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List of Illustrations
Chapter 1

Figure 1.1 Three unmanned air vehicles (UAVs), three
main design drivers: NASA Towed Glider Air-Launch
Concept (left, NASA image) – long endurance at low
speeds; AeroVironment RQ-11 Raven (top right,
USAF image) – structural robustness to cope with
battlefield conditions; Boeing X-51 (USAF image) –
extremely high speed.
Figure 1.2 Three wing geometries packaged into one
and able to morph from one to another: the trailing
edge of the wing of a Boeing 787-8 airliner in (from
left to right) cruising flight, final approach and touch-
down (photographs by A. Sóbester).
Figure 1.3 External (or outer mould line) geometry –
even within the realm of fixed-wing aircraft, the
variety and sophistication of surface shapes poses a
serious geometry modelling and optimal design
challenge (photographs by A. Sóbester).

Chapter 2
Figure 2.1 A thought experiment: incompressible flow
around a body with some characteristic dimension L.
Figure 2.2 Kármán vortex streets can appear at much
larger length scales. Shown here is a pattern of



stratocumulus clouds around the Pacific island of
Guadalupe [NASA image].
Figure 2.3 Extreme geometrical flexibility – the initial
design of a cantilever bracket (top left) and five
snapshots of its intermediate geometries (in a left-to-
right, top-to-bottom order) in the course of an
evolutionary structural optimization run. The shapes
are shaded with a stress contour map.
Figure 2.4 Generalized circle fuselage cross-sections
obtained by assigning a range of different values to
N1 and N2 in Equation 2.16.

Figure 2.5 Approximation of an MD-80/90/B737-style
fuselage cross-section featuring a clear cusp line
between the two lobes (also highlighted on the image
of a McDonnell Douglas MD-90 aircraft on the right –
photograph by A. Sóbester).
Figure 2.6 Approximation of an Embraer ERJ 145-
type wing-to-body fairing area fuselage cross-section
(left) with the relevant section highlighted on an
image of an ERJ 145 aircraft on the right (photograph
by A. Sóbester).
Figure 2.7 Boeing 747-style cross-section geometry
as an instance of the model of Equation 2.18
(photograph by A. Sóbester).
Figure 2.8 Internal geometrical constraints on the
shape of a passenger airliner cabin.
Figure 2.9 Histogram of seat widths across a sample
of the world’s larger airlines (data courtesy of
seatguru.com).
Figure 2.10 Higher parametric geometry
dimensionality: greater flexibility and better results



(smaller ultimate cross-section area), but the
optimization can be orders of magnitude more costly.
Figure 2.11 A parametric fuselage geometry.
Figure 2.12 Side profile curves used in the definition
of the fuselage geometry shown in Figure 2.11
(loosely based on the fuselage geometry of the
Embraer ERJ 145 shown above – photograph by A.
Sóbester).
Figure 2.13 The two objectives,  and maximum
thickness, corresponding to just over 130 000
aerofoils generated using a parametric model and a
space-filling experiment planning algorithm. The non-
dominated points are highlighted with black circles
and the aerofoils they represent are also shown
alongside some of them.
Figure 2.14 Triple-objective optimization problem
based on an over-wing engine installation geometry
with two design variables. Counterclockwise from top
right: parameterization sketch, two extreme example
designs, Pareto surface coloured by normalized x
value and Pareto surface coloured by normalized z
value – figure based on Powell (2012).
Figure 2.15 Boeing X-51A waverider attached to a
pylon under the wing of its Boeing B-52 mothership.
A key geometrical feature of such vehicles is the
shape of the leading edge of the forebody, which will
hold the shock wave in hypersonic flight and will
define its shape (image courtesy of the US Air Force).
Figure 2.16 Starboard-side half-section through the
forebody of a Mach 6 waverider and a block of the
flow field surrounding it. A commonly used design
algorithm involves a combination of standard
optimization and inverse design.



