failure strain at Section 2.1

uniaxial compression (signed)
εI imposed uniaxial strain Section 2.2
εV volumetric strain Eq. (5.102)
φ cross-section rotation Eq. (3.1)
φ angle of external friction Eq. (5.91)
ϕ angle of orientation Section 6.1, Eq. (6.5)
ϕ creep coefficient Eq. (2.26)
ϕc creep coefficient of concrete Eq. (3.119)
γ shear angle Eq. (3.1)
γE , γR partial safety factors Eq. (9.44)
κ curvature of a beam reference axis Section 3.1.1, Eq. (3.4)
κp state variable for plasticity Section 5.5.1
κd state variable for damage Section 5.6
µE mean of random variable E Section 9.1
ν Poisson’s ratio Eq. (1.44)
ν coefficient of variation Eq. (9.46)
θ strut inclination Eq. (3.148)
θ deviatoric angle Eq. (5.46)
ϑ angle of internal friction Eq. (5.89)
ρ deviatoric length Eq. (5.45)
ρs reinforcement ratio Eq. (6.8)
%s specific mass Eq. (1.52)
σ uniaxial stress Section 1.4, Eq. (1.43)
σ1, σ2, σ3 principal stresses Section 5.2.3
σE standard deviation of random variable E Section 9.1
τ bond stress Section 2.4, Eq. (2.44)
τ time variable in time history Section 2.2
τbf residual bond strength Section 2.4
τbmax bond strength Section 2.4
ω circular natural frequency Eq. (3.211)
ξ hydrostatic length Eq. (5.44)

Bold lowercase Greek

ε small strain Section 1.2
ε generalized strain Eq. (1.33)
εp plastic small strain Eq. (5.61)
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Notations XV

κ vector of internal state variables Eq. (5.39)
σ Cauchy stress Section 1.2
σ generalized stress Eq. (1.34)
σ′ deviatoric part of Cauchy stress Section 5.2.2

Normal uppercase Greek

Φ standardized normal distribution function Eq. (9.19)

Bold uppercase Greek

Σ viscous stress surplus Eq. (1.76)
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Chapter 1

Finite Elements Overview

1.1 Modeling Basics

“There are no exact answers. Just bad ones, good ones and better ones. Engineering is the
art of approximation.” Approximation is performed with models. We consider a reality of
interest, e.g., a concrete beam. In a first view, it has properties such as dimensions, color,
surface texture. From a view of structural analysis the latter ones are irrelevant. A more
detailed inspection reveals a lot of more properties: composition, weight, strength, stiffness,
temperatures, conductivities, capacities, and so on. From a structural point of view some
of them are essential. We combine those essential properties to form a conceptual model.
Whether a property is essential is obvious for some, but the valuation of others might be
doubtful. We have to choose. By choosing properties our model becomes approximate
compared to reality. Approximations are more or less accurate.

On one hand, we should reduce the number of properties of a model. Any reduction of
properties will make a model less accurate. Nevertheless, it might remain a good model. On
the other hand, an over-reduction of properties will make a model inaccurate and therefore
useless. Maybe also properties are introduced which have no counterparts in the reality of
interest. Conceptual modeling is the art of choosing properties. As all other arts it cannot
be performed guided by strict rules.

The chosen properties have to be related to each other in quantitative manner. This
leads to a mathematical model. In many cases, we have systems of differential equations
relating variable properties or simply variables. After prescribing appropriate boundary and
initial conditions an exact, unique solution should exist for variables depending on spatial
coordinates and time. Thus, a particular variable forms a field. Such fields of variables are
infinite as space and time are infinite.

As analytical solutions are not available in many cases, a discretization is performed
to obtain approximate numerical solutions. Discretization reduces underlying infinite space
and time into a finite number of supporting points in space and time and maps differential
equations into algebraic equations relating a finite number of variables. This leads to a
numerical model.

