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Preface

Bias analysis quantifies the influence of systematic error on an epidemiology 
study’s estimate of association. The fundamental methods of bias analysis in epide-
miology have been well described for decades, yet are seldom applied in published 
presentations of epidemiologic research. More recent advances in bias analysis, 
such as probabilistic bias analysis, appear even more rarely. We suspect that there 
are both supply-side and demand-side explanations for the scarcity of bias analysis. 
On the demand side, journal reviewers and editors seldom request that authors 
address systematic error aside from listing them as limitations of their particular 
study. This listing is often accompanied by explanations for why the limitations 
should not pose much concern. On the supply side, methods for bias analysis 
receive little attention in most epidemiology curriculums, are often scattered 
throughout textbooks or absent from them altogether, and cannot be implemented 
easily using standard statistical computing software. Our objective in this text is to 
reduce these supply-side barriers, with the hope that demand for quantitative bias 
analysis will follow.

We began this project after writing a few bias analysis papers in epidemiology 
journals. The American College of Epidemiology invited us to prepare a day-long 
workshop on the methods of bias analysis, which became an outline, which in turn 
became this text. The text begins with a description of the need for bias analysis 
and continues with two chapters on the legwork that must be done at the outset of 
a research project to plan and implement a bias analysis. This introductory section 
is followed by three chapters that explain simple bias analysis methods to address 
each of the fundamental threats to the validity of an epidemiology study’s estimate 
of association: selection bias, classification errors, and uncontrolled confounding. 
We then extend the bias analysis methods from these early chapters to multi-
dimensional, probabilistic, and ultimately multiple bias analysis methods. The book 
concludes with a chapter on the presentation and interpretation of the results of a 
bias analysis.

Readers might use the text as an independent resource to address bias analysis 
as they conduct epidemiologic research, as a secondary text in a class on epidemio-
logic methods, or as the central text in an advanced class on data analysis in epide-
miologic research that focuses on bias analysis. We hope that students will find, as 
we have, that once they have completed one bias analysis, it becomes hard to imagine 
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analyzing epidemiologic data without it. We have aimed the text at readers who 
have some familiarity with epidemiologic research and intermediate data analysis 
skills. For those without those skills, we suggest a comprehensive methods text, 
such as Modern Epidemiology, which can be used in conjunction with this text to 
provide a foundation in epidemiologic terminology, study design, and data analysis. 
Readers with advanced skills, particularly statistical skills, might yearn for a fully 
Bayesian treatment of the topic of bias analysis. Our approach is intentionally more 
fundamental, in the hope that a wider audience of epidemiologists and data analysts 
will adopt bias analysis methods if they do not have to simultaneously confront the 
barriers (real or perceived) of Bayesian statistics.

An important adjunct resource for this textbook is the suite of freely available 
spreadsheets and software available for download at https://sites.google.com/site/
biasanalysis/. (N.B. The credit for development of these tools goes solely to 
Matthew Fox, whose perseverance and vision to enable bias analysis by these tech-
niques has added substantial value to the text.) We encourage readers to download 
the software, follow the examples in the text, and then modify the fields to imple-
ment their own bias analysis. We would be delighted to hear from anyone who 
improves the tools or detects an error, and we will post revised tools as they become 
available. Likewise, we welcome comments, criticisms, and errata regarding the 
text from readers and will maintain a log of this feedback on the aforementioned 
web site.

In closing, we thank our friends and colleagues who contributed to the text 
directly or indirectly. We appreciate Charles Poole’s suggestion to the American 
College of Epidemiology that a course on bias analysis would be of value, and we 
appreciate John Acquavella’s decision to accept that suggestion on behalf of the 
college. Sander Greenland participated in the development and presentation of the 
American College of Epidemiology workshops, and has been instrumental in 
improving the methods of bias analysis. We are very grateful for his input and dedi-
cation to the topic. We also thank our colleagues who have a particular interest in 
bias analysis methods; they have challenged us to develop our ideas and to com-
municate them clearly. We cannot list them all, so acknowledge especially Charles 
Poole, Carl Phillips, George Maldonado, Anne Jurek, Ken Rothman, Rebecca 
Silliman, Soe Soe Thwin, Dan Brooks, and Steve Cole. We also acknowledge the 
important contribution of three anonymous reviewers recruited by our patient 
publisher; perhaps some have already been named above.

