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Preface

Understanding electronic structure and reactivity of organometallic com-

pounds remains the problem of fundamental importance in modern chemistry.

Development of catalysis and organic chemistry was largely governed by elu-

cidation of reaction mechanisms and utilization of this knowledge to control

selectivity and improve yields in synthetic applications dealing with medicinal

chemistry, preparation of pharmaceutical and biologically active molecules,

industrial processes, fine organic synthesis, new generation of smart materials

and organic electronics. In recent decades research in these areas was stim-

ulated by rapid progress in quantum chemistry and utilization of theoretical

calculations to reveal correlations between molecular structure, properties, and

reactivity.

Theoretical calculations usingmodern quantum chemical methods provided an

outstanding opportunity to make a valuable insight into the problem and allowed

reliable description of reaction mechanisms in catalysis from the first principles.

Application of informative and flexible computational procedures on numerous

examples has demonstrated accurate computational modeling – often within the

accuracy achieved in experimental measurements.

Not surprisingly, there is a remarkable interest in modern experimental

chemistry to understand computational methods and to apply these methods

in the everyday research. In fact, the number of publications that contain

both – experiment studies and theoretical calculations – was tremendously

increased over the last years. It is not uncommon for purely experimental

research groups to learn theoretical methods and facilitate mechanistic studies,

especially in the fields where experimental capabilities alone are not sufficient

to solve the problem. Rapid increase in the computational power of modern

personal computers and easy availability of high performance CPUs even

further stimulate this tendency. What is important nowadays, is to transfer

the knowledge about state-of-the-art theoretical methods and fascinating

opportunities they open in the studies of transition metal chemistry and

catalysis.

The role of this book is to highlight new horizons in the studies of reaction

mechanisms that open joint application of experimental studies and theoretical

calculations. The book is aimed to provide first hand experience from known
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experts that are practically familiar with such complex studies involving both

computational and experimental tools.

The present book chapters review organometallic and catalytic reactions in

the gas phase, model systems for studying reactions in solution under homo-

geneous conditions with soluble metal complexes, as well as complex chemical

transformations involving heterogeneous systems. Few chapters are dedicated to

describe methodology of computational studies for exploration of catalytic cycles

and mechanisms of organometallic reactions.

I would like to expressmy great thanks to the authors that accepted to contribute

to the book for their excellent chapters. Finally, I thank Anne Brennfuehrer and

Lesley Belfit from Wiley for continuous help and assistance during development

of this book project.

Moscow, Russia, 2014 Valentine Ananikov
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1

Mechanisms of Metal-Mediated C–N Coupling Processes: A

Synergistic Relationship between Gas-Phase Experiments and

Computational Chemistry

Robert Kretschmer, Maria Schlangen, and Helmut Schwarz

1.1

Introduction

As a consequence of the key positions that the elements carbon and nitrogen

occupy in nature, C–N bond formation constitutes an important issue in the syn-

thesis of various products ranging from chemical feedstocks to pharmaceuticals.

Not surprisingly, over the last few decades, intensive research has been devoted

to this timely topic [1], and the use of ammonia as a relatively inexpensive reagent

for C–N coupling reactions has been found to be highly desirable [2]. However,

despite the impressive progress reported on the development of new synthetic

methodologies, there exists a lack of information on the precise, atomistic-level

derived mechanisms in particular for the metal-mediated formation of nitrogen-

containing organic molecules generated directly from ammonia. One way to gain

such insight is to perform gas-phase experiments on “isolated” reactants. These

studies provide an ideal arena for probing experimentally the energetics and kinet-

ics of a chemical reaction in an unperturbed environment at a strictly molecular

level without being obscured by difficult-to-control or poorly defined solvation,

aggregation, counterion, and other effects. Thus, an opportunity is provided to

reveal the intrinsic feature(s) of a catalyst, to explore directly the concept of single-

site catalysts, or to probe in detail how mechanisms are affected by factors such

as cluster size, different ligands, dimensionality, stoichiometry, oxidation state,

degree of coordinative saturation, and charge state. In short, from these experi-

ments, one may learn what determines the outcome of a chemical transformation

[3]. In addition, thermochemical and kinetic data derived from these experiments

provide a means to benchmark the quality of theoretical studies.