Computational Methods for Reinforced Concrete Structures. First Edition. Ulrich Häussler-Combe.
© 2015 Ernst & Sohn GmbH & Co. KG. Published 2015 by Ernst & Sohn GmbH & Co. KG.
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2 Chapter 1 Finite Elements Overview

Figure 1.1: Modeling (a) Type of models following [83]. (b) Relations between model and
reality.

A numerical model needs some completion as it has to be described by means of program-
ming to form a computational model. Finally, programs yield solutions through processing
by computers. The whole cycle is shown in Fig. 1.1. Sometimes it is appropriate to merge
the sophisticated sequence of models into the model.

A final solution provided after computer processing is approximate compared to the
exact solution of the underlying mathematical model. This is caused by discretization and
round-off errors. Let us assume that we can minimize this mathematical approximation
error in some sense and consider the final solution as a model solution. Nevertheless, the
relation between the model solution and the underlying reality of interest is basically an
issue. Both – model and reality of interest – share the same properties by definition or
conceptual modeling, respectively. Let us also assume that the real data of properties can
be objectively determined, e.g., by measurements.

Thus, real data of properties should be properly approximated by their computed model
counterparts for a problem under consideration. The difference between model solution data
and real data yields a modeling error. In order to distinguish between bad (inaccurate),
good (accurate), and better model solutions, we have to choose a reference for the modeling
error. This choice has to be done within a larger context, allows for discretion and again is
not guided by strict rules like other arts. Furthermore, the reference may shift while getting
better model solutions during testing.

A bad model solution may be caused by a bad model – bad choice of properties, poor
relations of properties, insufficient discretization, programming errors – or by incorrect model
parameters. Parameters are those properties which are assumed to be known in advance for
a particular problem and are not object to a computation. Under the assumption of a
good model, the model parameters can be corrected by a calibration. This is based upon
appropriate problems from the reality of interest with the known real data. On one hand
calibration minimizes the modeling error by adjusting of parameters. On the other hand,
validation chooses other problems with known real data and assesses the modeling error
without adjusting of parameters. Hopefully model solutions are still good.

Regarding reinforced concrete structures, calibrations usually involve the adaption of
material parameters like strength and stiffness as part of material models. These parameters
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1.2 Discretization Outline 3

are chosen such that the behavior of material specimen observed in experiments is reproduced.
A validation is usually performed with structural elements such as bars, beams, plates, and
slabs. Computational results of structural models are compared with the corresponding
experimental data.

This leads to basic peculiarities. Reproducible experiments performed with structural
elements are of a small simplified format compared with complex unique buildings. Fur-
thermore, repeated experimental tests with the same nominal parameters exhibit scattering
results. Standardized benchmark tests carving out different aspects of reinforced concrete
behavior are required. Actually a common agreement about such benchmark tests exists
only in the first attempts. Regarding a particular problem a corresponding model has to
be validated on a case-by-case strategy using adequate experimental investigations. Their
choice again has no strict rules as the preceding arts.

Complex proceedings have been sketched hitherto outlining a model of modeling. Some
benefit is desirable finally. Thus, a model which passed validations is usable for predictions.
Structures created along such predictions hopefully prove their worth in the reality of interest.

This textbook covers the range of conceptual models, mathematical models, and numerical
models with special attention to reinforced concrete structures. Notes regarding the compu-
tational model including available programs and example data are given in Appendix F. A
major aspect of the following is modeling of ultimate limit states: states with maximum bear-
able loading or acceptable deformations and displacements in relation to failure. Another
aspect is given with serviceability: Deformations and in some cases oscillations of structures
have to be limited to allow their proper usage and fulfillment of intended services. Durability
is a third important aspect for building structures: deterioration of materials through, e.g.,
corrosion, has to be controlled. This is strongly connected to cracking and crack width in
the case of reinforced concrete structures. Both topics are also treated in the following.