Chapter 3
Figure 3.1 A conic as the intersections of
projectivities between two lines.
Figure 3.2 A perspectivity of line A onto B.
Figure 3.3 A projectivity from two perspectivities.
Figure 3.4 Construction of a Bernstein conic.
Figure 3.5 The Bernstein polynomials (Equation
3.11), displaying the intuitive property of Bézier
curve control point weighting falling away from
control points.
Figure 3.6 The third degree Bernstein polynomials
(Equation 3.13).
Figure 3.7 A cubic Bézier curve produced by
inserting an additional control point to the quadratic
Bézier curve in Figure 3.4.
Figure 3.8 Varying weights for a rational quadratic
conic.
Figure 3.9 An example of a Bézier spline formed by
joining two quadratic Bézier curves.
Figure 3.10 An example of a Bézier spline
representation of an aerofoil, formed by joining two
cubic Bézier curves.
Figure 3.11 Ferguson spline and its boundary
conditions.
Figure 3.12 The four basis functions of equation
(3.24) shown alongside their respective multipliers.
Figure 3.13 The effect of varying the tangent
magnitude at point (1, 2) – the higher curves
correspond to the longer tangent vectors.



Figure 3.14 A quadratic rational B-spline showing the
vicinity of local control as control point a(0) is shifted.
Figure 3.15 Overlapping degree-3 B-spline basis
functions.
Figure 3.16 Repeated knot values in a third-degree
NURBS yield the cubic Bernstein polynomials in
Figure 3.6 (i.e. the NURBS is equivalent to a Bézier
curve).
Figure 3.17 Reducing the degree of the lower surface
NURBS to 3 and adding a control point gives local
control towards the trailing edge, potentially giving
more design capability than the Bézier curve
definition in Figure 3.10 (shown here by moving the
additional control point). Note that the plot has been
stretched to highlight the geometry changes.
Figure 3.18 Degree 2 NURBS basis functions for knot
vector k = [0, 0, 0, 1, 2, 3, 3, 3], resulting in a curve
starting and ending at the first and last control
points. The central segment is ‘uniform’, but the first
and last segments have basis functions distorted by
the repeated knot values.
Figure 3.19 Various NURBS defined by eight control
points (left) and knot vectors (right): (a) degree 3
with uniform knot vector; (b) degree 7; (c–f) degree 3.
The control point locations are chosen to be similar to
Salomon (61, figure 7.19).

Chapter 4
Figure 4.1 Lofted surface between two Bézier curves.
Figure 4.2 Surface created by translating one Bézier
curve along a second, intersecting Bézier curve.
Figure 4.3 Coons surface created with four boundary
Bézier curves.



Figure 4.4 A simple Bézier surface based on a 3 × 3
grid of control points. Considered as a grid of Bézier
curves, one such curve is shown in bold and is traced
out by varying t, with u held constant.
Figure 4.5 Bézier surface produced by the code in
Listing 4.3.
Figure 4.6 A simple wing created with upper and
lower Bézier patches.
Figure 4.7 B-spline surface based on a 7 × 7 grid of
control points.
Figure 4.8 B-spline surface based on a 7 × 7 grid of
control points, with local control of the central region
by moving the centre control point a(3, 3) with respect
to Figure 4.7.
Figure 4.9 Rational B-spline surface based on a 7 × 7
grid of control points, with central region distorted by
increasing the weight of point a(3, 3) with respect to
Figure 4.7.
Figure 4.10 NURBS surfaces where repeated knot
values force the surface to interpolate: (a) a set of the
edge control points and (b) all of the edge control
points and the centre control point, where there is a
spike.
Figure 4.11 FFD control point grid and contour map
of the bn(u)fm(t) Bernstein polynomial.

Figure 4.12 FFD control point grid with the a(n, m)

control point moved. The solid lined grid shows how
points are shifted according to the influence of the
control points. The bn(u)fm(t) Bernstein polynomial is
shown as a contour map.



Figure 4.13 FFD control point grid with the a(2, 3)

control point moved. The solid lined grid show how
points are shifted according to the influence of the
control points. The b2(u)f3(t) Bernstein polynomial is
shown as a contour map.
Figure 4.14 FFD of a circle by shifting a(n, m) of a 3 ×
3 grid encompassing (a) the whole circle and (b)  laid
over part of the circle.
Figure 4.15 FFD of a sphere by shifting a(m, n, p) of a 2
× 2 × 2 grid.
Figure 4.16 FFD of a generic wing shape, with the
control points on the face of the wing-tip end of the
grid rotated and translated.
Figure 4.17 A reproduction of Figure 4.5 using the
OpenNURBS/Rhino-Python in Listing 4.6.
Figure 4.18 A reproduction of Figure 4.6 using the
OpenNURBS/Rhino-Python in Listing 4.7.
Figure 4.19 A reproduction of Figure 4.10 using the
OpenNURBS/Rhino-Python in Listing 4.8.
Figure 4.20 A reproduction of Figure 4.15 using the
OpenNURBS/Rhino-Python in Listing 4.9.
Figure 4.21 FFD of the SUHPA geometry to create a
blended winglet (starboard) and (exaggerated) tip
washout (port) using Rhino’s Cage Edit function.