Funding for this project was made possible by grant 1 G13 LM008530 from the 
National Library of Medicine, NIH, DHHS. The views expressed in any written 
publication, or other media, do not necessarily reflect the official policies of the 
Department of Health and Human Services; nor does mention by trade names, com-
mercial practices, or organizations imply endorsement by the U.S. Government. 
Sections of Chapter 1 first appeared in: Lash TL. Heuristic thinking and inference 
from observational epidemiology. Epidemiology 2007;18(1):67–72 and are used 
here with permission. Examples of misclassified data in Chapters 6, 7, and 8 are 
used with kind permission from Springer Science+Business Media and first 
appeared in: Fink AK, Lash TL. A null association between smoking during 
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pregnancy and breast cancer using Massachusetts registry data. Cancer Causes and 
Control 2003;14(5):497–503. The example of multidimensional bias analysis 
involving colorectal cancer mortality and 5-fluorouracil treatment is used with 
permission and first appeared in: Sundararajan V, Mitra N, Jacobson JS, Grann VR, 
Heitjan DF, Neugut AI. Survival associated with 5-fluorouracil-based adjuvant 
chemotherapy among elderly patients with node-positive colon cancer. Annals of 
Internal Medicine 2002;136(5):349–357.

Boston, MA Timothy L. Lash
Matthew P. Fox

Aliza K. Fink
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   Chapter 1   
 Introduction, Objectives, and an Alternative        

  Introduction  

  Nonrandomized Epidemiologic Research 

 The results of nonrandomized epidemiologic investigations have a direct impact on 
all aspects of health interventions. Studies of social, environmental, behavioral, and 
molecular risk factors associated with the incidence of particular diseases lead to 
primary public health interventions aimed at preventing the disease from occurring. 
Few studies of etiologic relations allow for the exposure to be assigned by randomi-
zation because of ethical constraints; participants cannot be randomized ethically to 
an exposure that might cause harm. Secondary interventions aim to reduce the 
disease burden by detecting disease before symptoms manifest, so that treatments 
can more effectively cure the disease or reduce its morbidity. While many studies of 
disease-screening programs are conducted by randomized designs, some have been 
conducted using nonrandomized designs (Weiss,   1994    ). In addition, the efficacy of 
screening programs established by randomized designs is often compared with its 
effectiveness measured by nonrandomized designs (Weiss, 1994), and history of 
screening can be an important confounder of etiologic relations (Weiss,   2003    ). 
Tertiary interventions, or medical interventions, aim to reduce the disease burden by 
curing the disease or by reducing its morbidity. Ideally, the efficacy of medical inter-
ventions is established by randomized study designs. However, such designs are 
sometimes unethical when patients cannot be assigned to a valid comparison group. 
For example, patients cannot be assigned to receive a placebo or to receive no 
therapy when there are accepted medical interventions available. When such a com-
parison group is required, nonrandomized designs are the only alternative. The 
medical literature contains a continuous and vigorous discussion about the advan-
tages and disadvantages of nonrandomized versus randomized controlled trial evi-
dence (Barton,   2000    ; Ioannidis et al.,   2001a    ,   b    ) and about the role of both in 
evidence-based medicine. Randomized controlled trials and nonrandomized studies 
have complementary roles (Sorensen et al.,   2006    ), particularly when external validity, 
feasibility, and ethical concerns are paramount. Furthermore, nonrandomized designs 
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provide a measure of the effectiveness of therapies – for which efficacy has been 
established by randomized designs – in clinical practice settings that involve patients 
with characteristics that differ from the clinical trial subjects (e.g., the elderly or other 
underserved subpopulations). Thus, nonrandomized epidemiologic research contrib-
utes to the knowledge base for disease prevention, early detection, and treatment.  