While the study of “naked” gas-phase species will, in principal, never account

for the precise kinetic and mechanistic details that prevail at a surface, in an

enzyme, or in solution, when complemented by appropriate, computationally

derived information, these gas-phase experiments prove meaningful on the

ground that they permit a systematic approach to address the above-mentioned

questions; moreover, they provide a conceptual framework. The DEGUSSA pro-

cess, which is the rather unique, platinum-mediated, large-scale coupling of CH4

Understanding Organometallic Reaction Mechanisms and Catalysis: Computational and Experimental Tools,
First Edition. Edited by Valentine P. Ananikov.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Mechanisms of Metal-Mediated C–N Coupling Processes

and NH3 to generate HCN [4], serves as a good example. Mass spectrometry-

based experiments [5a] suggested both the key role of CH2NH as a crucial

gas-phase transient and also pointed to the advantage of using a bimetallic system

rather than a pure platinum-based catalyst for the C–N coupling step to diminish

undesired, catalyst-poisoning “soot” formation [6, 7]. The existence of CH2NH

was later confirmed by in situ photoionization studies [8] and catalysts that are

currently employed contain silver-platinum alloys rather than pure platinum.

In this chapter, we focus on two types of gas-phase C–N coupling processes,

Eqs. (1.1) and (1.2), using metal complexes bearing simple carbon- and nitrogen-

based ligands and probing their thermal reactions with ammonia and hydrocar-

bons, respectively.While we will refrain from describing the various experimental

techniques and computationalmethods or theway the reactive species [M(CHx)]
+

and [M(NHx)]
+ are generated [9], the emphasis will rather be on the elucida-

tion of the often intriguing mechanisms of these metal-mediated coupling reac-

tions.

+

M +

MH +

M +

[M(CHx)]
+  +  NH3

x = 0

x = 1

x = 2

x = 3

[M(CNH)]+ H2

[CH2NH2]+

[CH2NH2]+

[CH3NH3]+ (1.1)

+

+

[M(NHx)]
+  +  RH

x = 0

x = 1

x = 2

[M(NHR)]+

[M]+

[MH]+

RNH2

RNH2 (1.2)

1.2

FromMetal-Carbon to Carbon–Nitrogen Bonds

1.2.1

Thermal Reactions of Metal Carbide andMetal Methylidene Complexes with Ammonia

The major ionic product in the reactions of [Ptn(C)]
+ (n= 1, 2) with NH3 corre-

sponds to dehydrogenation of the latter [10]. While there is no direct spectro-

scopic support for the structure assignment of the generated [Ptn(C,N,H)]+ ions,

circumstantial evidence is provided by the ion/molecule reaction of the mass-

selected product ions [Pt(C,N,H)]+ with NH3, Eq. (1.3).

+ + HCN[Pt(C,N,H)]+ NH3 [Pt(NH3)]+
(1.3)
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+ + HCN[Pt2(C,N,H)]+ NH3 [Pt2(NH3)]+
(1.4)

Occurrence of reaction (1.3) suggests the presence of a preformedHCN (or HNC)

ligand in [Pt(C,N,H)]+.Thus, in contrast to [Pt2(C,N,H)]+, generated from [Pt2C]
+

and not being able to release HCN, Eq. (1.4), the mononuclear platinum carbide

[Pt(C)]+ induces C–N bond formation upon reaction with NH3; apparently, this

species serves as one of the late reactive intermediates to generate HCN fromCH4

and NH3 [5a].

In the thermal ion/molecule reactions of the singlet platinummethylidene clus-

ters [Ptn(CH)]+ (n= 1, 2) with NH3, the dominant path corresponds to proton

transfer to generate [NH4]
+ [11]. In addition, for the mononuclear precursor, the

couple [Pt(CH)]+/NH3 gives rise to the formation of [CH2NH2]
+ concomitant

with the loss of atomic platinum; clearly, transfer to and insertion of the elec-

trophilic CH+ unit in a N–H bond of ammonia provides the methane iminium

ion [CH2NH2]
+.

This reaction, Eq. (1.1) with x= 1, has also been studied in quite some detail

for the group 10 systems [M(CH)]+/NH3 (M=Ni, Pd, Pt), and remarkable metal-

dependent differences have been noted [3j]. For the couples [M(CH)]+/NH3

(M=Ni, Pt),1) the following branching ratios were obtained, Eq. (1.5); mecha-

nisms of the various processes were uncovered by extensive density functional

theory (DFT) calculations and deuterium-labeling experiments employing

[M(CD)]+/NH3 and [M(CH)]+/ND3 [3j].

