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Preface to the Solutions Manual

This manual is written for instructors, not students. It

includes worked solutions for many (roughly 75%) of the

problems in the text. For the computational exercises I have

given the output generated by my program, or sometimes

aprogram listing. Most of the programming was done in

MATLAB, some in FORTRAN. (The author is well aware that

FORTRAN is archaic, but there is a lot of “legacy code” in

FORTRAN, and the author believes there is value in learning

a new language, even an archaic one.) When the text has a

series of exercises that are obviously similar and have

similar solutions, then sometimes only one of these

problems has a worked solution included. When

computational results are asked for a series of similar

functions or problems, only a subset of solutions are

reported, largely for the sake of brevity. Some exercises that

simply ask the student to perform a straight-forward

computation are skipped. Exercises that repeat the same

computation but with a different method are also often

skipped, as are exercises that ask the student to “verify” a

straight-forward computation.

Some of the exercises were designed to be open-ended

and almost “essay-like.” For these exercises, the only

solution typically provided is a short hint or brief outline of

the kind of discussion anticipated by the author.

In many exercises the student needs to construct an upper

bound on a derivative of some function in order to

determine how small a parameter has to be to achieve a

desired level of accuracy. For many of the solutions this was

done using a computer algebra package and the details are

not given.

Students who acquire a copy of this manual in order to

obtain worked solutions to homework problems should be



aware that none of the solutions are given in enough detail

to earn full credit from an instructor.

The author freely admits the potential for error in any of

these solutions, especially since many of the exercises were

modified after the final version of the text was submitted to

the publisher and because the ordering of the exercises was

changed from the Revised Edition to the Second Edition.

While we tried to make all the appropriate corrections, the

possibility of error is still present, and undoubtedly the

author's responsibility.

Because much of the manual was constructed by doing

“copy-and-paste” from the files for the text, the

enumeration of many tables and figures will be different. I

have tried to note what the number is in the text, but

certainly may have missed some instances.

Suggestions for new exercises and corrections to these

solutions are very welcome. Contact the author at

jfe@ams.org or jfepperson@gmail.com.

Differences from the text The text itself went through a

copy-editing process after this manual was completed. As

was to be expected, the wording of several problems was

slightly changed. None of these changes should affect the

problem in terms of what is expected of students; the vast

majority of the changes were to replace “previous problem”

(a bad habit of mine) with “Problem X.Y” (which I should

have done on my own, in the first place). Some puncuation

was also changed. The point of adding this note is to explain

the textual differences which might be noticed between the

text and this manual. If something needs clarification,

please contact me at the above email.

mailto://jfe@ams.org
mailto://jfepperson@gmail.com


CHAPTER 1

INTRODUCTORY CONCEPTS AND

CALCULUS REVIEW

1.1 BASIC TOOLS OF

CALCULUS

Exercises:

1. Show that the third order Taylor polynomial for f(x) = (x +

1)−1, about x0 = 0, is

Solution: We have f(0) = 1 and

so that f′(0) = –1, f″(0) = 2, f′″ = –6, Therefore

2. What is the third order Taylor polynomial for ,

about x0 = 0?

Solution: We have f(x0) = 1 and

so that f′(0) = 1/2, f″(0) = –1/4, f′″ = 3/8, Therefore



3. What is the sixth order Taylor polynomial for ,

using x0 = 0? Hint: Consider the previous problem.

4. Given that

for x ∈ [−1, 1], where ξ is between x and 0, find an upper

bound for |R|, valid for all x ∈ [−1, 1], that is independent

of x and ξ.

5. Repeat the above, but this time require that the upper

bound be valid only for all x ∈ 

Solution: The only significant difference is the introduction

of a factor of 26 in the denominator:

6. Given that

for , where ξ is between x and 0, find an upper

bound for |R|, valid for all , that is independent of

x and ξ.

7. Use a Taylor polynomial to find an approximate value for 

that is accurate to within 10−3.

