
Edited by Gerd-Joachim Krauss and Dietrich H. Nies

Ecological Biochemistry

Environmental and Interspecies Interactions

Table of Contents

Cover
Related Titles
<u>Title Page</u>
<u>Copyright</u>
<u>Dedication</u>
<u>List of Contributors</u>
Foreword
<u>Preface</u>
<u>Companion Website</u>
s1: Basic Biochemical Roots
s1.1 Chemistry and Physics of Life
s01.2 Energy and Transport
<u>s1.3 Basic Biochemistry</u>
References
<u>Further Reading</u>
Part I: Basics of Life
<u>Chapter 1: Basic Biochemical Roots</u>
1.1 Chemistry and Physics of Life
1.2 Energy and Transport
1.3 Basic Biochemistry
Chapter 2: Specialized Plant Metabolites: Diversity
and Biosynthesis
2.1 Metabolite Diversity
2.2 Major Classes of Plant Specialized Compounds
2.3 Sites of Biosynthesis and Accumulation
2.4 Evolution of Specialized Pathway Genes

<u>References</u>
<u>Further Reading</u>
<u>Chapter 3: Evolution of Secondary Metabolism in Plants</u>
3.1 Origins of Plant Secondary Metabolism
3.2 Evolutionary Alternatives
3.3 Endophytes, Symbiotic, and Ectomycorrhizal Fungi
References
Part II: Ecological Signatures of Life
<u>Chapter 4: Systematics of Life, Its Early Evolution, and Ecological Diversity</u>
4.1 Cellular Life Forms and Subcellular Parasites
4.2 Superkingdom Archaea
4.3 Superkingdom Bacteria
4.4 Superkingdom Eukaryota
<u>Acknowledgment</u>
<u>References</u>
<u>Further Reading</u>
Chapter 5: Communities and Ecosystem Functioning
5.1 Competition for, and Distribution of, Limiting Resources as a Means of Ecosystem Functioning
5.2 Joint Exploitation of Limiting Resources by Symbioses
5.3 Avoidance of Competition
5.4 Facilitation Mechanisms in Communities and Ecosystem Functioning
References
<u>Further Reading</u>
Chapter 6: Food Chains and Nutrient Cycles

6.1 Basic Concepts
6.2 Aquatic Systems
6.3 Terrestrial Systems
<u>References</u>
<u>Further Reading</u>
Part III: Biochemical Response to Physiochemical Stress Abiotic Stress)
<u>Chapter 7: Information Processing and Survival</u> <u>Strategies</u>
7.1 The Stress Concept - Plants and Their Environment
7.2 Plant Signal Transduction and the Induction of Stress Responses
7.3 Phytohormones
7.4 Other Signaling Molecules
7.5 Signal Transduction by Protein
<u>Phosphorylation</u>
7.6 The Calcium Signaling Network
7.7 Stress-Induced Modulation of Gene Expression by microRNAs
References
<u>Further Reading</u>
<u>Chapter 8: Oxygen</u>
8.1 Chemical Nature of Oxygen and Reactive Oxygen Species
8.2 Oxygen Metabolism
8.3 Oxygen Sensing
8.4 Antioxidant Defense
8.5 Reactive Oxygen Species in Abiotic Stresses
8.6 Reactive Oxygen Species in Biotic Interactions

11.2. Carnivorous Plants and Fungi
<u>References</u>
<u>Further Reading</u>
Chapter 12: Excess of Metals
12.1 Properties of Transition Metals
12.2 Metal Transport through Cell Membranes
12.3 Biochemistry of the Minor Biometals: Essential, Desired, but Also Toxic
12.4 Biochemistry of Chemical Elements Without Known Biological Functions
12.5 Metal-Binding Peptides and Proteins Involved in Transition Metal Homeostasis
12.6 Interaction of Plants and Fungi with Metals
<u>References</u>
<u>Further Reading</u>
Chapter 13: Xenobiotics from Human Impacts
13.1 Xenobiotics: from Emission to Cellular <u>Uptake</u>
13.2 Adverse Effects of Xenobiotics: from Cells to
Ecosystems
13.3 Organismal Responses: Biochemical Elimination of Xenobiotics
<u>References</u>
<u>Further Reading</u>
Part IV: Organismal Interactions (Biotic Stress)
Chapter 14: The Biofilm Mode of Life
14.1 What are Biofilms?
14.2 Environmental Roles of Biofilms
14.3 Life Cycle of Biofilms
14.4 Investigation of Biofilms