Ni Pt

+ M

+

+

+ H -

+ MC - 14%

NH3[M(CH)]+

[CH2NH2]+ 37% 51%

[M(C,N,H2)]+ H2 18% 35%

[M(CHNH2)]+ 45%

[NH4]+ (1.5)

Proton transfer to produce [NH4]
+ and the neutral metal carbide MC is

exothermic only for M=Pt as a consequence of the relatively small proton

affinity (PA) of 780 kJmol−1 for PtC as compared with PA(NH3)= 852 kJmol−1; in

contrast, PA(NiC)= 915 and PA(PdC)= 879 kJmol−1 are too high to let [M(CH)]+

act as a Brønsted acid toward NH3.

Further, the elimination of a hydrogen atom, originating exclusively from the

incoming ligandNH3, to generate eventually the amino-substitutedmetal carbene

complex [M(CHNH2)]
+ reflects thermochemical features. Specifically, the M–H

bond strength of the central intermediate [H–M(CHNH2)]
+ increases fromnickel

1) While experiments had to be confined toM=Ni and Pt due to the fact that the Pd complexes could

not be generated, extensive DFT calculations were performed for all three group 10 systems.
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to platinum such that the reaction is exothermic for nickel but endothermic for the

other two-metal complexes.

Clearly, C–N bond formation is also involved in the generation of [CH2NH2]
+

as well as in the dehydrogenation paths to produce either [M(CHNH)]+ or

isomeric [M(CNH2)]
+. Depending on the metal, these two isomers are formed

via different mechanisms; while for nickel and palladium, a σ-bond metathesis is

operative, for platinum a sequence of oxidative addition/reductive elimination is

involved [12]. In addition, in the formation of [CH2NH2]
+, the actual mechanism

of the intracomplex hydrogen rearrangement, that is, a direct [1.2] migration

versus a metal-mediated hydrogen transfer is quite affected by the electronic

structure of the intermediate [M(CH–NH3)]
+ [3j].

1.2.2

HowMetals Control the C–N Bond-Making Step in the Coupling of CH4 and NH3

Under thermal conditions, the system [Pt]+/CH4/NH3 reacts with 76–80%

efficiency [5] relative to the collision rate, to form [Pt(CH2)]
+; dehydrogenation

of ammonia by atomic Pt+ to produce [Pt(NH)]+ is endothermic [5a, 13].

Further, if independently generated [Pt(NH)]+ is reacted with CH4, the products

[Pt(CH2)]
+ and NH3 are mainly formed (85%), presumably in a σ-metathesis

process with [CH2NH2]
+/PtH (10%), and [Pt(CNH)]+/2H2 (5%) generated as

by-products. Thus, it is the metal carbene complex [Pt(CH2)]
+ that serves

as the key intermediate in the C–N coupling of CH4 and NH3. As shown in

Eq. (1.6), in addition to minor proton transfer to generate [NH4]
+, the two

major products are associated with the formation of C–N bonds. On the basis

of labeling experiments, both [CH2NH2]
+ and [Pt(CHNH2)]

+ are formed in

clean reactions in which [Pt(CH2–NH3)]
+ serves as the central precursor. As

mentioned, extensive labeling experiments complemented by DFT calculations

shed light on the mechanisms of the reactions [5].

+

70%

25%

5%

ø = 30%
[Pt(CH2)]+ NH3

[CH2NH2]+  +  PtH

[Pt(CHNH2)]+  +  H2

[NH4]+  +  PtCH (1.6)

As shown in Figure 1.1, in the dehydrogenation of intermediate 3, which is also

accessible in a detour 1+NH3 → [H3N–Pt–CH2]
+ (2)→ 3, the platinum center

is exploited as a “catalyst.” According to DFT calculations, the sequence of metal-

mediated N–H and C–H bond activations to generate 6 is energetically favored

over the alternative path commencing with a C–H bond activation (3→ 5→ 6).

The metal-free, symmetry-forbidden [1.2] hydrogen migration/elimination

path (3→ 7) is significantly higher in energy and not accessible under ambient

conditions.