  The Treatment of Uncertainty in Nonrandomized Research 

 If the objective of epidemiologic research is to obtain a valid, precise, and general-
izable estimate of the effect of an exposure on the occurrence of an outcome (e.g., 
disease), then investigators have a twofold obligation. First, they must design their 
investigations to enhance the precision and validity of the effect estimate that they 
obtain. Second, recognizing that no study is perfect, they must inform stakeholders 
(collaborators, colleagues, and consumers of their research findings) how near the 
precision and validity objectives they believe their estimate of effect might be. 

 To enhance the precision of an effect estimate (i.e., to reduce random error), 
epidemiologists design their studies to gather as much information as possible 
(Rothman et al.,   2008a    ), apportion the information efficiently among the strata of 
variables that affect the outcome (Rothman et al., 2008a), and undertake precision-
enhancing analyses such as pooling (Greenland and Rothman,   2008    ) and regression 
(Greenland,   2008    ). The methods to enhance a study’s validity and the precision of 
its estimate of effect are well-described in epidemiologic textbooks such as  Modern 
Epidemiology  (Rothman et al.,   2008b    ). Even with an efficient design and analysis, 
epidemiologists customarily present a quantitative assessment of the remaining 
random error about an effect estimate. Although there has been considerable 
(Thompson,   1987a    ,   b    ; Poole,   1987    ,   b    ) and continuing (The Editors,   2001    ; Weinberg, 
  2001    ; Gigerenzer,   2004    ) debate about methods of describing random error, a consensus 
has emerged in favor of the frequentist confidence interval (Poole,   2001    ). 

 To enhance the validity of an effect estimate (i.e., to reduce systematic error), 
epidemiologists design their studies to assure comparability of the exposed and unex-
posed groups (Greenland and Robins,   1986    ), reduce differential selection forces 
(Miettinen,   1985    ; Wacholder et al.,   1992    ), and control measurement error by obtaining 
accurate information or forcing the direction of its expected error to be predictable 
(Greenland, 1980; Brenner and Savitz,   1990    ). When the validity might be compro-
mised by confounding after implementation of the design, epidemiologists employ 
analytic techniques such as stratification (Greenland and Rothman, 2008) or regression 
(Greenland, 2008) to improve the validity of the effect estimate. Analytic corrections 
for selection forces or measurement error are seldom seen. Quantitative assessments 
of the remaining systematic error about an effect estimate are even more rare. 

 Thus, the quantitative assessment of the error about an effect estimate usually 
reflects only the residual random error. Much has been written (Poole, 1987a, b, 2001; 
Gigerenzer, 2004; Lang et al.,   1998    ) and many examples proffered (Rothman,   1999    ; 
Lash,   1998    ) about the abuses made of these quantitative assessments of random error. 



Introduction 3

The near complete absence of quantitative assessments of residual systematic error in 
published epidemiologic research has received much less attention. Several reasons 
likely explain this inattention. First, existing custom does not expect a quantitative 
assessment of the systematic error about an effect estimate. For example, the uniform 
requirements for manuscripts submitted to biomedical journals instructs authors to 
“quantify findings and present them with appropriate indicators of measurement error 
or uncertainty (such as confidence intervals),” which measure only residual random 
error. With no demand to drive development and no habit to breed familiarity, few 
methods are available to quantify the systematic error about an effect estimate and few 
epidemiologists are comfortable with the implementation of existing methods. 
However, recent methods papers published in leading epidemiology (Steenland and 
Greenland,   2004    ) and statistics journals (Greenland,   2005    ) have called for routine 
training in bias modeling for epidemiology students, so demand for this training will 
hopefully grow in the near term. Second, the established methods often require pres-
entations of systematic error that are lengthy (Greenland and Lash,   2008    ), so are too 
unwieldy to incorporate into data summarization and inference. By comparison, the 
quantitative assessments of random error require little additional space for presentation 
of an apparently rigorous measurement of residual random error. Finally, the auto-
mated analytic tools often used by epidemiologists provide quantitative assessments of 
residual random error about effect estimates, but contain no such automated method of 
assessing residual systematic error.  