14.5 The Matrix: Extracellular Polymeric Substances
14.6 Communication in Biofilms
14.7 Enhanced Resistance of Biofilm Organisms
14.8 Emergent Properties of the Biofilm Mode of
<u>Life</u>
<u>References</u>
<u>Further Reading</u>
Chapter 15: Rhizosphere Interactions
15.1 Bacterial Communities in the Rhizosphere
15.2 Fungi of the Rhizosphere
15.3 Plant-Plant Interactions
<u>References</u>
<u>Further Reading</u>
Chapter 16: Plant-Animal Dialogues
16.1 The Flower Pollinator System
16.2 Ant-Plant-Fungus Mutualism, a Three-Way Interaction
16.3 Phenolics in the Interaction between Plant and Animals
16.4 Alkaloids in the Interaction between Plants and Animals
16.5 Terpenes in Plant Defense
<u>References</u>
<u>Further Reading</u>
Part V: The Methodological Platform
<u>Chapter 17: Sensing of Pollutant Effects and Bioremediation</u>
17.1 Pollutant Effect and Approaches to Characterize Exposure

17.2 Ecological Restoration and Bioremediation
References
<u>Further Reading</u>
Chapter 18: The -Omics Tool Box
18.1 Genomics
18.2 Transcriptomics
18.3 Proteomics
18.4 Metabolomics
18.5 Metallomics
<u>References</u>
<u>Further Reading</u>
Chapter 19: Microscope Techniques and Single Cell
<u>Analysis</u>
19.1 Visualization Principles
19.2 Preparation of Biological Materials
19.3 Detection Methods - from Macromolecules to
<u>Ions</u>
19.4 Single Cell Technologies
<u>References</u>
<u>Further Reading</u>
<u>Glossary</u>
<u>Index</u>
<u>End User License Agreement</u>

List of Illustrations

Figure 1.1

Figure 1.2

Figure 1.3

- Figure 1.4
- Figure 1.5
- Figure 1.13
- Figure 2.1
- Figure 2.2
- Figure 2.3
- Figure 2.4
- Figure 2.5
- Figure 2.6
- Figure 2.7
- Figure 2.8
- Figure 2.10
- Figure 2.9
- Figure 2.11
- Figure 2.12
- Figure 2.13
- Figure 2.14
- Figure 2.15
- Figure 2.16
- Figure 3.1
- Figure 3.2
- Figure 3.3
- Figure 3.4
- Figure 3.5
- Figure 3.6

- Figure 3.7
- Figure 3.8
- Figure 4.1
- Figure 4.2
- Figure 4.3
- Figure 4.4
- Figure 4.5
- Figure 4.6
- Figure 4.7
- Figure 4.8
- Figure 4.9
- Figure 4.10
- Figure 4.11
- Figure 4.12
- Figure 4.13
- <u>Figure 4.14</u>
- **Figure 4.15**
- **Figure 4.16**
- **Figure 4.17**
- Figure 5.1
- Figure 5.2
- Figure 5.3
- Figure 5.4
- Figure 5.5
- Figure 5.6

- Figure 5.7
- Figure 5.8
- Figure 5.9
- Figure 5.10
- Figure 5.11
- Figure 5.12
- Figure 6.1
- Figure 6.2
- Figure 6.3
- Figure 6.4
- Figure 6.5
- Figure 6.6
- Figure 6.7
- Figure 6.8
- Figure 6.9
- Figure 6.10
- Figure 6.11
- Figure 6.12
- Figure 6.13
- Figure 6.14
- Figure 6.15
- Figure 6.16
- Figure 6.17
- Figure 6.18
- **Figure 6.19**

- Figure 6.20
- Figure 6.21
- Figure 6.22
- Figure 6.23
- Figure 7.1
- Figure 7.2
- Figure 7.3
- Figure 7.4
- Figure 7.5
- Figure 7.6
- Figure 7.7
- Figure 7.8
- Figure 7.9
- Figure 7.10
- Figure 7.11
- Figure 7.12
- Figure 7.13
- Figure 7.14
- Figure 7.15
- <u>Figure 7.16</u>
- **Figure 7.17**
- <u>Figure 7.18</u>
- **Figure 7.19**
- Figure 7.20
- Figure 7.21

- Figure 7.22
- Figure 7.23
- Figure 7.24
- Figure 7.25
- Figure 7.26
- Figure 7.27
- Figure 7.28
- Figure 8.1
- Figure 8.2
- Figure 8.3
- Figure 8.4
- Figure 8.5
- Figure 8.6
- Figure 8.7
- Figure 8.8
- Figure 8.9
- Figure 8.10
- Figure 8.11
- **Figure 8.12**
- Figure 8.13
- <u>Figure 8.14</u>
- Figure 9.1
- Figure 9.2
- Figure 9.3
- Figure 9.4

