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Preface to the Solutions Manual

This manual is written for instructors, not students. It includes worked solutions for
many (roughly 75%) of the problems in the text. For the computational exercises I
have given the output generated by my program, or sometimes a program listing. Most
of the programming was done in MATLAB, some in FORTRAN. (The author is well
aware that FORTRAN is archaic, but there is a lot of “legacy code" in FORTRAN,
and the author believes there is value in learning a new language, even an archaic
one.) When the text has a series of exercises that are obviously similar and have
similar solutions, then sometimes only one of these problems has a worked solution
included. When computational results are asked for a series of similar functions or
problems, only a subset of solutions are reported, largely for the sake of brevity. Some
exercises that simply ask the student to perform a straight-forward computation are
skipped. Exercises that repeat the same computation but with a different method are
also often skipped, as are exercises that ask the student to “verify” a straight-forward
computation.

Some of the exercises were designed to be open-ended and almost “essay-like.”
For these exercises, the only solution typically provided is a short hint or brief outline
of the kind of discussion anticipated by the author.

In many exercises the student needs to construct an upper bound on a derivative
of some function in order to determine how small a parameter has to be to achieve a

ix



x

desired level of accuracy. For many of the solutions this was done using a computer
algebra package and the details are not given.

Students who acquire a copy of this manual in order to obtain worked solutions to
homework problems should be aware that none of the solutions are given in enough
detail to earn full credit from an instructor.

The author freely admits the potential for error in any of these solutions, especially
since many of the exercises were modified after the final version of the text was
submitted to the publisher and because the ordering of the exercises was changed
from the Revised Edition to the Second Edition. While we tried to make all the
appropriate corrections, the possibility of error is still present, and undoubtedly the
author’s responsibility.

Because much of the manual was constructed by doing “copy-and-paste” from
the files for the text, the enumeration of many tables and figures will be different. I
have tried to note what the number is in the text, but certainly may have missed some
instances.

Suggestions for new exercises and corrections to these solutions are very welcome.
Contact the author at jfe@ams.org or jfepperson@gmail.com.

Differences from the text The text itself went through a copy-editing process
after this manual was completed. As was to be expected, the wording of several
problems was slightly changed. None of these changes should affect the problem in
terms of what is expected of students; the vast majority of the changes were to replace
“previous problem” (a bad habit of mine) with “Problem X.Y” (which I should have
done on my own, in the first place). Some puncuation was also changed. The point of
adding this note is to explain the textual differences which might be noticed between
the text and this manual. If something needs clarification, please contact me at the
above email.



CHAPTER 1

INTRODUCTORY CONCEPTS AND
CALCULUS REVIEW

1.1 BASIC TOOLS OF CALCULUS

Exercises:

1. Show that the third order Taylor polynomial for f(x) = (x + 1)−1, about
x0 = 0, is

p3(x) = 1− x+ x2 − x3.

Solution: We have f(0) = 1 and

f ′(x) = − 1

(x+ 1)2
, f ′′(x) =

2

(x+ 1)3
, f ′′′(x) = − 6

(x+ 1)4
,

so that f ′(0) = −1, f ′′(0) = 2, f ′′′ = −6. Therefore

p3(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(x)

= 1 + x(−1) +
1

2
x2(2) +

1

6
x3(−6)

= 1− x+ x2 − x3.
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2 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW

2. What is the third order Taylor polynomial for f(x) =
√
x+ 1, about x0 = 0?

Solution: We have f(x0) = 1 and

f ′(x) =
1

2(x+ 1)1/2
, f ′′(x) = − 1

4(x+ 1)3/2
, f ′′′(x) =

3

8(x+ 1)5/2
,

so that f ′(0) = 1/2, f ′′(0) = −1/4, f ′′′ = 3/8. Therefore

p3(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(x)

= 1 + x(1/2) +
1

2
x2(−1/4) +

1

6
x3(3/8)

= 1− (1/2)x− (1/8)x2 + (1/16)x3.

3. What is the sixth order Taylor polynomial for f(x) =
√

1 + x2, using x0 = 0?
Hint: Consider the previous problem.