1.2 Discretization Outline
The finite element method (FEM) is a predominant method to derive numerical models from
mathematical models. Its basic theory is described in the remaining sections of this chapter
insofar as it is needed for its application to different types of structures with reinforced
concrete in the following chapters.

The underlying mathematical model is defined in one-, two-, or three-dimensional fields
of space related to a body and one-dimensional space of time. A body undergoes deformations
during time due to loading. We consider a simple example with a plate defined in 2D space,
see Fig. 1.2. Loading is generally defined depending on time whereby time may be replaced
by a loading factor in the case of quasistatic problems. Field variables depending on spatial
coordinates and time are, e.g., given by the displacements.

• Such fields are discretized by dividing space into elements which are connected by
nodes, see Fig. 1.3a. Elements adjoin but do not overlap and fill out the space of the
body under consideration.

• Discretization basically means interpolation,, i.e., displacements within an element are
interpolated using the values at nodes belonging to the particular element.
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4 Chapter 1 Finite Elements Overview

Figure 1.2: Model of a plate.

In the following this will be written as

u = N · υ (1.1)

with the displacements u depending on spatial coordinates and time, a matrix N of shape
functions depending on spatial coordinates and a vector υ depending on time and collecting
all displacements at nodes. The number of components of υ is n. It is two times the number
of nodes in the case of the plate as the displacement u has components ux, uy. Generally
some values of υ may be chosen such that the essential or displacement boundary conditions
of the problem under consideration is fulfilled by the displacements interpolated by Eq. (1.1).
This is assumed for the following.

Figure 1.3: (a) Elements and nodes (deformed). (b) Nodal quantities.

Strains are derived from displacements by differentiation with respect to spatial coordi-
nates. In the following, this will be written as

ε = B · υ (1.2)
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1.2 Discretization Outline 5

with the strains ε depending on spatial coordinates and time, a matrix B of spatial derivatives
of shape functions depending on spatial coordinates and the vector υ as has been used in
Eq. (1.1). The first examples for Eqs. (1.1, 1.2) will be given in Section 1.3.

• A field variable u is discretized with Eqs. (1.1, 1.2), i.e., the infinite field in space is
reduced into a finite number n of variables in supporting spatial points or nodes which
are collected in υ.

Thereby kinematic compatibility should be assured regarding interpolated displacements, i.e.,
generally spoken a coherence of displacements and deformations should be given.

Strains ε lead to stresses σ. A material law connects both. Material laws for solids are a
science in itself. This textbook mainly covers their flavors for reinforced concrete structures.
To begin with, such laws are abbreviated with

σ = f(ε) (1.3)

Beyond total values of stress and strain their small changes in time t have to be considered.
They are measured with time derivatives

ε̇ =
∂ε

∂t
, σ̇ =

∂σ

∂t
(1.4)

Nonlinear material behavior is mainly formulated as a relation between ε̇ and σ̇. The first
concepts about material laws are given in Section 1.4.

An equilibrium condition is the third basic element of structural analysis beneath kine-
matic compatibility and material laws. It is advantageously formulated as principle of virtual
work leading to ∫

V

δεT · σ dV =

∫
V

δuT · b dV +

∫
At

δuT · t dA (1.5)

for quasistatic cases with the volume V of the solid body of interest, its body forces b,
its surface A, and its surface tractions t which are prescribed at a part At of the whole
boundary A. Furthermore, virtual displacements δu and the corresponding virtual strains δε
are introduced. They are arranged as vectors and δuT , δεT indicate their transposition into
row vectors to have a proper scalar product with σ,b, t which are also arranged as vectors.
Fields of b and t are generally prescribed for a problem under consideration while the field
of stresses σ remains to be determined. Surface tractions t constitute the natural or force
boundary conditions.

• Stresses σ and loadings b, t are in static equilibrium for the problem under considera-
tion if Eq. (1.5) is fulfilled for arbitrary virtual displacements δu and the corresponding
virtual strains δε.