Chapter 5
Figure 5.1 The Lockheed F-104 Starfighter:
remarkable performance at the cost of unforgiving
handling (photographs by A. Sóbester).
Figure 5.2 The North American Aviation (NAA) P-51
Mustang, the first production aircraft to employ an



aerofoil designed for laminar flow, the NAA/NACA 45-
100 (photograph courtesy of the US Air Force).
Figure 5.3 Approximate maximum lift coefficient
values attainable by various multi-element aerofoil
configurations (diagram courtesy of NASA).
Figure 5.4 Interpolating (top) versus regressing
(bottom) with cubic splines – balancing closeness to
training data against smoothness of fit. The curvature
of the interpolating curve (depicted as a porcupine
plot attached to the aerofoil contour) exhibits small
‘wobbles’, but it goes through each legacy data point
(marked by × symbols), while the regression curve
has a smooth curvature variation, but it does not stay
completely true to the data.

Chapter 6
Figure 6.1 Adding/subtracting a NACA one-variable
thickness distribution t to/from a NACA two-variable
camber curve zcam along normals to the latter will
yield the upper/lower surfaces of a NACA four-digit
aerofoil.
Figure 6.2 Dangers of the naive application of
Equation 6.8  – choosing x-coordinates uniformly
distributed along the chord may lead to highly
nonuniform sampling along the actual aerofoil
surfaces, particularly near the leading edge. Shown
here is the leading edge region of a NACA 6521
aerofoil sampled both uniformly along x (‘o’ symbols)
and uniformly along the curves themselves (‘+’
symbols).
Figure 6.3 The NACA 2213 was used on the
Supermarine Spitfire, including on this Type 389 PR
XIX, a late, Rolls-Royce Griffon-powered photo-
reconnaissance version of the famous World War II



fighter. With a top speed approaching 400 knots and
a service ceiling in excess of 40 000 feet, the PR XIX
was the highest performance Spitfire ever made
(photograph by A. Sóbester).
Figure 6.4 NACA four-digit profiles over Korea and
Vietnam. Weighing over 11 t and with a cruise speed
of around 170 knots, the Douglas A1-D Skyraider
(AD-4) is one of the real ‘bruisers’ of the history of
propeller-driven attack aircraft. The folding wing
shows off its NACA 2417 root section (photograph by
A. Sóbester).
Figure 6.5 The Scottish Aviation Twin Pioneer, a short
take-off and landing transporter designed in the
1950s, had wings featuring NACA 4415 profiles
(photograph by A. Sóbester).
Figure 6.6 The Fairchild Republic A-10 Thunderbolt II
may be the only jet aircraft with wings based on
NACA four-digit sections  – a NACA 6716 at the root
and a NACA 6713 at the tip (photograph courtesy of
the US Air Force).
Figure 6.7 NACA 23012  – a 12% thick NACA five-digit
aerofoil with a design lift coefficient of 0.3 and
maximum camber located at 0.15 units of chord. The
transition point between the two parts of the camber
curve is at m = 0.2027 units of chord  – aft of this
point the camber curve is a straight line.
Figure 6.8 Typical ‘flat top pressure distribution
around an SC(2) supercritical aerofoil.
Figure 6.9 NASA SC(2) cross-sections plotted against
their thickness-to-chord ratios and design lift
coefficients. The labels and colours indicate
belonging to an intended class of applications.



Figure 6.10 The camber curves of six SC(2) aerofoils
(axes to different scales).
Figure 6.11 The half-thickness (HT) distributions of
six SC(2) aerofoils (vertical and horizontal axes are to
different scales).