4. Given that

R(x) =
|x|6

6!
eξ

for x ∈ [−1, 1], where ξ is between x and 0, find an upper bound for |R|, valid
for all x ∈ [−1, 1], that is independent of x and ξ.

5. Repeat the above, but this time require that the upper bound be valid only for
all x ∈ [− 1

2 ,
1
2 ].

Solution: The only significant difference is the introduction of a factor of 26

in the denominator:

|R(x)| ≤
√
e

26 × 720
= 3.6× 10−5.

6. Given that

R(x) =
|x|4

4!

(
−1

1 + ξ

)
for x ∈ [− 1

2 ,
1
2 ], where ξ is between x and 0, find an upper bound for |R|, valid

for all x ∈ [− 1
2 ,

1
2 ], that is independent of x and ξ.

7. Use a Taylor polynomial to find an approximate value for
√
e that is accurate

to within 10−3.

Solution: There’s two ways to do this. We can approximate f(x) = ex and
use x = 1/2, or we can approximate g(x) =

√
x and use x = e. In addition,

we can be conventional and take x0 = 0, or we can take x0 6= 0 in order to
speed convergence.



BASIC TOOLS OF CALCULUS 3

The most straightforward approach (in my opinion) is to use a Taylor polyno-
mial for ex about x0 = 0. The remainder after k terms is

Rk(x) =
xk+1

(k + 1)!
eξ.

We quickly have that

|Rk(x)| ≤ e1/2

2k+1(k + 1)!

and a little playing with a calculator shows that

|R3(x)| ≤ e1/2

16× 24
= 0.0043

but

|R4(x)| ≤ e1/2

32× 120
= 4.3× 10−4.

So we would use

e1/2 ≈ 1 +
1

2
+

1

2

(
1

2

)2

+
1

6

(
1

2

)3

+
1

24

(
1

2

)4

= 1.6484375.

To fourteen digits,
√
e = 1.64872127070013, and the error is 2.84 × 10−4,

much smaller than required.

8. What is the fourth order Taylor polynomial for f(x) = 1/(x + 1), about
x0 = 0?

Solution: We have f(0) = 1 and

f ′(x) = − 1

(x+ 1)2
, f ′′(x) =

2

(x+ 1)3
, f ′′′(x) = − 6

(x+ 1)4
, f ′′′′(x) =

24

(x+ 1)5

so that f ′(0) = −1, f ′′(0) = 2, f ′′′ = −6, f ′′′′(0) = 24. Thus

p4(x) = 1+x(−1)+
1

2
x2(2)+

1

6
x3(−6)+

1

24
x4(24) = 1−x+x2−x3+x4.

9. What is the fourth order Taylor polynomial for f(x) = 1/x, about x0 = 1?

10. Find the Taylor polynomial of third order for sinx, using:

(a) x0 = π/6.

Solution: We have

f(x0) =
1

2
, f ′(x0) =

√
3

2
, f ′′(x0) = −1

2
, f ′′′(x0) = −

√
3

2
,



4 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW

so

p3(x) =
1

2
+

√
3

2

(
x− π

6

)
− 1

4

(
x− π

6

)2
−
√

3

12

(
x− π

6

)3
.

(b) x0 = π/4;

(c) x0 = π/2;

11. For each function below construct the third-order Taylor polynomial approx-
imation, using x0 = 0, and then estimate the error by computing an upper
bound on the remainder, over the given interval.

(a) f(x) = e−x, x ∈ [0, 1];

(b) f(x) = ln(1 + x), x ∈ [−1, 1];

(c) f(x) = sinx, x ∈ [0, π];

(d) f(x) = ln(1 + x), x ∈ [−1/2, 1/2];

(e) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2].

Solution:

(a) The polynomial is

p3(x) = 1− x+
1

2
x2 − 1

6
x3,

with remainder
R3(x) =

1

24
x4e−ξ.

This can be bounded above, for all x ∈ [0, 1], by

|R3(x)| ≤ 1

24
e

(b) The polynomial is

p3(x) = x− 1

2
x2 +

1

3
x3,

with remainder
R3(x) =

1

4
x4

1

(1 + ξ)4

We can’t bound this for all x ∈ [−1, 1], because of the potential division
by zero.