Thereby, δu is zero at the part Au of the whole boundary A with prescribed displacement
boundary conditions. Applying the displacement interpolation equation (1.1) to virtual dis-
placements leads to

δu = N · δυ, δε = B · δυ (1.6)

and using this with Eq. (1.5) to

δυT ·
[∫

V

BT · σ dV

]
= δυT ·

[∫
V

NT · b dV +

∫
At

NT · t dA

]
(1.7)
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6 Chapter 1 Finite Elements Overview

with transpositions δυT ,BT ,NT of the vector δυ and the matrices B,N. As δυ is arbitrary
a discretized condition of static equilibrium is derived in the form

f = p (1.8)

with the vector f of internal nodal forces and the vector p of external nodal forces

f =

∫
V

BT · σ dV

p =

∫
V

NT · b dV +

∫
At

NT · t dA
(1.9)

Corresponding to the length of the vector υ the vectors f , p have n components.

• By means of σ = f(ε) and ε = B · υ, Eq. (1.8) constitutes a system of n nonlinear
algebraic equations whereby the nodal displacements υ have to be determined such that
– under the constraint of displacement boundary conditions – internal nodal forces f
are equal to prescribed external nodal forces p.

Nonlinear stress–strain relations, i.e., physical nonlinearities, are always an issue for rein-
forced concrete structures. It is a good practice in nonlinear simulation to start with a
linearization to have a reference for the refinements of a conceptual model. Physical linearity
is described with

σ = C · ε (1.10)

with a constant material matrix C. Thus, using Eq. (1.2) internal forces f (Eq. (1.9)) can
be formulated as

f = K · υ, K =

∫
V

BT ·C ·B dV (1.11)

with a constant stiffness matrix K leading to

K · υ = p (1.12)

This allows for a direct determination of nodal displacements which is symbolically written
as

υ = K−1 · p (1.13)

Actually the solution is not determined with a matrix inversion but with more efficient
techniques, e.g., Gauss triangularization. Stresses σ and strains ε follow with a solution υ
given. A counterpart of physical linearity is geometric linearity:

• Small displacements and geometric linearity are assumed throughout the following if
not otherwise stated.

This was a fast track for the finite element method. The rough outline will be filled out in
the following. Comprehensive descriptions covering all aspects are given in, e.g., [98], [99],
[9], [3]. The special aspects of reinforced concrete structures are treated in [16], [44], [81].
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1.3 Elements 7

1.3 Elements
Interpolation performed with finite elements will be described with more details in the fol-
lowing. We consider the mechanical behavior of material points within a body. A material
point is identified by its spatial coordinates. It is convenient to use a different coordinate
system simultaneously. First of all, the global Cartesian coordinate system, see Appendix C,
which is shared by all material points of a body. Thus, a material point is identified by global
Cartesian coordinates

x = ( x y z )T (1.14)

in 3D space. In the following, we assume that the space occupied by the body has been
divided into finite elements. Thus, a material point may alternatively be identified by the
label I of the element it belongs to and its local coordinates

r = ( r s t )T (1.15)

related to a particular local coordinate system belonging to the element e. A material point
undergoes displacements. In the case of translations they are measured in the global Cartesian
system by

u = ( u v w )T (1.16)

Displacements in a general sense may also be measured by means of rotations

ϕ = ( ϕx ϕy ϕz )T (1.17)

if we consider a material point embedded in some neighborhood of surrounding points. The
indices indicate the respective reference axes of rotation.