Chapter 7
Figure 7.1 One-dimensional parameter sweep on a
circle resulting in a family of Joukowski aerofoils of
varying camber curves.
Figure 7.2 A simple parametric aerofoil consisting of
two Ferguson splines.
Figure 7.3 Legacy aerofoil geometry matching via the
Ferguson-spline-based aerofoil formulation.
Figure 7.4 The terms of Equation 7.4 (or 7.5) for 

 and all coefficients v set to one.
Figure 7.5 The terms of the Kulfan transform of the
aerofoil SC(2)-0612, denoted . Note that
only the lower surface has a term no. 3 (a positive
one in this case), because we used four terms to
describe it  and only three for the upper
surface .

Figure 7.6 CST approximation accuracy at various
polynomial orders with the SC(2)-0612 supercritical
aerofoil as the target shape.
Figure 7.7 The top two tiles of Figure 7.6 repeated
using the orthogonal distance metric.
Figure 7.8 The lowest polynomial orders required for
a CST approximation to capture a legacy aerofoil
within wind tunnel model error varies between
different aerofoils – here is a selection.



Figure 7.9 Approximation errors of Kulfan curves of
various orders fitted to an analytically constructed
NACA four-digit aerofoil (NACA 2417).
Figure 7.10 Sets of aerofoils (right) and the
corresponding sets of third-order Kulfan transform
coefficients (left). Top row: NACA 6308 to NACA 6325
(maintaining camber and camber location); second
row: NACA 0012 to NACA 6312 (maintaining
thickness and maximum camber location); third row:
NACA 21012 to NACA 25012; fourth row:
SC(2)-0710, −0712, −0610, −0612.
Figure 7.11 Upper and lower bounds on the Kulfan
variables of a third order transformation applied to
the entire NACA four-digit set.
Figure 7.12 The general class function ( ) and
a class function evolved specifically for supercritical
aerofoils Reproduced from Powell (2012).
Figure 7.13 CST approximation errors over the set of
SC(2) aerofoils using the general aerofoil class
function ( ) on the right and an SC(2)-family-
specific class function on the left. Reproduced from
Powell (2012).

Chapter 8
Figure 8.1 Aspect ratios from the extremely low – the
Vought V-173 ‘Flying Pancake’ (just over one!), with
wingtip-mounted propellers – to high – the Alenia C-
27J Spartan, bottom left – and low – Alenia Aermacchi
M-346 Master (photographs by A. Sóbester).
Figure 8.2 Big jets with high aspect ratio wings. The
wings of the Boeing 747-400 (top left, Group V, Code
E, span ∼55 m) and the Airbus A330 (bottom left,
Group V, Code E) are visibly more slender than those



of the Airbus A380 (top right, Group VI, Code F, span
∼80 m), the latter designed up against the upper
boundary of Group VI/Code F. There are fewer
geometrical constraints on long-range, strategic
bombers, such as the Boeing B-52 (bottom right)
(photographs by A. Sóbester).
Figure 8.3 Fighter jet planforms: low aspect ratio
wings on the Boeing F/A-18E Super Hornet (left) and
on the McDonnell Douglas F-15C Eagle (right). Note
also the leading edge extensions on the Hornet
(photographs by A. Sóbester).
Figure 8.4 Tapered wings. Sub-unity taper ratio on
the Shorts Tucano (left, λ < 1) and reverse taper (λ >
1) on the wings of the Republic XF-91 Thunderceptor
(photographs by A. Sóbester and US Air  Force).
Figure 8.5 Forward-swept outboard wing segments
on the experimental Grumman X-29 (photograph by
US Air Force).
Figure 8.6 The Boeing B-47A, the world’s first swept-
wing bomber (photograph by US Air Force).
Figure 8.7 SNCASO Trident I. This 1950s
experimental aircraft powered by turbojets and a
rocket was able to achieve Mach 1.55 in spite of
having zero sweep (photograph by A. Sóbester).
Figure 8.8 Geometry of a swept wing: a normal and a
streamwise section through the plane of a straight,
plane wing pivoted to obtain a sweep Λ.
Figure 8.9 Consider an aircraft flying horizontally at
sea-level conditions and different Mach numbers,
from the zero abscissa to the 1000 m abscissa point.
The small triangles spaced at 100 m represent its
path and the circle centred on each triangle is the
wave front (recorded at the moment the aircraft