- Figure 9.5
- Figure 9.6
- Figure 9.7
- Figure 9.8
- Figure 9.9
- Figure 9.10
- Figure 9.11
- Figure 9.12
- Figure 10.1
- Figure 10.3
- Figure 10.2
- Figure 10.4
- Figure 10.5
- Figure 10.6
- Figure 10.7
- Figure 10.8
- <u>Figure 10.9</u>
- <u>Figure 10.10</u>
- **Figure 10.11**
- **Figure 10.12**
- <u>Figure 10.13</u>
- Figure 10.14
- **Figure 10.15**
- <u>Figure 10.16</u>
- **Figure 10.17**

- **Figure 10.18**
- Figure 11.1
- Figure 11.2
- <u>Figure 11.3</u>
- Figure 11.4
- Figure 11.5
- Figure 11.6
- Figure 11.7
- Figure 11.8
- <u>Figure 11.9</u>
- <u>Figure 11.10</u>
- **Figure 11.11**
- **Figure 11.12**
- <u>Figure 11.13</u>
- **Figure 11.14**
- Figure 11.15
- Figure 11.16
- <u>Figure 11.17</u>
- <u>Figure 11.18</u>
- Figure 11.19
- Figure 11.20
- Figure 12.1
- Figure 12.2
- Figure 12.3
- Figure 12.4

- Figure 12.5
- Figure 12.6
- Figure 12.7
- Figure 12.8
- <u>Figure 12.11</u>
- Figure 12.9
- Figure 12.10
- <u>Figure 12.12</u>
- Figure 13.1
- Figure 13.2
- Figure 13.3
- Figure 14.1
- **Figure 14.2**
- Figure 14.3
- Figure 14.4
- <u>Figure 14.5</u>
- Figure 14.6
- <u>Figure 15.1</u>
- Figure 15.2
- Figure 15.3
- <u>Figure 15.4</u>
- <u>Figure 15.5</u>
- <u>Figure 15.6</u>
- **Figure 15.7**
- **Figure 15.8**

- **Figure 15.9**
- Figure 15.10
- Figure 15.11
- <u>Figure 15.12</u>
- <u>Figure 15.13</u>
- Figure 15.14
- Figure 15.15
- **Figure 16.1**
- Figure 16.2
- <u>Figure 16.3</u>
- <u>Figure 16.4</u>
- **Figure 16.5**
- <u>Figure 16.6</u>
- **Figure 16.7**
- **Figure 16.8**
- <u>Figure 16.9</u>
- Figure 16.10
- Figure 16.11
- Figure 16.12
- Figure 16.13
- Figure 16.14
- Figure 16.15
- Figure 16.16
- Figure 16.17
- Figure 16.18

- Figure 16.19
- **Figure 17.1**
- Figure 18.1
- <u>Figure 18.2</u>
- Figure 18.3
- Figure 18.4
- Figure 18.5
- Figure 18.6
- Figure 18.7
- <u>Figure 18.8</u>
- <u>Figure 18.9</u>
- Figure 18.10
- Figure 18.11
- <u>Figure 18.12</u>
- Figure 18.13
- Figure 18.14
- Figure 18.16
- Figure 18.15
- <u>Figure 18.17</u>
- **Figure 19.1**
- <u>Figure 19.2</u>
- Figure 19.3
- **Figure 19.4**
- **Figure 19.5**
- **Figure 19.6**

- Figure S1.1
- Figure S1.2
- Figure S1.3
- Figure S1.4
- Figure S1.5
- Figure S1.6
- Figure S1.7
- Figure S1.8
- Figure S1.9
- Figure S1.10
- Figure S1.11
- Figure S1.12
- Figure S1.13
- Figure S1.14
- Figure S1.15
- Figure S1.16
- Figure S1.17
- Figure S1.18
- Figure S1.19
- Figure S1.20
- Figure S1.21
- Figure S1.22
- Figure S1.23
- Figure S1.24
- Figure S1.25

Figure S1.26

Figure S1.27

List of Tables

- Table 2.1
- <u>Table 4.1</u>
- Table 4.2
- <u>Table 4.3</u>
- <u>Table 4.4</u>
- **Table 4.6**
- <u>Table 4.5</u>
- Table 6.1
- <u>Table 11.1</u>
- <u>Table 11.2</u>
- <u>Table 11.3</u>
- **Table 11.4**
- <u>Table 13.1</u>
- <u>Table 13.2</u>
- <u>Table 13.3</u>
- <u>Table 14.1</u>
- <u>Table 14.2</u>
- <u>Table 15.1</u>
- <u>Table 16.1</u>
- <u>Table 17.1</u>
- <u>Table 17.2</u>

- <u>Table 17.3</u>
- <u>Table 17.4</u>
- <u>Table 18.1</u>
- <u>Table 19.3</u>
- <u>Table 19.1</u>
- <u>Table 19.2</u>
- <u>Table 19.4</u>
- Table S1.1
- Table S1.2
- Table S1.3
- Table S1.4
- Table S1.5
- Table S1.6
- Table S1.7

Related Titles

Hirt, H. (ed.)