  Objective 

 The objective of this test is to reduce the aforementioned barriers to regular imple-
mentation of quantitative sensitivity analysis. Epidemiologic studies yield effect 
estimates such as the risk ratio, rate ratio, odds ratio, or risk difference; all of which 
compare measurements of the occurrence of an outcome in a group with some com-
mon characteristic (such as an exposure) with the occurrence of the outcome in a sec-
ond group with some other common characteristic (such as the absence of exposure). 
The error accompanying an effect estimate equals the square of its difference from 
the true effect, and conventionally parses into random error (variance) and systematic 
error (bias squared). Under this construct, random error is that which approaches zero 
as the study size increases and systematic error is that which does not. The amount of 
random error in an effect estimate is measured by its precision, which is usually 
quantified by  p -values or confidence intervals that accompany the effect estimate. 
The amount of systematic error in an effect estimate is measured by its validity, which 
is seldom quantified. A quantitative assessment of the systematic error about an effect 
estimate can be made using bias analysis. 

 In this text, we have collected existing methods of quantitative bias analysis, 
explained them, illustrated them with examples, and linked them to tools for imple-
mentation. The second chapter provides a guide to choosing the method most 
appropriate for the problem at hand and for making inference from the method’s 
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results. The software tools automate the analysis in familiar software and provide 
output that reduces the resources required for presentation. Probabilistic bias analysis 
and multiple biases modeling, for example, yield output that is no more compli-
cated to present and interpret than the conventional point estimate and its associated 
confidence interval. 

 While we have compiled a set of methods to address comprehensively the most 
common threats to a study result’s validity (selection bias, information bias, and 
unmeasured confounding), we have not addressed all possible threats to validity or even 
all methods to address even these common threats. For example, we have not addressed 
model misspecification or bias from missing data. We have not addressed empirical 
methods of bias analysis or Bayesian methods of bias analysis, although these methods 
are related to many of the methods we do present. The interested reader can find 
textbooks and journal articles that describe these methods, some of which can be 
implemented by freely available software that can be downloaded from the internet. 

 We have not presented these methods for several reasons. First, this text is 
directed to practicing epidemiologists who are familiar with these threats to validity 
and who are comfortable with spreadsheets and relatively fundamental SAS ®  
software programming. The alternative methods often require more sophisticated 
computer programming than required to implement the methods we present. Second, 
the empirical methods often require assumptions about the accuracy of the data 
source used to inform the bias analysis, which we believe can seldom be supported. 
We prefer to recognize that the validation data are often themselves measured with 
error, and that this error should be incorporated into the bias analysis. The methods we 
present more readily accommodate this preference. Third, the Bayesian methods are 
similar to the probabilistic bias analysis methods and probabilistic multiple bias 
analysis methods we present toward the end of this text. The primary difference is that 
the Bayesian methods require specification of a prior for the parameter to be esti-
mated (i.e., ordinarily the association between an exposure and an outcome). While we 
recognize and even agree with this Bayesian approach to data analysis and inference, 
particularly compared with the inherent frequentist prior that any association is equally 
likely, this text is not the forum to continue that debate.   

  An Alternative  

 As stated earlier, epidemiologic research is an exercise in measurement. Its objective 
is to obtain a valid and precise estimate of either the occurrence of disease in a 
population or the effect of an exposure on the occurrence of disease. Conventionally, 
epidemiologists present their measurements in three parts: a point estimate (e.g., 
a risk ratio), a frequentist statistical assessment of the uncertainty (e.g., a confidence 
interval, but also sometimes a  p -value), and a qualitative description of the threats 
to the study’s validity. 