C–N coupling in the thermal reactions of [M(CH2)]
+ with NH3 is not

confined to M=Pt. While the carbenes of the 3d metals [Fe]+ and [Co]+ are
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Figure 1.1 Simplified potential-

energy surface (PES) of the reaction

[Pt(CH2)]
+/NH3 → [Pt(CHNH2)]

+/H2 calcu-

lated for the doublet spin surface at the

B3LYP/TZP//B3LYP/DZP level; relative ener-

gies are given in kJmol−1 and are corrected

for zero-point vibrational energies. For the

sake of clarity, charges are omitted. Color

code: red platinum, gray carbon, blue nitro-

gen, white hydrogen. (Adapted from Ref.

[5a]. Copyright American Chemical Society,

1999.)

completely unreactive toward ammonia, those of the 4d and 5d metals, Rh,

W, Os, and Ir, exhibit moderate efficiencies (10–40% of the collision rate). The

major pathway in the reaction of [Rh(CH2)]
+ and NH3 yields [Rh]+, a product

channel that is not observed for any of the carbene complexes studied. On

thermochemical grounds, the neutral molecule produced can only correspond

to CH3NH2 and its formation requires metals with D0(M
+–CH2)< 364 kJmol−1;

this requirement is met for [Rh(CH2)]
+ (D0 = 355 kJmol−1) but for none

of the 5d metal carbene precursors. For the complexes of osmium and iri-

dium, large fractions of the metal carbenes are consumed by simple acid-base

reactions with ammonia to afford neutral MCH species. It remains to be

established whether this is a consequence of the fact that dehydrogena-

tion of methane by [Os]+ and [Ir]+ gives rise to a hydrido-methylidene

complex [M(H)(CH)]+ (M= Ir, Os) rather than the conventional carbene

isomer [M(CH2)]
+ [5c,d]. The behavior of the couple [Au(CH2)]

+/NH3 is

rather unique. With an efficiency of 60%, the only product pair generated

corresponds to [CH2NH2]
+ and neutral AuH. The branching ratio of aminocar-

bene versus metal hydride formation reflects directly the reaction enthalpies

(ΔrH) for the formations of [CH2NH2]
+ and neutral MH, which themselves

depend on D0(M
+–CH2) versus D0(M–H). ΔrH amounts to −180 kJmol−1

for the [Au(CH2)]
+/NH3 couple and to only −84 kJmol−1 for the platinum

system.
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In contrast to the reactions of some of the mononuclear carbene-cluster ions

[M(CH2)]
+, no C–N bond coupling is achieved when the carbene complexes

of the larger homonuclear cluster ions [Ptn(CH2)]
+ (n= 2–5) or most of the

heteronuclear cluster carbenes [PtnMm(CH2)]
+ (m+ n≤ 4; M=Cu, Ag, Au) are

employed [6]; rather, dehydrogenation of the carbene unit, resulting in carbide

(“soot”) formation, takes place, Eq. (1.7) for [Ptn(CH2)]
+.

[Pt𝑛(CH2)]+ +NH3 → [Pt𝑛(C)(NH3)]+ +H2 (1.7)

[PtM(CH2)]+ +NH3 → [PtM(CHNH2)]+ +H2 (1.8)

However, the heteronuclear complexes [PtM(CH2)]
+ (M=Cu, Ag, Au) exhibit

an extraordinary cooperative effect in enhancing C–N coupling at the expense

of carbide formation [6, 14], Eq. (1.8). In these bimetallic cluster ions, the plat-

inum core brings about methane activation where relativistic effects [15a] matter,

to form a strong metal carbon multiple bond in [Pt(CH2)]
+ [15b]. The role of

the coinage metal M in these clusters is to control the branching ratio between

unwanted “soot” formation and C–N coupling, demonstrating that, at a strictly

molecular level, cooperative effects in heteronuclear cluster catalysis seem to exist.