Solution: There’s two ways to do this. We can approximate

f (x) = ex and use x = 1/2, or we can approximate 

and use x = e. In addition, we can be conventional and take

x0 = 0, or we can take x0 ≠ 0 in order to speed

convergence.

The most straightforward approach (in my opinion) is to use

a Taylor polynomial for ex about x0 = 0. The remainder



after k terms is

We quickly have that

and a little playing with a calculator shows that

but

So we would use

To fourteen digits,  = 1.64872127070013, and the error

is 2.84 × 10−4, much smaller than required.

8. What is the fourth order Taylor polynomial for f(x) = 1/(x

+1), about x0 = 0?

Solution: We have f(0) = 1 and

so that f ′(0) = –1, f″(0) = 2, f′″ = –6, f″″(0) = 24. Thus

9. What is the fourth order Taylor polynomial for f(x) = 1/x,

about x0 = 1?

10. Find the Taylor polynomial of third order for sin x, using:

(a) x0 = π/6.

Solution: We have

so



(b) x0 = π/4;

(c) x0 = π/2;

11. For each function below construct the third-order Taylor

polynomial approximation, using x0 = 0, and then estimate

the error by computing an upper bound on the remainder,

over the given interval.

(a) f(x) = e–x, x ∈ [0, 1];

(b) f(x) = ln(1 + x), x ∈ [–1, 1];

(c) f(x) = sin x, x ∈ [0, π];

(b) f(x) = ln(1 + x), x ∈ [–1/2, 1/2];

(e) f(x) = 1(x + 1), x ∈ [–1/2, 1/2];

Solution:

(a) The polynomial is

with remainder

This can be bounded above, for all x ∈ [0,1], by

(b) The polynomial is

with remainder

We can’t bound this for all x ∈ [−1, 1], because of the

potential division by zero.

(c) The polynomial is

with remainder



This can be bounded above, for all x ∈ [0, π], by

(d) The polynomial is the same as in (b), of course,

with remainder

For all x ∈ [−1/2, 1/2] this can be bounded by

(e) The polynomial is

with remainder

This can be bounded above, for all x ∈ [−1/2, 1/2], by

Obviously, this is not an especialy good approximation.

12. Construct a Taylor polynomial approximation that is

accurate to within 10−3, over the indicated interval, for each

of the following functions, using x0 = 0.

(a) f(x) = sin x, x ∈ [0, π]

(b) f(x) = e–x, x ∈ [0, 1]

(c) f(x) = ln(1 + x), x ∈ [–1/2, 1/2]

(d) f(x) = 1/(x + 1), x ∈ [–1/2, 1/2]

(e) f(x) = ln(1 + x), x ∈ [–1, 1]

Solution:

(a) The remainder here is



for c ∈ [0, π]. Therefore, we have

Simple manipulations with a calculator then show that

but

Therefore the desired Taylor polynomial is

(b) The remainder here is

for c ∈ [0,1]. Therefore, we have

Simple manipulations with a calculator then show that

but

Therefore the desired Taylor polynomial is

(c) f(x) = ln(1 + x), x ∈ G [0, 3/4].

Solution: The remainder is now

and n = 8 makes the error small enough.

(d) f(x) =ln(1 + x), x ∈ [0, 1/2].



13. Repeat the above, this time with a desired accuracy of

10−6.

14. Since

we can estimate π by estimating arctan 1. How many terms

are needed in the Gregory series for the arctangent to

approximate π to 100 decimal places? 1,000? Hint: Use the

error term in the Gregory series to predict when the error

gets sufficiently small.

Solution: The remainder in the Gregory series

approximation is

so to get 100 decimal places of accuracy for x = 1, we

require

thus, we have to take n ≥ (10100 – 3)/2 terms. For 1,000

places of accuracy we therefore need n ≥ (101000 – 3)/2

terms.

Obviously this is not the best procedure for computing

many digits of π!