(c) The polynomial is

p3(x) = x− 1

6
x3
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with remainder

R3(x) =
1

120
x5 cos ξ.

This can be bounded above, for all x ∈ [0, π], by

|R3(x)| ≤ π5

120
.

(d) The polynomial is the same as in (b), of course,

p3(x) = x− 1

2
x2 +

1

3
x3,

with remainder

R3(x) =
1

4
x4

1

(1 + ξ)4

For all x ∈ [−1/2, 1/2] this can be bounded by

R3(x) ≤ 1

4
(1/24)

1

(1− (1/2))4
=

1

4
.

(e) The polynomial is

p3(x) = 1− x+ x2 − x3,

with remainder

R3(x) = x4
1

(1 + ξ)5

This can be bounded above, for all x ∈ [−1/2, 1/2], by

|R3(x)| ≤ (1/2)4
1

(1− 1/2)5
= 2.

Obviously, this is not an especialy good approximation.

12. Construct a Taylor polynomial approximation that is accurate to within 10−3,
over the indicated interval, for each of the following functions, using x0 = 0.

(a) f(x) = sinx, x ∈ [0, π];

(b) f(x) = e−x, x ∈ [0, 1];

(c) f(x) = ln(1 + x), x ∈ [−1/2, 1/2];

(d) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2];

(e) f(x) = ln(1 + x), x ∈ [−1, 1].
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Solution:

(a) The remainder here is

Rn(x) =
(−1)n+1

(2n+ 1)!
x2n+1 cos c,

for c ∈ [0, π]. Therefore, we have

|Rn(x)| ≤ 1

(2n+ 1)!
|π|2n+1 ≤ π2n+1

(2n+ 1)!
.

Simple manipulations with a calculator then show that

max
x∈[0,π]

|R6(x)| ≤ .4663028067e− 3

but
max
x∈[0,π]

|R5(x)| ≤ .7370430958e− 2.

Therefore the desired Taylor polynomial is

p11(x) = 1− x+
1

6
x3 − 1

120
x5 − 1

7!
x7 +

1

9!
x9 +

1

11!
x11.

(b) The remainder here is

Rn(x) =
(−1)n+1

(n+ 1)!
xn+1e−c,

for c ∈ [0, 1]. Therefore, we have

|Rn(x)| ≤ 1

(n+ 1)!
|x|n+1 ≤ 1

(n+ 1)!
.

Simple manipulations with a calculator then show that

max
x∈[0,1]

|R6(x)| ≤ .0001984126984

but
max
x∈[0,1]

|R5(x)| ≤ .1388888889e− 2

Therefore the desired Taylor polynomial is

p6(x) = 1− x+
1

2
x2 − 1

6
x3 +

1

24
x4 − 1

120
x5 +

1

720
x6.

(c) f(x) = ln(1 + x), x ∈ [0, 3/4].
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Solution: The remainder is now

|Rn(x)| ≤ (1/2)n+1

(n+ 1)
,

and n = 8 makes the error small enough.
(d) f(x) = ln(1 + x), x ∈ [0, 1/2].

13. Repeat the above, this time with a desired accuracy of 10−6.

14. Since
π

4
= arctan 1,

we can estimate π by estimating arctan 1. How many terms are needed in
the Gregory series for the arctangent to approximate π to 100 decimal places?
1,000? Hint: Use the error term in the Gregory series to predict when the error
gets sufficiently small.

Solution: The remainder in the Gregory series approximation is

Rn(x) = (−1)n+1

∫ x

0

t2n+2

1 + t2
dt,

so to get 100 decimal places of accuracy for x = 1, we require

|Rn(1)| =
∣∣∣∣∫ 1

0

t2n+2

1 + t2
dt

∣∣∣∣ ≤ ∫ 1

0

t2n+2dt =
1

2n+ 3
≤ 10−100,

thus, we have to take n ≥ (10100 − 3)/2 terms. For 1,000 places of accuracy
we therefore need n ≥ (101000 − 3)/2 terms.