reached the end of the 1 km segment) of the
disturbance created by the aircraft in that point. The
aircraft has no effect on the free stream outside of
the cone defined by the wavefronts.
Figure 8.10 Eurofigher Typhoon – the Mach 2 cone of
the nose superimposed upon the planform of the
aircraft .
Figure 8.11 The angle of attack envelope of the X-29
forward swept-wing research aircraft (angle of attack
versus airspeed at a range of load factors) and the
aircraft in high angle of attack flight (as shown by the
smoke generated for visualization purposes) – both
courtesy of NASA, plot from Bauer et al. (1995).
Figure 8.12 Panavia Tornado ADV (F3), a Mach 2.2
long-range variable-sweep interceptor with its wings
at Λ = 67°, their highest sweep setting, the lowest
being Λ = 25° (photograph by A. Sóbester).
Figure 8.13 NASA oblique wing aircraft: OWRA
(Oblique Wing Research Aircraft) unmanned
demonstrator (left) and the AD-1, a subsonic, manned
research aircraft from 1979 (NASA images).
Figure 8.14 Swept-wing aircraft turning on a taxiway
around its port main landing gear (MLG). The space
required is greater than the span of the aircraft, by a
margin known as swept-wing ‘growth’.
Figure 8.15 Typical constraint diagram reflecting the
initial climb requirement. The curve separating the
feasible (white) and the infeasible (grey) region of the
thrust-to-weight versus wing loading space is the
nominal constraint boundary. The additional
boundaries show the impact of changes to the
nominal (target) values of some key parameters on
the location of this boundary.



Figure 8.16 Typical constraint diagram reflecting
take-off distance requirements. The larger of the two
superimposed grey triangles is the zone in which a
design would violate the constraint on the maximum
take-off roll length. The continuous lines either side
of the corresponding boundary indicate the
sensitivity of the location of this boundary to the
target length. The 50 ft obstacle clearance feasibility
constraint (which can be read off the graph in a
similar way) is less restrictive, and therefore inactive
in this particular case.
Figure 8.17 A selection of aeroplanes in thrust-to-
weight versus wing loading space at take-off
conditions. The colours of the discs representing each
aeroplane indicate the length of their International
Standard Atmosphere (ISA), maximum take-off
weight and take-off distance, while their size is
proportional to their initial rate of climb under the
same conditions.
Figure 8.18 Illustration of the definitions of the two
scaling factors we shall use in our objects
instantiated from the LiftingSurface class.
myChordFunctionAirliner is a user-defined function
describing the spanwise variation of the chord length,
as explained in Section 8.5.4 – it is supplied as one of
the illustrative examples to allow the reader to test
the capabilities of the LiftingSurface class (see Listing
8.1 for its definition).

Chapter 9
Figure 9.1 Aircraft with high, swept wings, featuring
pronounced anhedral. Clockwise from top left:
Harrier (AV8-B), Airbus A400M, British Aerospace
BAe-146, Ilyushin Il-76 (photographs by A. Sóbester).



Figure 9.2 Aircraft with polyhedral wings.
Anticlockwise from top: Jodel D18, Vought F4U-1D
Corsair and the Mahoney Sorceress, a staggered
biplane designed for the Reno Air Races
(photographs by A. Sóbester).
Figure 9.3 Multisegment flaps on the polyhedral wing
of a Vought Corsair (photograph by A. Sóbester).
Figure 9.4 CAD rendering of a box wing unmanned
aircraft – an example of Γ(ε) varying linearly between
the end of the zero dihedral lower half of the wing
and an upper half that can be viewed, from a purely
geometrical standpoint, as having 180° dihedral.
Figure 9.5 Local dihedral angle variation defined
along a wing-attached, spanwise coordinate axis ϵ, to
model deformed shapes for fluid–structures
interactions studies (Boeing 787-8; photographs by A.
Sóbester).
Figure 9.6 Two wings (transonic transport on the left,
box wing on the right) illustrating a conventionally
orientated Cartesian system with its origin at the root
of the leading edge and an additional curvilinear
dimension ϵ attached to the leading edge.
Figure 9.7 The first step of building the box wing: a
simple straight, plane wing with a NACA 5310
section.
Figure 9.8 Step 2 of generating a box wing: the basic
wing is folded back onto itself through a linear
transition.
Figure 9.9 Folded wing with aerofoil section camber
transition at the folding point – both elements of the
wing have positive camber.
Figure 9.10 Completed box wing.