Plant Stress Biology

From Genomics to Systems Biology

2010

Print ISBN: 978-3-527-32290-9

also available in digital formats

Hayat, S., Mori, M., Pichtel, J., Ahmad, A. (eds.)

Nitric Oxide in Plant Physiology

2010

Print ISBN: 978-3-527-32519-1

also available in digital formats

Sterner, O.

Chemistry, Health and Environment

2 Edition

2010

Print ISBN: 978-3-527-32582-5

also available in digital formats

Weckwerth, W., Kahl, G.

The Handbook of Plant Metabolomics

2013

Print ISBN:978-3-527-32777-5

also available in digital formats

Ecological Biochemistry

Environmental and Interspecies Interactions

WILEY-VCH Verlag GmbH & Co. KGaA

Editors

Prof. Gerd-Joachim Krauss

Martin-Luther-University Halle-Wittenberg Institute of Biochemistry and Biotechnology Kurt-Mothes-Strasse 3 06099 Halle/Saale Germany

Prof. Dietrich H. Nies

Martin-Luther-University Halle-Wittenberg Institute of Biology/Molecular Microbiology Kurt-Mothes-Strasse 3 06099 Halle/Saale Germany

Cover

Leaf-cutter ants © michaklootwijk - fotolia.com

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de>.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-31650-2

ePDF ISBN: 978-3-527-68599-8 **ePub ISBN:** 978-3-527-68600-1 **Mobi ISBN:** 978-3-527-68598-1 **oBook ISBN:** 978-3-527-68606-3

"It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent on each other in so complex a manner, have all been produced by laws acting around us."

Charles Darwin, The Origin of the Species (1859), John Murray, London

List of Contributors

Felix Bärlocher

Mount Allison University

Department of Biology

Sackville

63B York Street

E4L 1G7, NB

Canada

Jörg Degenhardt

Martin-Luther-University Halle-Wittenberg

Institute of Pharmacy/Pharmaceutical Biotechnology

Hoher Weg 8

Halle/Saale

Germany

Karl-Josef Dietz

Bielefeld University

Biochemistry and Physiology of Plants

Faculty of Biology

University Strasse 25

Bielefeld

Germany

Dirk Dobritzsch

Institute of Biochemistry and Biotechnology

Department of Plant Biochemistry

Kurt-Mothes-Strasse 3

Halle/Saale

Germany

Hans-Curt Flemming

University of Duisburg-Essen

Biofilm Centre

Universitätsstrasse 5

Essen

Germany

Eva Freisinger

University of Zurich

Department of Chemistry

Winterthurerstrasse 190

Zürich

Switzerland

Jonathan Gershenzon

Max Planck Institute of Chemical Ecology

Department of Biochemistry

Hans-Knöll-Strasse 8

Jena

Germany

Rüdiger Hampp

University of Tübingen

IMIT, Department of Physiological Ecology of Plants

Auf der Morgenstelle 1

Tübingen

Germany

Anton Hartmann

Helmholtz Centre Munich

German Research Centre for Environmental Health

Research Unit Microbe-Plant Interactions

Ingolstädter Landstr. 1

Neuherberg

Germany

Bettina Hause

Leibniz Institute of Plant Biochemistry

Department of Cell and Metabolic Biology

Weinberg 3

Halle/Saale

Germany

Gerd Hause

Martin-Luther-University Halle-Wittenberg

Biocentre, Microscopy Unit

Weinbergweg 22

Halle/Saale

Germany

Ingo Heilmann

Martin-Luther-University Halle-Wittenberg
Institute of Biochemistry and Biotechnology
Department for Cellular Biochemistry
Kurt-Mothes-Strasse 3
Halle/Saale
Germany

Klaus Humbeck

Martin-Luther-University Halle-Wittenberg
Institute of Biology/Plant Physiology
Weinbergweg 10
Halle/Saale
Germany

Gerd-Joachim Krauss

Martin-Luther-University Halle-Wittenberg
Institute of Biochemistry and Biotechnology
Kurt-Mothes-Strasse 3
Halle/Saale
Germany

Gudrun Krauss

Helmholtz Centre for Environmental Research - UFZ
Department of Environmental Microbiology
Permoserstrasse 15
Leipzig
Germany