Obviously this is not the best procedure for computing many digits of π!

15. Elementary trigonometry can be used to show that

arctan(1/239) = 4 arctan(1/5)− arctan(1).

This formula was developed in 1706 by the English astronomer John Machin.
Use this to develop a more efficient algorithm for computing π. How many
terms are needed to get 100 digits of accuracy with this form? How many
terms are needed to get 1,000 digits? Historical note: Until 1961 this was the
basis for the most commonly used method for computing π to high accuracy.

Solution: We now have two Gregory series, thus complicating the problem a
bit. We have

π = 4 arctan(1) = 16 arctan(1/5)− 4 arctan(1/239);

Define pm,n ≈ π as the approximation generated by using an m term Gre-
gory series to approximate arctan(1/5) and an n term Gregory series for
arctan(1/239). Then we have

pm,n − π = 16Rm(1/5)− 4Rn(1/239),
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where Rk is the remainder in the Gregory series. Therefore

|pm,n − π| ≤

∣∣∣∣∣16(−1)m+1

∫ 1/5

0

t2m+2

1 + t2
dt− 4(−1)n+1

∫ 1/239

0

t2n+2

1 + t2
dt

∣∣∣∣∣
≤ 16

(2m+ 3)52m+3
+

4

(2n+ 3)2392n+3
.

To finish the problem we have to apportion the error between the two series,
which introduces some arbitrariness into the the problem. If we require that
they be equally accurate, then we have that

16

(2m+ 3)52m+3
≤ ε

and
4

(2n+ 3)2392n+3
≤ ε.

Using properties of logarithms, these become

log(2m+ 3) + (2m+ 3) log 5 ≥ log 16− log ε

and
log(2n+ 3) + (2n+ 3) log 239 ≥ log 4− log ε.

For ε = (1/2) × 10−100 these are satisfied for m = 70, n = 20. For
ε = (1/2)× 10−1000 we get m = 712, n = 209. Changing the apportionment
of the error doesn’t change the results by much at all.

16. In 1896 a variation on Machin’s formula was found:

arctan(1/239) = arctan(1)− 6 arctan(1/8)− 2 arctan(1/57),

and this began to be used in 1961 to compute π to high accuracy. How many
terms are needed when using this expansion to get 100 digits of π? 1,000
digits?

Solution: We now have three series to work with, which complicates matters
only slightly more compared to the previous problem. If we define pk,m,n ≈ π
based on

π = 4 arctan(1) = 24 arctan(1/8) + 8 arctan(1/57) + 4 arctan(1/239),

taking k terms in the series for arctan(1/8), m terms in the series for
arctan(1/57), and n terms in the series for arctan(1/239), then we are led to
the inequalities

log(2k + 3) + (2k + 3) log 8 ≥ log 24− log ε,

log(2m+ 3) + (2m+ 3) log 57 ≥ log 8− log ε,
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and
log(2n+ 3) + (2n+ 3) log 239 ≥ log 4− log ε.

For ε = (1/3) × 10−100 we get k = 54, m = 27, and n = 19; for ε =
(1/3)× 10−1000 we get k = 552, m = 283, and n = 209.

Note: In both of these problems a slightly more involved treatment of the error
might lead to fewer terms being required.

17. What is the Taylor polynomial of order 3 for f(x) = x4 + 1, using x0 = 0?

Solution: This is very direct:

f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x,

so that

p3(x) = 1 + x(0) +
1

2
x2(0) +

1

6
x3(0) = 1.

18. What is the Taylor polynomial of order 4 for f(x) = x4 + 1, using x0 = 0?
Simplify as much as possible.

19. What is the Taylor polynomial of order 2 for f(x) = x3 + x, using x0 = 1?

20. What is the Taylor polynomial of order 3 for f(x) = x3 + x, using x0 = 1?
Simplify as much as possible.

Solution: We note that f ′′′(1) = 6, so we have (using the solution from the
previous problem)

p4(x) = 3x2 − 2x+ 1 +
1

6
(x− 1)3(6) = x3 + x.

