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Preface

What follows thus depends upon
a combination of the methods of
the formal calculus of variations

and of Lie's theory of groups.

Emmy Noether, 1918

This book is about a fundamental text containing two theorems and their converses
which established the relation between symmetries and conservation laws for varia-
tional problems. These theorems, whose importance remained obscure for decades,
eventually acquired a considerable influence on the development of modern theo-
retical physics, and their history is related to numerous questions in physics, in me-
chanics and in mathematics. This text is the article “Invariante Variationsprobleme”
by Emmy Noether, which was published in 1918 in the Göttinger Nachrichten, and
of which we present an English translation in Part I of this book.

The translation of Noether’s article is followed, in Part II, by a detailed analysis
of its inception, as well as an account of its reception in the scientific community. As
the background to Noether’s research, we sketch some developments in the theory
of invariants in the nineteeth century which culminated in the definition and study
of differential invariants, we discuss several works in mechanics dating from the
beginning of the twentieth century in which Sophus Lie’s infinitesimal methods in
the theory of groups began to be applied, and we show that the immediate motiva-
tion for her work was related to questions arising from Einstein’s general theory of
relativity of 1915. We then summarize the contents of Noether’s article in modern
language. In the subsequent chapters, we review the way in which Noether’s con-
temporaries, the mathematicians Felix Klein, David Hilbert and Hermann Weyl, and
the physicists Einstein and Wolfgang Pauli, acknowledged or failed to acknowledge
her contribution; then we outline the quite different diffusions of her first and second
theorems. Finally, we outline the genuine generalizations of Noether’s results that
began to appear after 1970, in the field of the calculus of variations and in the theory
of integrable systems.

The present edition is based on the second edition of Les Théorèmes de Noether.
Invariance et lois de conservation au XXe siècle (Palaiseau: Éditions de l’École
Polytechnique, 2006). For this English edition, the French text has been consider-
ably revised and augmented, with much new information and additional references.

Paris, July 2010
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Part I
“Invariant Variational Problems”

by Emmy Noether
Translation of “Invariante Variationsprobleme” (1918)



First page of “Invariante Variationsprobleme” (reproduced with permission)
Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-physikalische Klasse, 1918, pp. 235–257.



INVARIANT VARIATIONAL PROBLEMS

(For F. Klein, on the occasion of the fiftieth anniversary of his doctorate)

by Emmy Noether in Göttingen

Presented by F. Klein at the session of 26 July 1918∗

We consider variational problems which are invariantA under a continuous group (in
the sense of Lie); the consequences that are implied for the associated differential
equations find their most general expression in the theorems formulated in §1, which
are proven in the subsequent sections. For those differential equations that arise from
variational problems, the statements that can be formulated are much more precise
than for the arbitrary differential equations that are invariant under a group, which
are the subject of Lie’s researches. What follows thus depends upon a combination
of the methods of the formal calculus of variations and of Lie’s theory of groups. For
certain groups and variational problems this combination is not new; I shall mention
Hamel and Herglotz for certain finite groups, Lorentz and his students (for example,
Fokker), Weyl and Klein for certain infinite groups.1 In particular, Klein’s second
note and the following developments were mutually influential, and for this reason
I take the liberty of referring to the final remarks in Klein’s note.

1 Preliminary Remarks and the Formulation of the Theorems

All the functions that will be considered here will be assumed to be analytic or
at least continuous and continuously differentiable a finite number of times, and
single-valued within the domain that is being considered.

By the term “transformation group” one usually refers to a system of transforma-
tions such that for each transformation there exists an inverse which is an element of
the system, and such that the composition of any two transformations of the system
is again an element of the system. The group is called a finite continuous [group]
Gρ when its transformations can be expressed in a general form which depends an-
alytically on ρ essential parameters ε (i.e., the ρ parameters cannot be represented
by ρ functions of a smaller number of parameters). In the same way, one speaks of
an infinite continuous group G∞ρ for a group whose most general transformations
depend on ρ essential arbitrary functions p(x) and their derivatives in a way that is

∗ The definitive version of the manuscript was prepared only at the end of September.
A gestatten, to permit, in the sense of admitting [an invariance group] has been translated as “being
invariant under [the action of] a group” (Translator’s note).
1 Hamel, Math. Ann., vol. 59, and Zeitschrift f. Math. u. Phys., vol. 50. Herglotz, Ann. d. Phys.
(4) vol. 36, in particular §9, p. 511. Fokker, Verslag d. Amsterdamer Akad., 27/1 1917. For a more
complete bibliography, see Klein’s second note, Göttinger Nachrichten, 19 July 1918.