 Without randomization of study subjects to exposure groups, point estimates, 
confidence intervals, and  p -values lack their correct frequentist interpretations 
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(Greenland,   1990    ). Randomization and a hypothesis about the expected allocation 
of outcomes – such as the null hypothesis – allow one to assign probabilities to the 
possible outcomes. One can then compare the observed association, or a test statis-
tic related to it, with the probability distribution to estimate the probability of the 
observed association, or associations more extreme, under the initial hypothesis. 
This comparison provides an important aid to causal inference (Greenland, 1990) 
because it provides a probability that the outcome distribution is attributable to 
chance as opposed to the effects of exposure. The comparison is therefore at the 
root of frequentist statistical methods and inferences from them. When the expo-
sure is not assigned by randomization, as is the case for nonrandomized epidemio-
logic research (and for randomized trials with withdrawals or classification errors), 
the comparison provides a probability that the outcome distribution is attributable 
to chance as opposed to the combined effects of exposure and systematic errors. 
Causal inference therefore requires an educated guess about the strength of the 
systematic errors compared with the strength of the exposure effects. 

 These educated guesses can be accomplished quantitatively by likelihood methods 
(Espeland and Hui,   1987    ), Bayesian methods (Gustafson,   2003    ), regression calibration 
(Spiegelman et al.,   2000    ), missing data methods (Little and Rubin,   2002    ; Robins 
et al.,   1994    ), or Monte Carlo simulation (Lash and Fink,   2003b    ; Phillips,   2003    ; 
Greenland,   2004    ) [ see  Greenland (2005) for a review and comparison of methods]. 
Some of these methods will be described in later chapters. The conventional 
approach, however, is to make the guess qualitatively by describing the study’s 
limitations. An assessment of the strength of systematic errors, compared with 
the strength of exposure effects, therefore becomes an exercise in reasoning 
under uncertainty. Human ability to reason under uncertainty has been well-
studied and shown to be susceptible to systematic bias resulting in predictable 
mistakes. A brief review of this literature, focused on situations analogous to epi-
demiologic inference, suggests that the qualitative approach will frequently fail to 
safeguard against tendencies to favor exposure effects over systematic errors as an 
explanation for observed associations. The aforementioned quantitative methods 
have the potential to safeguard against these failures. 

  Heuristics 

  The Dual-Process Model of Cognition 

 A substantial literature from the field of cognitive science has demonstrated that 
humans are frequently biased in their judgments about probabilities and at choosing 
between alternative explanations for observations (Piattelli-Palmarini,   1994b    ; Kahneman 
et al.,   1982    ; Gilovich et al.,   2002    ), such as epidemiologic associations. Some cognitive 
scientists postulate that the mind uses dual processes to solve problems that require 
such evaluations or choices (Kahneman and Frederick,   2002    ; Sloman,   2002    ). 
The first system, labeled the “Associative System,” uses patterns to draw inferences. 
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We can think of this system as intuition, although any pejorative connotation of that 
label should not be applied to the associative system. The second system, labeled the 
“Rule-Based System,” applies a logical structure to a set of variables to draw infer-
ences. We can think of this system as reason, although the label alone should not 
connote that this system is superior. The Associative System is not necessarily less 
capable than the Rule-Based System; in fact, skills can migrate from the Rule-Based 
System to the Associative System with experience. The Associative System is 
in constant action, while the Rule-Based System is constantly monitoring the 
Associative System to intervene when necessary. This paradigm ought to be familiar; 
we have all said at some time “Wait a minute – let me think,” by which we do not mean 
that we have not yet thought, but that we are not satisfied with the solution our 
Associative System’s thought has delivered. After the chance to implement the 
Rule-Based System, we might say “On second thought, I have changed my mind,” 
by which we mean that the Rule-Based System has overwritten the solution initially 
delivered by the Associative System. 