Further insight into mechanistic aspects of this remarkable observation has been

provided by relativistic DFT calculations [16]. Accordingly, for the homonuclear

system, the cyclic structure 8 (Scheme1.1) is 103.7 kJmol−1 more stable than its

acyclic isomer 9; moreover, the barrier it takes to bring about isomerization 8→ 9

amounts to 118 kJmol−1. Thus, under the experimental conditions, the only iso-

mer that plays a role in the reaction with NH3 is 8 (M=Pt). Further, an analysis

of the reaction profile for the homonuclear couple [Pt2(CD2)]
+/NH3 reveals that

the “carbide path” to form 10 and D2, Scheme 1.1, is energetically favored over

the sequence 8→ 9→ 11. In contrast, for the heteronuclear cluster ions (M=Cu,

Ag, and Au), the isomers 8 and 9 are much closer in energy and the barriers

for their interconversion are relatively small. In addition, the C–N coupling path

9→ 11 is energetically favored over the generation of the cyclic carbide com-

plex 10.

1.2.3

C–N Coupling via SN2 Reactions: Neutral Metal Atoms as a Novel Leaving Group

While [M(CH3)]
+ complexes (with M being a first-row transition metal) do not

bring about a reaction according to Eq. (1.9), “bare” [Zn(CH3)]
+ does react with

ammonia under ambient conditions. The reaction yields N-protonated methy-

lamine with neutral atomic zinc serving as a leaving group, as shown in Figure 1.2

[17].

[M(CH3)]+ +NH3 → [CH3NH3]+ +M (1.9)

A more thorough investigation revealed that this novel gas-phase SN2-reaction

is not confined to zinc but is typical for the whole zinc triad exhibiting both com-

monalities and differences with regard to the nature of M.
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Scheme 1.1 Carbide formation versus C–N coupling in the thermal ion/molecule reactions

of [PtM(CD2)]
+ with NH3 (M= Pt, Cu, Ag, Au).

On the basis of detailed UCCSD(T)/def2-QZVP//UB3LYP/def2-QZVP calcu-

lations, the alternative reaction channel in terms of a metathesis reaction under

formation of methane, Eq. (1.10), does not occur for M=Zn, Cd, Hg as the

result of a kinetic barrier preventing the reaction to proceed under quasi-thermal

conditions.

+ +[M(CH3)]+ NH3 [M(NH2)]+ CH4 (1.10)

Rather, the SN2 process according to Eq. (1.9) occurs with varying efficiencies of

5.0 (M=Zn), 2.3 (Cd), and 20.4% (Hg). These differences in reactivity parallel

the variation of the ionization energies and the calculated methyl-cation affini-

ties (MCAs) of M. The highest efficiency is observed for the most noble metal

(i.e., Hg) which at the same time exhibits the smallest MCA. For the liberation of

atomic M in the C–N coupling, Eq. (1.9), two pathways were identified compu-

tationally that branch out right from the beginning (Figure 1.3): NH3 can directly

coordinate (i) to the metal center (13a) or (ii) to the carbon atom of the methyl

group (13b). Not surprisingly, the gain in complexation energy is much higher

for the former path. Next, the encounter complexes 13a,b react in two different

stereochemical modes. In the transition structures TS 13a/14a, the M–C bond

is largely stretched in comparison to 13a, and NH3 attacks the methyl group side-

onwith retention of configuration at the carbon center. Under thermal conditions,

this reductive elimination path is not accessible for any of these metals, as energy

values ranging from 57.7 kJmol−1 (for Cd) to 181.2 kJmol−1 (for Hg) above the

entrance channel are necessary to achieve TS 13a/14a. In contrast, the transition

structures TS 13b/14b associated with inversion of configuration of the methyl
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Figure 1.2 Ion/molecule reactions of

mass-selected [Zn(CH3)]
+ with NH3 (upper

part), and [Zn(NH2)]
+ with CH4 (lower part,

mirrored at the base line) under thermal

conditions. Important regions are enlarged

by a factor of 10. (Adapted from Ref. [17].

Copyright WILEY-VCH, 2011.)

group are located below the entrance channel. It is this path that permits, under

ambient conditions, a gas-phase SN2 reaction with a neutral atomic metal serving

as a leaving group in the C–N coupling reaction; here, the metal M is reduced

from the formal oxidation state II to 0. All experimental findings, for example,

relating the rate efficiencies with the metal-cation affinities, or the first and sec-

ond ionization energies of M, are in excellent agreement with the picture of the

potential-energy surface (PES) given in Figure 1.3 [18].