In a paper by Kneser that has just appeared (Math. Zeitschrift, vol. 2), the determination of
invariants is dealt with by a similar method.

3
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4 Invariant Variational Problems

analytical or at least continuous and continuously differentiable a finite number of
times. An intermediate case is the one in which the groups depend on an infinite
number of parameters but not on arbitrary functions. Finally, one calls a group that
depends not only on parameters but also on arbitrary functions a mixed group.2

Let x1, . . . ,xn be independent variables, and let u1(x), . . . ,uµ(x) be functions of
these variables. If one subjects the x and the u to the transformations of a group, then
one should recover, among all the transformed quantities, precisely n independent
variables, y1, . . . ,yn, by the assumption of invertibility of the transformations; let us
call the remaining transformed variables that depend on them v1(y), . . . ,vµ(y). In

the transformations, the derivatives of u with respect to x, that is to say
∂u
∂x

,
∂ 2u
∂x2 , · · ·,

may also occur.3 A function is said to be an invariant of the group if there is a
relation

P
(

x,u,
∂u
∂x

,
∂ 2u
∂x2 , · · ·

)
= P

(
y,v,

∂v

∂y
,

∂ 2
v

∂y2 , · · ·

)
.

In particular, an integral I is an invariant of the group if it satisfies the relation

I =
∫

· · ·
∫

f
(

x,u,
∂u
∂x

,
∂ 2u
∂x2 , · · ·

)
dx(1)

=
∫

· · ·
∫

f
(

y,v,
∂v

∂y
,

∂ 2
v

∂y2 , · · ·

)
dy 4

integrated over an arbitrary real domain in x, and over the corresponding domain
in y.5

On the other hand, I calculate for an arbitrary integral I, which is not necessarily
invariant, the first variation δ I, and I transform it, according to the rules of the

2 Lie defines, in the “Grundlagen für die Theorie der unendlichen kontinuierlichen Transformati-
onsgruppen” [“Basic Principles of the Theory of Infinite Continuous Transformation Groups”],
Ber. d. K. Sächs. Ges. der Wissensch. 1891 (to be cited henceforth as “Grundlagen”), the infi-
nite continuous groups as transformation groups whose elements are given by the most general
solutions of a system of partial differential equations provided that these solutions do not depend
exclusively on a finite number of parameters. Thus one obtains one of the above-mentioned cases
distinct from that of a finite group, while, on the other hand, the limiting case of an infinite number
of parameters does not necessarily satisfy a system of differential equations.

3 I omit the indices here, and in the summations as well whenever it is possible, and I write
∂ 2u
∂x2

for
∂ 2uα

∂xβ ∂xγ
, etc.

4 I write dx, dy for dx1 . . .dxn, dy1 . . .dyn for short.
5 All the arguments x, u, ε , p(x) that occur in the transformations must be assumed to be real, while
the coefficients may be complex. Since the final results consist of identities among the x, the u, the
parameters and the arbitrary functions, these identities are valid as well for the complex domain,
once one assumes that all the functions that occur are analytic. In any event, a major part of the
results can be proven without integration, so a restriction to the real domain is not necessary for
the proof. However, the considerations at the end of §2 and at the beginning of §5 do not seem to
be valid without integration.



1 Preliminary Remarks and the Formulation of the Theorems 5

caculus of variations, by integration by parts. Once one assumes that δu and all the
derivatives that occur vanish on the boundary, but remain arbitrary elsewhere, one
obtains the well-known result,

(2) δ I =

∫
· · ·

∫
δ f dx =

∫
· · ·

∫ (
∑ψi

(
x,u,

∂u
∂x

, · · ·
)

δui

)
dx,

where ψ represents the Lagrangian expressions, that is to say, the left-hand side of
the Lagrangian equations of the associated variational problem δ I = 0. To that inte-
gral relation there corresponds an identity without an integral in δu and its deriva-
tives that one obtains by adding the boundary terms. As an integration by parts
shows, these boundary terms are integrals of divergences, that is to say, expressions

Div A =
∂A1

∂x1
+ · · ·+

∂An
∂xn

,

where A is linear in δu and its derivatives. From that it follows that

(3) ∑ψiδui = δ f +Div A.