The polynomial is its own Taylor polynomial.

21. Let p(x) be an arbitrary polynomial of degree less than or equal to n. What is
its Taylor polynomial of degree n, about an arbitrary x0?

22. The Fresnel integrals are defined as

C(x) =

∫ x

0

cos(πt2/2)dt

and

S(x) =

∫ x

0

sin(πt2/2)dt.

Use Taylor expansions to find approximations to C(x) and S(x) that are 10−4

accurate for all x with |x| ≤ 1
2 . Hint: Substitute x = πt2/2 into the Taylor

expansions for the cosine and sine.
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Solution: We will show the work for the case of S(x), only. We have

S(x) =

∫ x

0

sin(πt2/2)dt =

∫ x

0

pn(t2)dt+

∫ x

0

Rn(t2)dt.

Looking more carefully at the remainder term, we see that it is given by

rn(x) = ±
∫ x

0

(t2(2n+3)

(2n+ 3)!
cos ξdt.

Therefore,

|rn(x)| ≤
∫ 1/2

0

(t2(2n+3)

(2n+ 3)!
dt =

(1/2)4n+7

(4n+ 7)(2n+ 3)!
.

A little effort with a calculator shows that this is less than 10−4 for n ≥ 1,
therefore the polynomial is

p(x) =

∫ x

0

(t2 − (1/6)t6)dt = −x
7

42
+
x3

3
.

23. Use the Integral Mean Value Theorem to show that the “pointwise” form (1.3)
of the Taylor remainder (usually called the Lagrange form) follows from the
“integral” form (1.2) (usually called the Cauchy form).

24. For each function in Problem 11, use the Mean Value Theorem to find a value
M such that

|f(x1)− f(x2)| ≤M |x1 − x2|

is valid for all x1, x2 in the interval used in Problem 11.

Solution: This amounts to finding an upper bound on |f ′| over the interval
given. The answers are as given below.

(a) f(x) = e−x, x ∈ [0, 1]; M ≤ 1.

(b) f(x) = ln(1+x), x ∈ [−1, 1];M is unbounded, since f ′(x) = 1/(1+x)
and x = −1 is possible.

(c) f(x) = sinx, x ∈ [0, π]; M ≤ 1.

(d) f(x) = ln(1 + x), x ∈ [−1/2, 1/2]; M ≤ 2.

(e) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2]. M ≤ 4.

25. A function is called monotone on an interval if its derivative is strictly positive
or strictly negative on the interval. Suppose f is continuous and monotone
on the interval [a, b], and f(a)f(b) < 0; prove that there is exactly one value
α ∈ [a, b] such that f(α) = 0.

Solution: Since f is continuous on the interval [a, b] and f(a)f(b) < 0, the
Intermediate Value Theorem guarantees that there is a point c where f(c) = 0,
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i.e., there is at least one root. Suppose now that there exists a second root, γ.
Then f(c) = f(γ) = 0. By the Mean Value Theorem, then, there is a point ξ
between c and γ such that

f ′(ξ) =
f(γ)− f(c)

γ − c
= 0.

But this violates the hypothesis that f is monotone, since a monotone function
must have a derivative that is strictly positive or strictly negative. Thus we
have a contradiction, thus there cannot exist the second root.

A very acceptable argument can be made by appealing to a graph of the
function.

26. Finish the proof of the Integral Mean Value Theorem (Theorem 1.5) by writing
up the argument in the case that g is negative.

Solution: All that is required is to observe that if g is negative, then we have∫ b

a

g(t)f(t)dt ≤
∫ b

a

g(t)fmdt = fm

∫ b

a

g(t)dt

and ∫ b

a

g(t)f(t)dt ≥
∫ b

a

g(t)fMdt = fM

∫ b

a

g(t)dt.

The proof is completed as in the text.

27. Prove Theorem 1.6, providing all details.

28. Let ck > 0, be given, 1 ≤ k ≤ n, and let xk ∈ [a, b], 1 ≤ k ≤ n. Then, use the
Discrete Average Value Theorem to prove that, for any function f ∈ C([a, b]),∑n

k=1 ckf(xk)∑n
k=1 ck

= f(ξ)

for some ξ ∈ [a, b].