1.3

FromMetal-Nitrogen to Carbon-Nitrogen Bonds

1.3.1

High-Valent Iron Nitride and Iron Imide Complexes

As already mentioned in Section 1.2, ion/molecule reactions of species having

metal-nitrogen bonds with hydrocarbons give rise to the formation of C–N

bonds. In this chapter, this topic will be pursued in a more systematic way, and

we will commence with a discussion of a high-valent iron-nitrido dication. This

field of “iron chemistry” has gained quite some interest over the last decade [19]

as a result of their role in metalloenzymatic transformations [20].
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(Adapted from Ref. [18]. Copyright American

Chemical Society, 2012.)

As depicted in Scheme 1.2, the high-valent dication 17 can be generated by

collision-induced oxidative N2 loss from the azido precursor 16 in the gas phase

[21] and has been characterized by gas-phase IR spectroscopy of a 15N-labeled

isotopologue in conjunction with DFT calculations (M. Schlangen, J.P. Boyd,

O. Dopfer, J. Oomens, A. Grohmann, P. Hildebrandt, unpublished results).

17 is not only capable of bringing about suicidal intraligand insertion of the

nitride nitrogen atom in C–C, C–H, and N–H bonds (17→ 18) or the transfer

of a nitrogen atom to a diene unit (17→ 19→ 20) [21] but also what is most

unusual and unprecedented – the room-temperature nitrile-alkyne metathesis

17→ 21 to generate RCN [22], Scheme 1.2. Here, most likely a sequence of

electrophilic addition of the nitrido atom to the C≡C bond, followed by a series

of electrocyclic isomerizations is operative (G. Frenking private communication

to H. Schwarz).

Early transition-metal imides [M(NH)]+ have bond-dissociation energies large

enough that for M= Sc, Ti, V, Y, Zr, Nb, La, and Ta, thermal dehydrogenation of

ammonia by [M]+ is possible [23]. A direct and unfortunate consequence of these

high bond energies, that is, D0(M
+–NH)> 423 kJmol−1, is that the [M(NH)]+

species of the early transition metals are featured by a rather low reactivity as far

as the transfer of the NH unit to a substrate is concerned. On the other hand,
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nitrido dication. (Adapted from Ref. [3g]. Copyright WILEY-VCH, 2012.)

the late 3d transition-metal cations [Co]+, [Ni]+, and [Cu]+ differ in that even at

elevated kinetic energies, they do not form the corresponding [M(NH)]+ species

when reacted with NH3 owing to their weak metal-nitrogen bonds [24]. However,

[Fe(NH)]+ is expected to possess a well-balanced bonding situation between

these extremes along the 3d series, rendering it a suitable candidate for catalytic

procedures. This was demonstrated by pioneering work of Freiser and coworkers

[25] on the gas-phase reactions of [Fe(NH)]+ with benzene and ethene.This work

has since been extended to other substrates and the experimental findings were

complemented by electronic structure calculations [26]. [Fe(NH)]+ can also be

conveniently generated, for example, in the reactions of [FeO]+ with NH3 or of

bare [Fe]+ with either HN3 (liberation of N2) or NH2OH (loss of H2O). When

mass-selected [Fe(NH)]+ is reacted with hydrocarbons the following findings are

worth mentioning:

1) [Fe(NH)]+ is capable to activate CH4 by insertion of NH in the C–H bond to

afford atomic [Fe]+ concomitant with neutral CH3NH2. However, the reac-

tion efficiency is surprisingly small (ø= 0.2%) as is the intermolecular kinetic

isotope effect KIE= 1.3 derived from the ion/molecule reaction of [Fe(NH)]+

with CD4.



1.3 From Metal-Nitrogen to Carbon-Nitrogen Bonds 11

2) In themuchmore efficient reactions with C2H6 (ø= 45%) andC3H8 (ø= 50%),

generation of [Fe]+ (with 10 and 5% branching ratios, respectively) is indica-

tive of C–N formationmost likely to generate the neutral amines of C2H5NH2

and C3H7NH2.

3) When [Fe(NH)]+ is reacted with benzene (ø= 70%), themajor channel affords

ionized aniline and also the other, twominor routes also indicate the operation

of C–N coupling processes, Eq. (1.11).

+

+ + Fe

+ HCN

C6H6[Fe(NH)]+

10%

80%

10%

[Fe]+ C6H5NH2

[C6H5NH2]+

[Fe(C5H6)]+ (1.11)

The preference for generating [C6H5NH2]
+• versus [Fe]+ is in line with the

lower ionization energy (IE) of aniline (7.72 eV) versus IE(Fe)= 7.87 eV.