In particular, if f contains only the first derivatives of u, then, in the case of a simple
integral, identity (3) is identical to Heun’s “central Lagrangian equation,”

(4) ∑ψiδui = δ f −
d
dx

(
∑ ∂ f

∂u′i
δui

)
,

(
u′i =

dui
dx

)
,

while for an n-fold integral, (3) becomes

(5) ∑ψiδui = δ f −
∂

∂x1

(

∑ ∂ f
∂ ∂ui

∂x1

δui

)
−·· ·−

∂
∂xn

(

∑ ∂ f
∂ ∂ui

∂xn

δui

)
.

For the simple integral and κ derivatives of the u, (3) yields

(6) ∑ψiδui = δ f−

− d
dx

{
∑

((
1
1

)
∂ f

∂u(1)
i

δui +

(
2
1

)
∂ f

∂u(2)
i

δu(1)
i +· · ·+

(
κ
1

)
∂ f

∂u(κ)
i

δu(κ−1)
i

)}
+

+ d2

dx2

{
∑

((
2
2

)
∂ f

∂u(2)
i

δui +

(
3
2

)
∂ f

∂u(3)
i

δu(1)
i + · · ·+

(
κ
2

)
∂ f

∂u(κ)
i

δu(κ−2)
i

)}
+

+ · · ·+(−1)κ dκ

dxκ

{
∑

(
κ
κ

)
∂ f

∂u(κ)
i

δui

}
,

and there is a corresponding identity for an n-fold integral; in particular, A contains
δu and its derivatives up to order κ − 1. That the Lagrangian expressions ψi are
actually defined by (4), (5) and (6) is a result of the fact that, by the combinations
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of the right-hand sides, all the higher derivatives of the δu are eliminated, while, on
the other hand, relation (2), which one clearly obtains by an integration by parts, is
satisfied.

In what follows we shall examine the following two theorems:
I. If the integral I is invariant under a [group] Gρ , then there are ρ linearly indepen-
dent combinations among the Lagrangian expressions which become divergences—
and conversely, that implies the invariance of I under a [group] Gρ . The theorem
remains valid in the limiting case of an infinite number of parameters.
II. If the integral I is invariant under a [group] G∞ρ depending on arbitrary func-
tions and their derivatives up to order σ , then there are ρ identities among the La-
grangian expressions and their derivatives up to order σ . Here as well the converse
is valid.6

For mixed groups, the statements of these theorems remain valid; thus one ob-
tains identitiesB as well as divergence relations independent of them.

If we pass from these identity relations to the associated variational problem,
that is to say, if we set ψ = 0,7 then Theorem I states in the one-dimensional case—
where the divergence coincides with a total differential—the existence of ρ first
integrals among which, however, there may still be nonlinear identities;8 in higher
dimensions one obtains the divergence equations that, recently, have often been re-
ferred to as “conservation laws.” Theorem II states that ρ Lagrangian equations are
a consequence of the others.C

The simplest example for Theorem II—without its converse—is Weierstrass’s
parametric representation; here, as is well known, the integral is invariant in the case
of homogeneity of the first order when one replaces the independent variable x by
an arbitrary function of x which leaves u unchanged (y = p(x); vi(y) = ui(x)). Thus
an arbitrary function occurs though none of its derivatives occurs, and to this cor-
responds the well-known linear relation among the Lagrangian expressions them-

selves, ∑ψi
dui
dx

= 0. Another example is offered by the physicists’ “general theory

of relativity”; in this case the group is the group of all the transformations of the
x : yi = pi(x), while the u (called gµν and q) are thus subjected to the transfor-
mations induced on the coefficients of a quadratic and of a linear differential form,
respectively transformations which contain the first derivatives of the arbitrary func-
tions p(x). To that there correspond the n known identities among the Lagrangian
expressions and their first derivatives.9

6 For some trivial exceptions, see §2, note 13.
B Abhängigkeit, dependence, has been translated by “identity.” Identität has been translated by
“identity” or “identity relation.” Both Relation and Beziehung have been translated by “relation”
and Verbindung by “combination” (Translator’s note).
7 More generally, one can also set ψi = Ti; see §3, note 15.
8 See the end of §3.
C I.e., among the Lagrangian equations, ρ equations are consequences of the remaining ones
(Translator’s note).
9 For this, see Klein’s presentation.
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If, in particular, one considers a group such that there is no derivative of the u(x)
in the transformations, and that furthermore the transformed independent quantities
depend only on the x and not on the u, then (as is proven in §5) from the invariance
of I, the relative invariance of ∑ψiδui