Solution: We can’t apply the Discrete Average Value Theorem to the problem
as it is posed originally, so we have to manipulate a bit. Define

γj =
cj∑n
k=1 ck

;

Then
n∑
j=1

γj = 1

and now we can apply the Discrete Average Value Theorem to finish the
problem.
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29. Discuss, in your own words, whether or not the following statement is true:
“The Taylor polynomial of degree n is the best polynomial approximation of
degree n to the given function near the point x0.”

/ • • • .

1.2 ERROR, APPROXIMATE EQUALITY, AND ASYMPTOTIC ORDER
NOTATION

Exercises:

1. Use Taylor’s Theorem to show that ex = 1 + x + O(x2) for x sufficiently
small.

2. Use Taylor’s Theorem to show that 1−cos x
x = 1

2x + O(x3) for x sufficiently
small.

Solution: We can expand the cosine in a Taylor series as

cosx = 1− 1

2
x2 +

1

24
x4 cos ξ.

If we substitute this into (1− cosx)/x and simplify, we get

1− cosx

x
=

1

2
x− 1

24
x3 cos ξ,

so that we have∣∣∣∣1− cosx

x
− 1

2
x

∣∣∣∣ =

∣∣∣∣ 1

24
x3 cos ξ

∣∣∣∣ ≤ 1

24
|x3| = C|x3|

where C = 1/24. Therefore, 1−cos x
x = 1

2x+O(x3).

3. Use Taylor’s Theorem to show that

√
1 + x = 1 +

1

2
x+O(x2)

for x sufficiently small.

Solution: We have, from Taylor’s Theorem, with x0 = 0,

√
1 + x = 1 +

1

2
x− 1

8
x2(1 + ξ)−3/2,

for some ξ between 0 and x. Since∣∣∣∣18x2(1 + ξ)−3/2
∣∣∣∣ ≤ C|x2|
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for all x sufficiently small, the result follows. For example, we have∣∣∣∣18x2(1 + ξ)−3/2
∣∣∣∣ ≤ 1

8
× 2
√

2|x2|

for all x ∈ [−1/2, 1/2].

4. Use Taylor’s Theorem to show that

(1 + x)−1 = 1− x+ x2 +O(x3)

for x sufficiently small.

Solution: This time, Taylor’s Theorem gives us that

(1 + x)−1 = 1− x+ x2 − x3/(1 + ξ)4

for some ξ between 0 and x. Thus, for all x such that |x| ≤ m,∣∣(1 + x)−1 − (1− x+ x2)
∣∣ =

∣∣x3/(1 + ξ)4
∣∣ ≤ |x|3/(1−m)4 = C|x|3,

where C = 1/(1−m)4.

5. Show that
sinx = x+O(x3).

6. Recall the summation formula

1 + r + r2 + r3 + · · ·+ rn =
n∑
k=0

rk =
1− rn+1

1− r
.

Use this to prove that

n∑
k=0

rk =
1

1− r
+O(rn+1).

Hint: What is the definition of the O notation?

7. Use the above result to show that 10 terms (k = 9) are all that is needed to
compute

S =

∞∑
k=0

e−k

to within 10−4 absolute accuracy.

Solution: The remainder in the 9 term partial sum is

|R9| =
∣∣∣∣ e−10

1− e−1

∣∣∣∣ = 0.000071822 < 10−4.
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8. Recall the summation formula

n∑
k=1

k =
n(n+ 1)

2
.

Use this to show that
n∑
k=1

k =
1

2
n2 +O(n).

9. State and prove the version of Theorem 1.7 which deals with relationships of
the form x = xn +O(β(n)).

Solution: The theorem statement might be something like the following:

Theorem: Let x = xn+O(β(n)) and y = yn+O(γ(n)), with bβ(n) > γ(n)
for all n sufficiently large. Then

x+ y = xn + yn +O(β(n) + γ(n)),

x+ y = xn + yn +O(β(n)),

Ax = Axn +O(β(n)).