15. Elementary trigonometry can be used to show that

This formula was developed in 1706 by the English

astronomer John Machin. Use this to develop a more

efficient algorithm for computing π. How many terms are

needed to get 100 digits of accuracy with this form? How

many terms are needed to get 1,000 digits? Historical note:

Until 1961 this was the basis for the most commonly used

method for computing π to high accuracy.

Solution: We now have two Gregory series, thus

complicating the problem a bit. We have



Define pm,n ≈ π as the approximation generated by using an

m term Gregory series to approximate arctan(1/5) and an n

term Gregory series for arctan(1/239). Then we have

where Rk is the remainder in the Gregory series. Therefore

To finish the problem we have to apportion the error

between the two series, which introduces some

arbitrariness into the the problem. If we require that they

be equally accurate, then we have that

and

Using properties of logarithms, these become

and

For  these are satisfied for m = 70, n = 20.

For  we get m = 712, n = 209. Changing

the apportionment of the error doesn’t change the results

by much at all.

16. In 1896 a variation on Machin’s formula was found:

and this began to be used in 1961 to compute π to high

accuracy. How many terms are needed when using this

expansion to get 100 digits of π? 1,000 digits?

Solution: We now have three series to work with, which

complicates matters only slightly more compared to the

previous problem. If we define pk,m,n ≈ π based on



taking k terms in the series for arctan(1/8), m terms in the

series for arctan(1/57), and n terms in the series for

arctan(1/239), then we are led to the inequalities

and

For  we get k = 54, m = 27, and n = 19; for

 we get k = 552, m = 283, and n = 209.

Note: In both of these problems a slightly more involved

treatment of the error might lead to fewer terms being

required.

17. What is the Taylor polynomial of order 3 for f(x) = x4 + 1,

using x0 = 0?

Solution: This is very direct:

so that

18. What is the Taylor polynomial of order 4 for f(x) = x4 + 1,

using x0 = 0? Simplify as much as possible.

19. What is the Taylor polynomial of order 2 for f(x) = x3 + x,

using x0 = 1?

20. What is the Taylor polynomial of order 3 for f(x) = x3 + x,

using x0 = 1? Simplify as much as possible.

Solution: We note that f′″(1) = 6, so we have (using the

solution from the previous problem)

The polynomial is its own Taylor polynomial.

21. Let p(x) be an arbitrary polynomial of degree less than or

equal to n. What is its Taylor polynomial of degree n, about an



arbitrary x0?

22. The Fresnel integrals are defined as

and

Use Taylor expansions to find approximations to C(x) and

S(x) that are 10–4 accurate for all x with |x| ≤ . Hint:

Substitute x = πt2/2 into the Taylor expansions for the

cosine and sine.

Solution: We will show the work for the case of S(x), only.

We have

Looking more carefully at the remainder term, we see that

it is given by

Therefore,

A little effort with a calculator shows that this is less than

10−4 for n ≥ 1, therefore the polynomial is

23. Use the Integral Mean Value Theorem to show that the

“pointwise” form (1.3) of the Taylor remainder (usually called

the Lagrange form) follows from the “integral” form (1.2)

(usually called the Cauchy form).

24. For each function in Problem 11, use the Mean Value

Theorem to find a value M such that



is valid for all x1, x2 in the interval used in Problem 11.

Solution: This amounts to finding an upper bound on |f′| over

the interval given. The answers are as given below.

(a) f(x) = e–x, x ∈ [0, 1]; M ≤ 1.

(b) f(x) = ln(1 +x), x ∈ [–1, 1]; M is unbounded, since f′(x)

= 1/(1+ x) and x = –1 is possible.

(c) f(x) = sin x, x ∈ [0, π]; M ≤ 1.

(d) f(x) = ln(1 + x), x ∈ [–1/2,1/2]; M ≤ 2.

(e) f(x) = 1/(x + 1), x ∈ [–1/2,1/2]. M ≤ 4.

25. A function is called monotone on an interval if its

derivative is strictly positive or strictly negative on the

interval. Suppose f is continuous and monotone on the

interval [a, b], and f(a) f(b) < 0; prove that there is exactly

one value a ∈ [a, b] such that f(α) = 0.