4) The thermal reaction of [Fe(NH)]+ with toluene occurs at the collision limit

(ø= 100%). Dehydrogenation dominates the product spectrum (85% branch-

ing ratio) most likely generating an iron complex bearing a benzylideneamine

unit, that is, C6H5CHNH/[Fe]+; the C–N coupling product [C7H7NH2]
+•

amounts to only 5% and, on the basis of a comparison of the IEs, corresponds

to ionized toluidine rather than benzylamine.

In summary, for most organic substrates, at least partial C–N bond coupling is

accomplished by [Fe(NH)]+, which has emerged as a model system for the exam-

ination of transition metal–mediated imine transfer in the gas phase.

1.3.2

Metal-Mediated Hydroamination of an Unactivated Olefin by [Ni(NH2)]
+

The atom-economic addition of NH3 to unactivated olefins is hampered by var-

ious obstacles, and in view of the importance of this hydroamination reaction,

enormous efforts have been undertaken to develop metal-based catalytic routes

[27].

A “room-temperature” variant of this process has been realized in the

ion/molecule reaction of the “bare” amidonickel cation [Ni(NH2)]
+ (22), which

can be generated in the gas phase by reacting [Ni(OH)]+ with NH3 or by

collision-induced dissociation of ESI-generated [Ni(formamide)3]
2+ [28].

As shown in Figure 1.4, the thermal reaction of mass-selected [Ni(NH2)]
+ (22)

with C2H4 results in the formation of two primary products, Eqs. (1.12) and (1.13),

with a branching ratio of 3.1:1 and an efficiency of ø= 18%.

[Ni(NH2)]+ + C2H4 → [C2H6N]+ +Ni (1.12)

[Ni(NH2)]+ + C2H4 → [Ni(C2H4N)]+ +H2 (1.13)

The assignment of m/z 44 [C2H6N]+ as N-protonated ethylideneamine (27) is

in keeping with DFT calculations and labeling experiments. For example, H2
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Figure 1.4 Mass spectrum resulting from the thermal reactions of mass-selected [Ni(NH2)]
+

with C2H4 at a pressure of 0.9× 10−4 mbar. The region between m/z 80 and 140 is enlarged

by a factor 10. (Adapted from Ref. [28]. Copyright WILEY-VCH, 2012.)

generated in reaction (1.13) contains one hydrogen atom from C2H4 and one

from the amide group. Further, an intramolecular KIE of 1.4 has been determined

for the reaction with CHD=CHD, and an effect of the stereochemistry in the

reactions of 22 with E- and Z-CHD=CHD has not been observed.

In Figure 1.5, the PESs of the primary reactions for the ground and first excited

states are depicted. Commencing with an electrophilic addition to form adduct

complex 23, the carbon-metal and carbon-nitrogen bonds are then formed viaTS

23/24 leading to 24. Next, a sequence of two Ni-mediated H-atom shifts occur

to first generate the metal hydride species 25; then, passing through TS 25/26

the complex 26 emerges that, upon liberation of atomic neutral Ni, generates

[CH3CHNH2]
+ (27, m/z 44). In addition, complex 26 serves as a precursor for

the dehydrogenation to form [Ni(C2H4N)]+ (30) in a highly regioselective fashion.

Details involve the oxidative insertion of the nickel atom in a N–H bond to pro-

duce the nickel hydride 28. Molecular hydrogen is then generated in a σ-bond
metathesis reaction via TS 28/29 to produce 29 from which H2 is liberated in a

barrier-free dissociation. While the operation of a two-state reactivity (TSR) sce-

nario is crucial in numerous reactions of cationic nickel complexes in the gas phase

[3f, 29], in the systems described in Figure 1.5, it does not play a role, according to

the calculations. For example, as shown in Figure 1.5a, there is no need to invoke

the involvement of an excited singlet state in the generation of the main product

pair [CH3CHNH2]
+/3Ni.The reaction can smoothly proceed on the ground-state

triplet surface. The same holds true for the dehydrogenation path, Figure 1.5b.

1.4

Conclusion and Perspectives

The studies discussed in this chapter exemplify how gas-phase reactions in

conjunction with computational studies can shed light on often complex reaction


