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Preface

The practical laser was invented by T. H. Maiman at the

Hughes Research Laboratories in the USA, way back in

1960. It was then hailed as ‘the tool looking for

applications’. In no time, the tool found applications in

almost all fields of science and technology. The headline

defence application was in a ‘Star Wars’ anti-missile system

but, not surprisingly, within a couple of years, research and

development on its applications in the defence industry,

particularly for high explosives ignition/initiation, got under

way. Due to the ‘Cold War’ prevailing at the time, most of

this research was shrouded in secrecy. However, for a

variety of reasons, there has been a long pause in tangible

developments in this field until recently. Current emphasis

on the safety of energetic materials during manufacture,

storage, use and transportation, has prompted a spate of

research activities throughout the industrial world on the

synthesis and ignition initiation of high-performance

munitions. These must have whole-life cost-effectiveness,

through-life safety and end-of-life environmentally friendly

disposal options. These aspects are the objectives of

research and development in this field, and the book aims

to elucidate the background and the current state of the art

in the field of laser initiation.

The book starts with a brief chronological resume of the

invention, development and the use of materials generally

termed ‘explosives’. This is intended as a purely historical

background introduction and is compiled from various

sources. An extensive review of the research and

development in the application of lasers for

ignition/initiation in energetic materials, identifying some

of the critical parameters involved, is provided in Chapter



2. This includes a number of references, in addition to a

bibliography of recent relevant publications.

Since the book topic encompasses two very different fields

of science and technology, these are, for completeness and

convenience of the readers, elaborated in Chapters 3 and 4.

Chapter 3 provides the basic science behind the

technologies, manufacture and general properties of lasers,

while Chapter 4 provides a background to the general

properties and synthesis of energetic materials. This

includes the essential components, both as mixtures of

fuels and oxidiser and single energetic molecules, with a

chemical classification of these latter materials. The

contents are considered to be adequate background for

researchers in this field. There are also references and

bibliography for the inquisitive reader. Note that further

information on these topics is readily available in a number

of open literature sources.

Chapter 5 examines the limitations of the current materials

and methods of improving safety, for example, with plastic

bonded explosives, PBXs and so on. Consideration is also

given to the synthesis of new explosives, an active field of

research and development. Some of these newer materials

are less environmentally toxic. It was therefore considered

prudent to include a chapter reviewing these aspects and,

in particular, high nitrogen materials, since some of these

materials may find future applications in laser ignition.

Fundamental processes associated with the decomposition

of energetic materials, ranging from simple burning

through deflagration to detonation, are discussed in

Chapter 6, along with the effects of explosives in terms of

shock pressure and explosive power. Additional methods of

improving explosive power are discussed. A brief appendix

details some of the methods used for measuring velocity of

the shock wave. Chapter 7 examines the energetic changes



associated with the initiation process and the currently

used techniques for the initiation of energetic materials,

with only brief reference to the use of optical or laser

systems. Classification of explosives by ease of initiation

and the use of explosives trains to minimise hazards are

considered, along with the basic properties of current

initiatory primers. For both general safety and for safe

ignition using lasers, a synopsis of the development of

alternative primary explosives is presented in Chapter 8.

Some of the materials discussed show particular sensitivity

to laser radiation and have high explosive performance,

sometimes in excess of existing high explosives.

The theoretical basis of laser interaction with energetic

materials involves both optical and thermal properties of

materials and both these aspects are covered in Chapters 9

and 10. Chapter 11 provides a synopsis of practical

research conducted in this field, mainly citing examples of

work carried out at the authors' laboratories. Finally, a

general conclusion of the work conducted so far in this

field, and the future prospects and direction of research, is

included in Chapter 12.
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1 

Historical Background

1.1 Introduction

Historically, mankind has tried to dominate both fellow

human beings and other animals for as long as humans

have been around. Some of this domination was achieved

by killing other species. This had two aspects; survival and

providing food.

Survival was dictated by the fact that many animals

regarded humans as excellent sources of food and were

quite capable of killing humans. Humans could have two

approaches; avoid areas known to contain threatening

species or produce devices – weapons – which would enable

humans to kill the threatening animals. Humans then

developed a taste for the flesh of some of the animals they

had killed, thus increasing the sources of food available. As

the human population increased, conflict between humans

for food and territory increased, and so humans started to

fight amongst themselves. By using weapons, humans could

overcome physical disadvantages, and the optimum

situation was to be able to kill your opponent before they

could kill you.

The sword and lance effectively extended the human arm

and kept your opponent at bay but, as lances became

longer and longer, they became more unwieldy. A remote

killing weapon was required. Simple javelins, which could

be thrown at the opposition, extended the distance between

opponents but required considerable physical stature and

skill to achieve the correct flight trajectory for the javelin.

Therefore, in order to overcome human physical



limitations, mechanical advantage devices were used. The

earliest weapons for remote killing were simple slings.

These could carry a stone and were capable of accelerating

it to high velocity by spinning the sling in a circle. When

one of the supporting thongs was released, the stone would

travel in an almost straight line from the point of release.

Impact of the stone with an animal or human was capable

of killing or injuring the animal.

With the development of wood manufacturing skills, bows

and arrows became individual weapons or, when grouped

together became a lethal hail of arrows which did not

depend on the individual accuracy of the archer. The

longbow was the ultimate in these weapons. Improved

performance came when mankind developed stored energy

devices, such as the ballista and crossbows, both of which

stored mechanical energy in wooden elements but required

winding up before loading the stone or arrow projectile.

These overcame the limitations of physical stature required

to effectively use the longbow. The ballista, Figure 1.1, was

also used to fire barrels of burning oil at the enemy when

they had formed shield walls against arrows. The oil

container burst on impact and was one of the first

deployments of pyrotechnics weapons.