Solution: Since f is continuous on the interval [a, b] and

f(a) f(b) < 0, the Intermediate Value Theorem guarantees

that there is a point c where f(c) = 0, i.e., there is at least

one root. Suppose now that there exists a second root, 7.

Then f(c) = f(γ) = 0. By the Mean Value Theorem, then,

there is a point ξ between c and γ such that

But this violates the hypothesis that f is monotone, since a

monotone function must have a derivative that is strictly

positive or strictly negative. Thus we have a contradiction,

thus there cannot exist the second root.

A very acceptable argument can be made by appealing to a

graph of the function.

26. Finish the proof of the Integral Mean Value Theorem

(Theorem 1.5) by writing up the argument in the case that g

is negative.

Solution: All that is required is to observe that if g is

negative, then we have



and

The proof is completed as in the text.

27. Prove Theorem 1.6, providing all details.

28. Let ck > 0, be given, 1 ≤ k ≤ n, and let xk ∈ [a, b], 1 ≤ k

≤ n. Then, use the Discrete Average Value Theorem to prove

that, for any function f ∈ C([a, b]),

for some ξ ∈ [a, b].

Solution: We can’t apply the Discrete Average Value

Theorem to the problem as it is posed originally, so we

have to manipulate a bit. Define

Then

and now we can apply the Discrete Average Value Theorem

to finish the problem.

29. Discuss, in your own words, whether or not the following

statement is true: “The Taylor polynomial of degree n is the

best polynomial approximation of degree n to the given

function near the point x0.”

1.2 ERROR, APPROXIMATE

EQUALITY, AND ASYMPTOTIC

ORDER NOTATION

Exercises:



1. Use Taylor’s Theorem to show that  for x

sufficiently small.

2. Use Taylor’s Theorem to show that  for x

sufficiently small.

Solution: We can expand the cosine in a Taylor series as

If we substitute this into (1 – cos x)/x and simplify, we get

so that we have

where C = 1/24. Therefore, 

3. Use Taylor’s Theorem to show that

for x sufficiently small.

Solution: We have, from Taylor’s Theorem, with x0 = 0,

for some ξ between 0 and x. Since

for all x sufficiently small, the result follows. For example,

we have

for all x ∈ [–1/2, 1/2].

4. Use Taylor’s Theorem to show that

for x sufficiently small.

Solution: This time, Taylor’s Theorem gives us that



for some ξ between 0 and x. Thus, for all x such that |x| ≤

m,

where C = 1/(1 – m)4.

5. Show that

6. Recall the summation formula

Use this to prove that

Hint: What is the definition of the  notation?

7. Use the above result to show that 10 terms (k = 9) are all

that is needed to compute

to within 10−4 absolute accuracy.

Solution: The remainder in the 9 term partial sum is

8. Recall the summation formula

Use this to show that

9. State and prove the version of Theorem 1.7 which deals

with relationships of the form .

Solution: The theorem statement might be something like

the following:



Theorem: Let  and , with

 for all n sufficiently large. Then

In the last equation, A is an arbitrary constant, independent

of n.

The proof parallels the one in the text almost perfectly, and

so is omitted.

10. Use the definition of  to show that if y = yh + (hp),

then hy = hyh + (hp+1).

11. Show that if  and ,then .

Solution: We have

and

These follow from the definition of the  notation.

Therefore

which implies that .

12. Suppose that y = yh + (β(h)) and z = zh + (β(h)), for h

sufficiently small. Does it follow that y – z = yh – zh (for h

sufficiently small)?

13. Show that

for all h sufficiently small. Hint: Expand f(x ± h) out to the

fourth order terms.

Solution: This is a straight-forward manipulation with the

Taylor expansions

and



Add the two expansions to get

Now solve for f′(x).

14. Explain, in your own words, why it is necessary that the

constant C in (1.8) be independent of h.