Isoparametric interpolation will be used in the following. The general interpolation form
(Eq. (1.1)) is particularized as

u = N(r) · υe (1.18)

whereby the global coordinates of the corresponding material point are given by

x = N(r) · xe (1.19)

The vector υe collects all nodal displacements of all nodes belonging to the element e and
the vector xe all global nodal coordinates of that element. Isoparametric interpolation is
characterized by the same interpolation for geometry and displacements with the same shape
functions N(r). Global and local coordinates are related by the Jacobian

J =
∂x

∂r
(1.20)

which may be up to a 3× 3 matrix for 3D cases. Strains may be derived with displacements
related to global coordinates through isoparametric interpolation. Their definition depends
on the type of the structural problem. A general formulation

ε = B(r) · υe (1.21)

is used. Strains ε finally lead to stresses σ. Examples are given in the following.
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8 Chapter 1 Finite Elements Overview

– Two-node bar element along a line.
The line is measured by a coordinate x. Each coordinate has a cross section with a
cross-sectional area. The kinematic assumption of a bar is that every material point in
the cross section has the same displacement in the line direction.
A bar element e has nodes I, J with coordinates xI , xJ . The nodes have the displace-
ments uI , uJ along the line. The origin of the local coordinate r is placed in the center
between the two nodes. Regarding Eqs. (1.18, 1.19) we have

x =
(
x
)
, u =

(
u
)

N =
[

1
2 (1− r) 1

2 (1 + r)
]

xe =

(
xI
xJ

)
, υe =

(
uI
uJ

) (1.22)

This leads to a scalar Jacobian
J =

∂x

∂r
=
Le
2

(1.23)

Strains are uniaxial and defined by

ε =
∂u

∂x
=
∂u

∂r

∂r

∂x
(1.24)

leading to

B =
2

Le

[
− 1

2
1
2

]
(1.25)

with a bar length Le = xJ −xI and finally, regarding Eq. (1.3), to uniaxial strains and
stresses

ε = ( ε ), σ = ( σ ) (1.26)

which are constant along the element.

– Two-node bar element in a plane
The plane is measured by coordinates x, y. The center axis of a bar is a line in this
plane. Each point of the center axis again has a cross-sectional area and again the
kinematic assumption of this bar is that every material point in the cross section has
the same displacement in the direction of the center axis.
A bar element e has nodes I, J with coordinates xI , yI , xJ , yJ . The nodes have the
displacements uI , vJ , uI , vJ in a plane. The origin of the local coordinate r is placed
in the center between the two nodes. Regarding Eqs. (1.18) and (1.19) we have

x =

(
x
y

)
, u =

(
u
v

)
N =

[
1
2 (1− r) 0 1

2 (1 + r) 0
0 1

2 (1− r) 0 1
2 (1 + r)

]

xe =


xI
yI
xJ
yJ

 , υe =


uI
vI
uJ
vJ


(1.27)
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1.3 Elements 9

Uniaxial strain is measured in the direction of the bar’s center axis, i.e., in a rotated
coordinate system x′, y′ with x′ being aligned to the center axis. The rotation angle
α (counterclockwise positive) and the transformation matrix T for global coordinates
and displacements are given by

T =

[
cosα sinα
− sinα cosα

]
, cosα =

xJ − xI
Le

, sinα =
yJ − yI
Le

(1.28)

with a bar length Le =
√

(yJ − yI)2 + (xJ − xI)2. The scalar Jacobian is similar as
before

J =
∂x′

∂r
=
Le
2

(1.29)

Strains are again uniaxial and defined by

ε =
∂u′

∂x′
=
∂u′

∂r

∂r

∂x′
(1.30)

leading to

B =
2

LI

[
− 1

2
1
2

]
·
[
cosα sinα 0 0

0 0 cosα sinα

]
(1.31)

regarding Eqs. (1.222, 1.28). Uniaxial strains and stresses have a form as given by
Eq. (1.26).

– Two-node spring element along a line.

The line is measured by a coordinate x. A spring element e has nodes I, J with coor-
dinates xI , xJ . The nodes may coincide and have the same coordinates. A kinematic
assumption for springs may be stated as follows: only the displacement difference of
two nodes is relevant irrespective of their original distance.