Figure 9.11 Blended winglets on an Embraer ERJ
190-200LR (photograph by A. Sóbester).
Figure 9.12 A simple, two-variable parameterization
of a blended winglet geometry. Sweeps of the
variable controlling the tip tangent (left) and the
variable controlling the transition point (right).
Figure 9.13 Scimitar winglet generated by combining
two instances of the parametric blended winglet. The
two component winglets differ on the starting point of
their transition, the wingtip tangent, as well as on the
overall scaling factor.
Figure 9.14 Commuter-class turboprop wing sketch.
Figure 9.15 Constraint diagram of the commuter
airliner design example.  denotes parasitic drag, 

 stands for induced drag.

Figure 9.16 BAe Jetstream 31, seen here in the livery
of the UK’s National Flying Laboratory (courtesy of
G-NFLA).
Figure 9.17 Three design points of the BAe Jetstream
31 against the constraint boundaries of the commuter
turboprop design example.

Chapter 10
Figure 10.1 One-sided difference error when
approximating ∂L∂x0 using Equation 10.4.

Figure 10.2 AlgoPy’s computational graph of the
forward part of Listing 10.2.
Figure 10.3 The Bézier spline aerofoil for which the
derivatives of  with respect to its surface are to be
obtained. The circled control points are those for
which the z-coordinate will be varied via an inverse
design process in Section 10.4.



Figure 10.4 Derivatives of panel(x,alpha,Re) with
respect to aerofoil surface coordinates.
Figure 10.5 Derivatives of the Bézier spline aerofoil
surface with respect to the control points (compare
with the Bernstein polynomials in Figure 3.7).
Figure 10.6 A Ferguson spline aerofoil defined by
Aupper, lower = 0.0, 0.0, Bupper, lower = 1.0, 0.0, Tlower

A =
0.0, −0.025, Tupper

A = 0.0, 0.03, Tlower
B = 0.75, 0.0,

Tupper
B = 0.9, −0.03.

Figure 10.7 Derivatives of the Ferguson spline
aerofoil surface with respect to the leading and
trailing edge points (A and B), and leading and
trailing edge tangents (TA and TB) (compare with the
basis functions in Figure 3.12).
Figure 10.8 Derivatives of the Ferguson spline
aerofoil surface with respect to the definition in
Figure 7.2, showing the intuitive nature of this
parameterization (i.e. the variables have clear
associations with the shape of the aerofoil). Note that
although some parameters have the same effect on
the shape, they will, naturally, have different effects
on the flow.
Figure 10.9 Derivatives of a NACA 4412 aerofoil
surface with respect to the four-digit definition; that
is, zmax

cam, xmc and tmax.

Figure 10.10 Initial, target and optimized  profiles
from the inverse design process in Listing 10.9.
Figure 10.11 Initial and optimized aerofoils from the
inverse design process in Listing 10.9.

Chapter 11



Figure 11.1 Ferguson spline aerofoils with varying
Tupper

A, produced by Listing 11.7.

Figure 11.2 XFOIL-calculated drag coefficients for
Ferguson spline aerofoils with varying Tupper

A,
produced by Listing 11.7. The curve fit is a ‘moving
least squares’ – for example, see Forrester and Keane
(2009).

Chapter 12
Figure 12.1 SUHPA in flight during the 2013 Icarus
Cup at Sywell Aerodrome (piloted by Bill Brooks;
power-plant, Guy Martin; photograph by Fred To).
Figure 12.2 SUHPA in flight. Note the high aspect
ratio and low thickness/chord, highlighting the
importance of the aero-structural trade-off (piloted by
Bill Brooks; power-plant, Guy Martin; photograph by
Fred To).
Figure 12.3 Planform of SUHPA after the three-
variable NACA 44xx optimization (Listing 12.1).
Figure 12.4 Aerofoils and corresponding pressure
profiles after the three-variable NACA 44xx
optimization (Listing 12.1).
Figure 12.5 Aerofoils and corresponding pressure
profiles after the five-variable NACA xxxx
optimization.
Figure 12.6 Aerofoils and corresponding pressure
profiles after the nine-variable Ferguson spline-based
optimization.
Figure 12.7 Aerofoils and corresponding pressure
profiles after the 27-variable Ferguson spline-based
optimization.