 The process used by the Associative System to reach a solution relies on heuristics. 
A heuristic reduces the complex problem of assessing probabilities or predicting 
uncertain values to simpler judgmental operations (Tversky and Kahneman, 
  1982b    ). An example of a heuristic often encountered in epidemiologic research is 
the notion that nondifferential misclassification biases an association toward the 
null. Heuristics often serve us well because their solutions are correlated with the 
truth, but they can sometimes lead to systematic and severe errors (Tversky and 
Kahneman, 1982b). Nondifferential and nondependent misclassification of a 
dichotomous exposure leads to the expectation that an association will be biased 
toward the null, but many exceptions exist. For example, any particular association 
influenced by nondifferential misclassification may not be biased toward the null 
(Jurek et al.,   2005    ), dependent errors in classification can substantially bias an 
association away from the null – even if classification errors are nondifferential 
(Kristensen,   1992    ), nondifferential misclassification of disease may not lead to any 
bias in some circumstances (Brenner and Savitz, 1990), and a true association may 
not provide stronger evidence against the null hypothesis than the observed associa-
tion based on the misclassified data – even if the observed association is biased 
toward the null (Gustafson and Greenland,   2006    ). Application of the misclassifica-
tion heuristic without deliberation can lead to errors in an estimate of the strength 
and direction of the bias (Lash and Fink,   2003a    ), as is true for more general cogni-
tive heuristics (Tversky and Kahneman, 1982b). 

 Cognitive scientists have identified several classes of general heuristics, three of 
which are described below because they may be most relevant to causal inference 
based on nonrandomized epidemiologic results. These heuristics have the follow-
ing characteristics in common (Piattelli-Palmarini,   1994a    ). First, the errors in judg-
ments attributable to the heuristic are systematic and directional; that is, they 
always act in the same way and in the same direction. Second, they are general and 
nontransferable; that is, all humans are susceptible to the errors and knowledge of 
how they act does not immunize us against them. Third, they are independent of 
intelligence and education; that is, experts make the same mistakes as novices, 
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particularly if the problem is made a little more difficult or moved a small distance 
outside of their expertise. While studies that have elicited an understanding of these 
heuristics have most often been conducted in settings that are not very analogous to 
causal inference using epidemiologic data, one such study has been conducted and its 
results corresponded to results elicited in the cognitive science setting (Holman et al., 
  2001    ). In addition, these heuristics have been shown to affect evidence-based forecasts 
of medical doctors, meteorologists, attorneys, financiers, and sports prognosticators 
(Koehler et al.,   2002    ). It seems unlikely that epidemiologists would be immune.  

  Anchoring and Adjustment 

 The first heuristic relevant to causal inference based on nonrandomized epidemio-
logic results is called “anchoring and adjustment” (Tversky and Kahneman,   1982b    ). 
When asked to estimate an unknown but familiar quantity, respondents use a heuristic 
strategy to select (or receive) an anchor, and then adjust outward from that anchor 
in the direction of the expected true value. Adjustments are typically insufficient. 
For example, one might be asked to give the year in which George Washington was 
elected as the first president of the USA (Epley and Gilovich,   2002    ). Most respondents 
choose the anchor to be 1776, the year that the USA declared independence. 
Respondents adjust upward to later years, because they know the US Constitution 
was not ratified in the same year. The average response equals 1779, and the correct 
value equals 1788. Why, on average, is the upward adjustment insufficient? The 
predictably insufficient adjustment may arise because respondents adjust outward 
from the anchor until their adjusted estimate enters a range they deem plausible. The 
true value, more often, lies toward the center of the plausible range. When the anchor 
is below the true value, as in the year that Washington was first elected, the estimate 
is predictably lower than the true value. Conversely, when the anchor is above the 
true value, the estimate is predictably higher than the true value. For example, one 
might be asked to give the temperature at which vodka freezes (Epley and Gilovich, 
2002). Most respondents choose the anchor to be 32°F, the temperature at which 
water freezes. Respondents adjust downward to lower temperatures, because they 
know alcohol freezes at a lower temperature than water. The average response equals 
1.75°F, and the correct value equals −20°F. Importantly, the anchoring and adjust-
ment heuristic operates in the same manner regardless of whether the anchor is self-
 generated or provided by an external source, so long as the respondent is aware of 
the anchor and it is on the same scale as the target (Chapman and Johnson,   2002    ). 