Springs are an abstract concept and do not occupy a space. They miss material points,
local coordinates, and a Jacobian. Thus, regarding Eq. (1.21) it is

ε =
(
∆u
)
, B =

[
−1 1

]
, υe =

(
uI
uJ

)
(1.32)

whereby this particular strain ε =
(
∆u
)
corresponds to a difference in displacements

of nodes and leads to a force σ =
(
F
)
. The relation between ∆u and F or spring

characteristics may be linear or nonlinear.

– Two-node spring element in a plane.

The plane is measured with coordinates x, y. A spring element e has nodes I, J with
coordinates xI , yI , xJ , yJ which may again coincide. In analogy to Eq. (1.32)

ε =

(
∆u
∆v

)
, B =

[
−1 −1 0 0
0 0 1 1

]
, υe =


uI
vI
uJ
vJ

 (1.33)
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10 Chapter 1 Finite Elements Overview

Generalized strain ε leads to a generalized stress

σ =

(
Fx
Fy

)
(1.34)

The relation between ε and σ may again be linear or nonlinear. It may be appropriate to
transform ε to a rotated coordinate system before evaluating σ using a transformation
matrix as given by T in Eq. (1.28). This requires back transformation of σ to the
original coordinate system with the transposed TT .

– Four-node continuum element in a plane or quad element

The plane is measured with coordinates x, y. A continuum element has nodes I, J,K,L
with coordinates xi, yi, i = I, . . . , L. They span a quad and are ordered counterclock-
wise. The following local coordinates are assigned: I : rI = −1, sI = −1; J : rJ =
1, sJ = −1; K : rK = 1, sK = 1; L : rL = −1, sL = 1. The kinematic assumption of
a continuum is that displacements are continuous, i.e., no gaps or overlapping occur.
Regarding Eqs. (1.18, 1.19), we have

x =

(
x
y

)
, u =

(
u
v

)
Ni(r, s) =

1

4

[
(1 + rir)(1 + sis) 0

0 (1 + rir)(1 + sis)

]
xe,i =

(
xi
yi

)
, υe,i =

(
ui
vi

) (1.35)

with i = I, . . . , L and

x(r, s) =
∑

i
Ni(r, s) · xe,i, u(r, s) =

∑
i
Ni(r, s) · υe,i (1.36)

This leads to a Jacobian matrix

J(r, s) =

[
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

]
, J = det J (1.37)

The Jacobian relates the partial derivatives of a function • with respect to local and
global coordinates (

∂•
∂r
∂•
∂s

)
= J ·

(
∂•
∂x
∂•
∂y

)
→

(
∂•
∂x
∂•
∂y

)
= J−1 ·

(
∂•
∂r
∂•
∂s

)
(1.38)

with the inverse J−1 of J. Small strains are defined by

ε =

 εx
εy
γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 =


∂u
∂r

∂r
∂x + ∂u

∂s
∂s
∂x

∂v
∂r

∂r
∂y + ∂v

∂s
∂s
∂y

∂u
∂r

∂r
∂y + ∂u

∂s
∂s
∂y + ∂v

∂r
∂r
∂x + ∂v

∂s
∂s
∂x

 (1.39)

leading to
ε(r, s) =

∑
i
Bi(r, s) · υe,i (1.40)
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with i = I . . . J and

Bi(r, s) =
1

4

ri(1 + sis)
∂r
∂x + si(1 + rir)

∂s
∂x 0

0 ri(1 + sis)
∂r
∂y + si(1 + rir)

∂s
∂y

ri(1 + sis)
∂r
∂y + si(1 + rir)

∂s
∂y ri(1 + sis)

∂r
∂x + si(1 + rir)

∂s
∂x

 (1.41)

The partial derivatives ∂r/∂x . . . are given the components of the inverse Jacobian J−1.
Matrices Ni,Bi related to single nodes are assembled in larger matrices to yield N,B.
Finally, Cauchy stresses

σ =

 σx
σy
σxy

 (1.42)

correspond to strains in a plane. Lateral strains εz or stresses σz come into play with
the distinction of plane stress, that is σz = 0, which may lead to a lateral strain εz 6= 0,
or plane strain, that is εz = 0 which may lead to a lateral stress σz 6= 0. The particular
values in the z-direction have to be determined indirectly with a material law, see
Section 1.4.