In the last equation, A is an arbitrary constant, independent of n.

The proof parallels the one in the text almost perfectly, and so is omitted.

10. Use the definition of O to show that if y = yh + O(hp), then hy = hyh +
O(hp+1).

11. Show that if an = O(np) and bn = O(nq), then anbn = O(np+q).

Solution: We have
|an| ≤ Ca|np|

and
|bn| ≤ Cb|nq|.

These follow from the definition of the O notation. Therefore

|anbn| ≤ Ca|np||bn| ≤ (Ca|np|)(Cb|nq|) = (CaCb)|np+q|

which implies that anbn = O(np+q).

12. Suppose that y = yh + O(β(h)) and z = zh + O(β(h)), for h sufficiently
small. Does it follow that y − z = yh − zh (for h sufficiently small)?

13. Show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)
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for all h sufficiently small. Hint: Expand f(x ± h) out to the fourth order
terms.

Solution: This is a straight-forward manipulation with the Taylor expansions

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) +

1

24
h4f ′′′′(ξ1)

and

f(x− h) = f(x)− hf ′(x) +
1

2
h2f ′′(x)− 1

6
h3f ′′′(x) +

1

24
h4f ′′′′(ξ2).

Add the two expansions to get

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +
1

24
h4(f ′′′′(ξ1) + f ′′′′(ξ2)).

Now solve for f ′′(x).

14. Explain, in your own words, why it is necessary that the constant C in (1.8) be
independent of h.

/ • • • .

1.3 A PRIMER ON COMPUTER ARITHMETIC

Exercises:

1. In each problem below, A is the exact value, and Ah is an approximation to A.
Find the absolute error and the relative error.

(a) A = π, Ah = 22/7;

(b) A = e, Ah = 2.71828;

(c) A = 1
6 , Ah = 0.1667;

(d) A = 1
6 , Ah = 0.1666.

Solution:

(a) Abs. error. ≤ 1.265× 10−3, rel. error ≤ 4.025× 10−4;

(b) Abs. error. ≤ 1.828× 10−6, rel. error ≤ 6.72× 10−7;

(c) Abs. error. ≤ 3.334× 10−5, rel. error ≤ 2.000× 10−4;

(d) Abs. error. ≤ 6.667× 10−5, rel. error ≤ 4× 10−4.

2. Perform the indicated computations in each of three ways: (i) Exactly; (ii)
Using three-digit decimal arithmetic, with chopping; (iii) Using three-digit
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decimal arithmetic, with rounding. For both approximations, compute the
absolute error and the relative error.

(a) 1
6 + 1

10 ;
(b) 1

6 ×
1
10 ;

(c) 1
9 +

(
1
7 + 1

6

)
;

(d)
(
1
7 + 1

6

)
+ 1

9 .

3. For each function below explain why a naive construction will be susceptible
to significant rounding error (for x near certain values), and explain how to
avoid this error.

(a) f(x) = (
√
x+ 9− 3)x−1;

(b) f(x) = x−1(1− cosx);
(c) f(x) = (1− x)−1(lnx− sinπx);
(d) f(x) = (cos(π + x)− cosπ)x−1;
(e) f(x) = (e1+x − e1−x)(2x)−1;

Solution: In each case, the function is susceptible to subtractive cancellation
which will be amplified by division by a small number. The way to avoid the
problem is to use a Taylor expansion to make the subtraction and division both
explicit operations. For instance, in (a), we would write

f(x) = ((3+(1/6)x−(1/216)x2+O(x3))−3)x−1 = (1/6)−(1/216)x+O(x2).

To get greater accuracy, take more terms in the Taylor expansion.

4. For f(x) = (ex − 1)/x, how many terms in a Taylor expansion are needed to
get single precision accuracy (7 decimal digits) for all x ∈ [0, 12 ]? How many
terms are needed for double precision accuracy (14 decimal digits) over this
same range?

5. Using single precision arithmetic, only, carry out each of the following com-
putations, using first the form on the left side of the equals sign, then using the
form on the right side, and compare the two results. Comment on what you
get in light of the material in 1.3.