 How might the anchoring and adjustment heuristic affect inference from nonran-
domized epidemiologic results? Consider the point estimate associating an exposure 
with a disease, derived from a study’s results, to be an anchor. Further consider that 
stakeholders (the investigator, collaborators, readers, and policymakers) may be 
aware of the direction of an expected bias (e.g., toward the null). Can the stakeholders 
be expected to adjust the point estimate sufficiently to account for the bias? An 
understanding of the anchoring and adjustment heuristic suggests that the adjust-
ment will be predictably insufficient. Stakeholders should be expected to adjust the 
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association to account for the bias only so far as is plausible, which adjustment will, 
on average, be insufficient.  

  Overconfidence 

 The second bias relevant to causal inference based on nonrandomized epidemio-
logic results is called “overconfidence.” When asked to estimate an unknown but 
familiar quantity, respondents can be trained to provide a median estimate (the 
estimate about which they feel it is as likely that the true value is higher as it is that 
the true value is lower), as well as an interquartile range. The interquartile range is 
defined by the respondent’s estimate of the 25th percentile (the estimate about 
which they feel it is 75% likely that the true value is higher and 25% likely that the 
true value is lower) and the respondent’s estimate of the 75th percentile. For a well-
calibrated respondent, it should be 50% likely that the true value would fall into the 
interquartile range. For example, one might be asked to give the average annual 
temperature in Boston, Massachusetts, USA. A respondent might provide a median 
estimate of 50°F, a 25th percentile estimate of 40°F, and a 75th percentile estimate 
of 60°F. The true average annual temperature in Boston equals 51.3°F. Were one 
scoring this respondent’s answers, she would receive one point because her inter-
quartile range contains the true value. A second respondent might provide a median 
estimate of 45°F, a 25th percentile estimate of 40°F, and a 75th percentile estimate 
of 50°F. Were one scoring this respondent’s answers, he would receive no point 
because his interquartile range does not contain the true value. Note that the differ-
ence in respondents’ scores derives more from the narrow width of the second 
respondent’s interquartile range than from the distance of the median estimate from 
the truth. Were the second respondent’s interquartile range as wide as the first 
respondent’s (and still centered on the median estimate), then the second respond-
ent would also have received a positive score. Setting the uncertainty range too 
narrowly is the hallmark of the overconfidence heuristic. 

 In one experiment, a cognitive scientist asked 100 students to answer ten questions 
like the above question about the average temperature in Boston (Alpert and Raiffa, 
  1982    ). For a well-calibrated student, one would expect the true value to lie in the 
interquartile range for five of the ten questions. Using the binomial distribution to set 
expectations, one would expect 5 or 6 of the 100 students to give answers such that 
8, 9, or 10 of the true values fell into their interquartile ranges. None of the students 
had scores of 8, 9, or 10. One would also expect 5 or 6 of the 100 students to give 
answers such that 2, 1, or 0 of the true values fell into their interquartile ranges. 
Thirty-five of the students had scores of 2, 1, or 0. How would the distribution skew 
so strongly toward low scores? The skew toward low scores arises because respondents 
provide too narrow a range of uncertainty, so the true value lies outside the interquartile 
range much more often than it lies inside it. The overconfidence heuristic acts in the 
same way when respondents are asked to give extreme percentiles such as the 1st and 
99th percentile (Alpert and Raiffa, 1982), is most pronounced when tasks are most 
difficult (Lichtenstein et al.,   1982    ), has been observed to act in many different populations 