All mentioned stresses and the corresponding strains are conjugate with respect to energy,
i.e., the product σ · ε̇ corresponds to a rate of internal energy or a rate of specific internal
energy. The concept of stresses may be generalized:

• Depending on the type of structural element σ may stand for components of Cauchy
stresses or for components of forces or for components of internal forces in a beam cross
section, see Section 3.1.1. Strains ε are generalized correspondingly in order to lead to
internal energy, e.g., including displacements in the case forces or curvature in the case
of moments.

A basic property of the aforementioned elements is that they approximate coordinates and
displacements by interpolation: nodal values and interpolated values are identical at nodes.
For instance, for the four-node continuum element we have u = υe,i for r = ri, s = si i =
I, . . . , L. This property is shared by all types of finite elements.

Another issue concerns continuity: For the four-node continuum element the interpo-
lation is continuous between adjacent elements along their common boundary. One sided
first derivatives of interpolation exist for each element along the boundary but are differ-
ent for each element. Thus, the four-node continuum element has C0-continuity with these
properties. Furthermore, the integrals for internal and external nodal forces (Eq. (1.9)) are
evaluable. Other elements may require higher orders of continuity for nodal forces to be
integrable.

Finally, the issue of element locking has to be mentioned. The four-node continuum
element, e.g., does not allow us to model the behavior of incompressible solids. Constraining
Eqs. (1.41) with the condition of incompressibility εx + εy + εz = 0 makes the element much
to stiff if internal nodal forces are exactly integrated [9, 8.4]. First basic hints to treat locking
are given in Section 1.7. The locking problem is exemplary treated for shells in Section 8.6.

Only a few element types were touched up to now. Further elements often used are 3D-
continuum elements, 2D- and 3D-beam elements, shell elements and slab elements as a special
case of shell elements. Furthermore, elements imposing constraints like contact conditions
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have become common in practice. For details see, e.g., [3]. Regarding the properties of
reinforced concrete more details about 2D-beam elements including Bernoulli beams and
Timoshenko beams are given in Section 3.3, about slabs in Section 7.4 and about shells in
Chapter 8.

1.4 Material Behavior

From a mechanical point of view, material behavior is primarily focused on strains and
stresses. The formal definitions of strains and stresses assume a homogeneous area of matter
[64]. Regarding the virgin state of solids their behavior initially can be assumed as linear
elastic in nearly all relevant cases. Furthermore, the behavior can be initially assumed as
isotropic in many cases, i.e., the reaction of a material is the same in all directions. The
concepts of isotropy and anisotropy are discussed in Section 5.3 with more details.

The following types of elasticity are listed exemplary:

– Uniaxial elasticity
σ = E ε (1.43)

with uniaxial stress σ, Young’s modulus E, and uniaxial strain ε.

– Isotropic plane strain σx
σy
σxy

 =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 ·
 εx
εy
γxy

 (1.44)

with stress components σx, σy, σxy, Young’s modulus E, Poisson’s ratio ν, and strain
components εx, εy, γxy. This is a subset of the triaxial isotropic linear elastic law as is
described in Section 5.3.

– Isotropic plane stress  σx
σy
σxy

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ·
 εx
εy
γxy

 (1.45)

ensuring σz = 0 for every combination εx, εy, γxy

– Plane bending
M = EJ κ (1.46)

with the moment M , curvature κ, Young’s modulus E, and cross-sectional moment of
inertia J . This is covered by the concept of generalized stresses with σ =

(
M
)
and

generalized strains ε =
(
κ
)
.

Equations (1.43)–(1.45) are a special case of

σ = C · ε (1.47)
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