10 follows, and also that of the divergences
that appear in Theorem I, once the parameters are subjected to appropriate transfor-
mations. From that it follows as well that the first integrals mentioned above are also
invariant under the group. For Theorem II, the relative invariance of the left-hand
sides of the identities, expressed in terms of the arbitrary functions, follows, and
consequently another function whose divergence vanishes identically and which is
invariant under the group—which, in the physicists’ theory of relativity, establishes
the link between identities and lawD of energy.11 Theorem II ultimately yields, in
terms of group theory, the proof of a related assertion of Hilbert concerning the lack
of a proper law of energy in “general relativity.” As a result of these additional re-
marks, Theorem I includes all the known theorems in mechanics, etc., concerning
first integrals, while Theorem II can be described as the maximal generalization in
group theory of “general relativity.”

2 Divergence Relations and Identities

Let G be a continuous group—finite or infinite; one can always assume that the
identity transformation corresponds to the vanishing of the parameters ε , or to the
vanishing of the arbitrary functions p(x),12 respectively. The most general transfor-
mation is then of the form

yi = Ai

(
x,u,

∂u
∂x

, · · ·

)
= xi +∆xi + · · ·

vi(y) = Bi

(
x,u,

∂u
∂x

, · · ·

)
= ui +∆ui + · · · ,

where ∆xi, ∆ui are the terms of lowest degree in ε , or in p(x) and its derivatives,
respectively, and we shall assume that in fact they are linear. As we shall show
further on, this does not restrict the generality.

10 This is to say that ∑ψiδui is invariant under the transformation up to a multiplicative factor.
D Energiesatz has been translated literally as “law of energy,” in the sense of “law of conservation of
energy,” just as, infra, in §6, eigentlich Energiesatz, has been translated as “proper law of energy,”
in the sense of “proper law of conservation of energy” (Translator’s note).
11 See Klein’s second note.
12 Cf. Lie, “Grundlagen,” p. 331. When dealing with arbitrary functions, it is necessary to replace

the special values aσ of the parameters by fixed functions pσ ,
∂ pσ

∂x
, · · · ; and correspondingly the

values aσ + ε by pσ + p(x),
∂ pσ

∂x
+

∂ p
∂x

, etc.



8 Invariant Variational Problems

Now let the integral I be invariant under G; then relation (1) is satisfied. In par-
ticular, I is also invariant under the infinitesimal transformations contained in G,

yi = xi +∆xi; vi(y) = ui +∆ui,

and therefore relation (1) becomes

0 = ∆ I =
∫

· · ·
∫

f
(

y,v(y),
∂v

∂y
, · · ·

)
dy(7)

−
∫

· · ·
∫

f
(

x,u(x),
∂u
∂x

, · · ·

)
dx,

where the first integral is defined on a domain in x+∆x corresponding to the domain
in x. But this integration can be replaced by an integration on the domain in x by
means of the transformation

(8)
∫

· · ·
∫

f
(

y,v(y),
∂v

∂y
, · · ·

)
dy

=
∫

· · ·
∫

f
(

x,v(x),
∂v

∂x
, · · ·

)
dx+

∫
· · ·

∫
Div( f . ∆x) dx,

which is valid for infinitesimal ∆x, If, instead of the infinitesimal transformation
∆u, one introduces the variation

(9) δ̄ui = vi(x)−ui(x) = ∆ui −∑ ∂ui
∂xλ

∆xλ ,

(7) and (8) thus become

(10) 0 =

∫
· · ·

∫
{δ̄ f +Div( f . ∆x)}dx.

The right-hand side is the classical formula for the simultaneous variation of
the dependent and independent variables. Since relation (10) is satisfied by integra-
tion on an arbitrary domain, the integrand must vanish identically; Lie’s differential
equations for the invariance of I thus become the relation

(11) δ̄ f +Div( f . ∆x) = 0.

If, using (3), one expresses δ̄ f here in terms of the Lagrangian expressions, one
obtains

(12) ∑ψiδ̄ui = Div B (B = A− f . ∆x),