1.3 A PRIMER ON COMPUTER

ARITHMETIC

Exercises:

1. In each problem below, A is the exact value, and Ah is an

approximation to A. Find the absolute error and the relative

error.

(a) A = π, Ah = 22/7;

(b) A = e, Ah = 2.71828;

(c) A = , Ah = 0.1667;

(d) A = , Ah = 0.1666.

Solution:

(a) Abs. error. ≤ 1.265 × 10−3, rel. error ≤ 4.025 × 10−4;

(b) Abs. error. ≤ 1.828 × 10−6, rel. error ≤ 6.72 × 10−7;

(c) Abs. error. ≤ 3.334 × 10−5, rel. error ≤ 2.000 × 10−4;

(d) Abs. error. ≤ 6.667 × 10−5, rel. error ≤ 4 × 10−4.

2. Perform the indicated computations in each of three ways:

(i) Exactly; (ii) Using three-digit decimal arithmetic, with

chopping; (iii) Using three-digit decimal arithmetic, with

rounding. For both approximations, compute the absolute

error and the relative error.

(a) 



(b) 

(c) 

(d) 

3. For each function below explain why a naive construction

will be susceptible to significant rounding error (for x near

certain values), and explain how to avoid this error.

(a) ;

(b) ;

(c) ;

(d) ;

(e) ;

Solution: In each case, the function is susceptible to

subtractive cancellation which will be amplified by division

by a small number. The way to avoid the problem is to use

a Taylor expansion to make the subtraction and division

both explicit operations. For instance, in (a), we would write

To get greater accuracy, take more terms in the Taylor

expansion.

4. For f(x) = (ex – 1)/x, how many terms in a Taylor expansion

are needed to get single precision accuracy (7 decimal digits)

for all ? How many terms are needed for double

precision accuracy (14 decimal digits) over this same range?

5. Using single precision arithmetic, only, carry out each of

the following computations, using first the form on the left

side of the equals sign, then using the form on the right side,

and compare the two results. Comment on what you get in

light of the material in § 1.3.

(a) 

(b) 

Solution: “Single precision” means 6 or 7 decimal digits,

so the point of the problem is to do the computations using

6 or 7 digits.



(a) Using a standard FORTRAN compiler on a low-end UNIX

workstation, the author got

but

(b) Using a standard C compiler on a low-end UNIX

workstation, the author

got

but

6. Consider the sum

where m = 2 x 105. Again using only single precision,

compute this two ways: First, by summing in the order

indicated in the formula; second, by summing backwards,

i.e., starting with the k = 200,000 term and ending with the

k = 0 term. Compare your results and comment upon them.

7. Using the computer of your choice, find three values a, b,

and c, such that

Repeat for your pocket calculator.

Solution: The key issue is to get an approximation to the

machine epsilon, then take a = 1, b = c = (2/3)u or

something similar. This will guarantee that (a + b) + c = a

but a + (b + c) > a. Using a standard C compiler on a low-

end UNIX workstation, the author was able to determine

that a = 1, b = 2 × 10−7, and c = 3 × 10−7 will work. On

an elderly Sharp calculator, the author found that a =1, b =

4 × 10–10, and c = 4 × 10–10 worked.

8. Assume we are using 3-digit decimal arithmetic. For  =

0.0001, a1 = 5, compute



for a0 equal to each of 1, 2, and 3. Comment.

9. Let  ≤ u. Explain, in your own words, why the computation

is potentially rife with rounding error. (Assume that a0 and

a1 are of comparable size.) Hint: See previous problem.

Solution: This is just a generalization of the previous

problem. If e is small enough, then a2 will be independent

of a0.

10. Using the computer and language of your choice, write a

program to estimate the machine epsilon.

Solution: Using MATLAB on a moderately old personal

computer, the author got a value of u =1.1016e – 16. The

code is given below.

11. We can compute e–x using Taylor polynomials in two

ways, either using

or using

Discuss, in your own words, which approach is more

accurate. In particular, which one is more (or less)

susceptible to rounding error?