(a) (x+ ε)3 − 1 = x3 + 3x2ε+ 3xε2 + ε3 − 1, x = 1.0, ε = 0.000001.
(b) −b+

√
b2 − 2c = 2c(−b−

√
b2 − 2c)−1, b = 1, 000, c = π.

Solution: “Single precision” means 6 or 7 decimal digits, so the point of the
problem is to do the computations using 6 or 7 digits.

(a) Using a standard FORTRAN compiler on a low-end UNIX workstation,
the author got

(x+ ε)3 − 1 = 0.2861022949218750E − 05
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but

x3 + 3x2ε+ 3xε2 + ε3 − 1 = 0.2980232238769531E − 05.

(b) Using a standard C compiler on a low-end UNIX workstation, the author
got

−b+
√
b2 − 2c = −0.003

but
2c(−b−

√
b2 − 2c)−1 = −0.00314160.

6. Consider the sum

S =
m∑
k=0

e−14(1−e
−0.05k)

where m = 2 × 105. Again using only single precision, compute this two
ways: First, by summing in the order indicated in the formula; second, by
summing backwards, i.e., starting with the k = 200, 000 term and ending with
the k = 0 term. Compare your results and comment upon them.

7. Using the computer of your choice, find three values a, b, and c, such that

(a+ b) + c 6= a+ (b+ c).

Repeat for your pocket calculator.

Solution: The key issue is to get an approximation to the machine epsilon,
then take a = 1, b = c = (2/3)u or something similar. This will guarantee
that (a + b) + c = a but a + (b + c) > a. Using a standard C compiler on
a low-end UNIX workstation, the author was able to determine that a = 1,
b = 2 × 10−7, and c = 3 × 10−7 will work. On an elderly Sharp calculator,
the author found that a = 1, b = 4× 10−10, and c = 4× 10−10 worked.

8. Assume we are using 3-digit decimal arithmetic. For ε = 0.0001, a1 = 5,
compute

a2 = a0 +

(
1

ε

)
a1

for a0 equal to each of 1, 2, and 3. Comment.

9. Let ε ≤ u. Explain, in your own words, why the computation

a2 = a0 +

(
1

ε

)
a1

is potentially rife with rounding error. (Assume that a0 and a1 are of compa-
rable size.) Hint: See previous problem.

Solution: This is just a generalization of the previous problem. If ε is small
enough, then a2 will be independent of a0.
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10. Using the computer and language of your choice, write a program to estimate
the machine epsilon.

Solution: Using MATLAB on a moderately old personal computer, the author
got a value of u = 1.1016e− 16. The code is given below.

x = 1.e-10;

for k=1:6000

y = 1 + x;

if y <= 1

disp(’macheps = ’)

disp(x)

break

end

x = x*.99;

end

11. We can compute e−x using Taylor polynomials in two ways, either using

e−x ≈ 1− x+
1

2
x2 − 1

6
x3 + . . .

or using

e−x ≈ 1

1 + x+ 1
2x

2 + 1
6x

3 + . . .
.

Discuss, in your own words, which approach is more accurate. In particular,
which one is more (or less) susceptible to rounding error?

Solution: Because of the alternating signs in the first approach, there is some
concern about subtractive cancellation when it is used.

12. What is the machine epsilon for a computer that uses binary arithmetic, 24 bits
for the fraction, and rounds? What if it chops?

Solution: Recall that the machine epsilon is the largest number x such that
the computer returns 1 + x = x. We therefore need to find the largest number
x that can be represented with 24 binary digits such that 1 + x, when rounded
to 24 bits, is still equal to 1. This is perhaps best done by explicitly writing out
the addition in binary notation. We have

1 + x = 1.000000000000000000000002

+0.00000000000000000000000dddddddddddddddddddddddd2.

If the machine chops, then we can set all of the d values to 1 and the computer
will still return 1 + x = 1; if the machine rounds, then we need to make the
first digit a zero. Thus, the desired values are

uround =
23∑
k=1

2−k−24 = 0.596× 10−7,


