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CHAPTER 1: 

 

INTRODUCTION 

1.1 In the figure below, 
min

x  and 
max

x  denote optimal solutions for Part (a) 

and Part (b), respectively. 
 

0

1

2

2
x

1
x4323

2

23

(4, 2)

2 Feasible regionmin
xmax

x
 

 
1.2 a. The total cost per time unit (day) is to be minimized given the storage 

limitations, which yields the following model: 

 Minimize 1 1 2 2
1 2 1 1 2 2 1 1 2 2

1 2

( , )
2 2

d Q d Q
f Q Q k h k h c d c d

Q Q
       

 subject to  
1 1 2 2

s Q s Q S   

  
1 2

0, 0.Q Q   

Note that the last two terms in the objective function are constant and 
thus can be ignored while solving this problem. 
 

 b. Let 
j

S  denote the lost sales (in each cycle) of product j, j = 1, 2. In 

this case, we replace the objective function in Part (a) with 

1 2 1 2
( , , , ),F Q Q S S  where 

1 2 1 2
( , , , )F Q Q S S  = 

1 1 1
( , )F Q S  + 

2 2 2
( , ),F Q S  

and where 
2

( , ) ( ) , 1,2.
2( )

j j
j j j j j j j j j j

j j j j

d Q
F Q S k c Q S PQ h j

Q S Q S
     

 
  



 

2 

  This follows since the cycle time is 
j j

j

Q S

d


, and so over some T 

days, the number of cycles is 
j

j j

Td

Q S
. Moreover, for each cycle, the 

fixed setup cost is 
j

k , the variable production cost is 
j j

c Q , the lost 

sales cost is 
j j
S , the profit (negative cost) is 

j
PQ , and the 

inventory carrying cost is ( )
2
j j

j
j

h Q
Q

d
. This yields the above total cost 

function on a daily basis.  
 
1.4 Notation: 

j
x  : production in period j, j = 1,…,n 

  
j

d  : demand in period j, j = 1,…,n 

  
j

I  : inventory at the end of period j, j = 0, 1,…,n. 

 The production scheduling problem is to: 

 Minimize 
1

1
[ ( ) ]

n

j j
j

f x cI 


  

 subject to 
     

1j j j j
x d I I     for j = 1,…,n 

     
j

I K   for j = 1,…,n–1 

     0
n

I   

     0, 0
j j

x I    for j = 1,…,n–1. 

 

1.6 Let X denote the set of feasible portfolios. The task is to find an x X   

such that there does not exist an x X  for which t tc x c x  and 

 V  V 
ttx x x x  , with at least one inequality strict.  One way to find 

efficient portfolios is to solve: 

Maximize 
1 2

{  V : }t tc x x x x X    

 for different values of 
1 2

( , ) 0    such that 
1 2

1.    

 
1.10 Let x and p denote the demand and production levels, respectively, and let 

Z denote a standard normal random variable. Then we need p to be such 
that ( 5) 0.01,P p x    which by the continuity of the normal random 

variable is equivalent to ( 5) 0.01.P x p    Therefore, p must satisfy 



 

3 

5 150
( ) 0.01,

7

p
P Z

 
   

 where Z is a standard normal random variable. From tables of the standard 
normal distribution we have ( 2.3267) 0.01.P Z    Thus, we want 

145

7

p 
 2.3267,  or that the chance constraint is equivalent to 

161.2869.p   

 
1.13 We need to find a positive number K that minimizes the expected total 

cost. The expected total cost is 
2

(1 ) ( )p P x K       

1
( ).pP x K     Therefore, the mathematical programming problem 

can be formulated as follows: 

  Minimize   
2 1

0 0
(1 ) ( ) ( )

K
p f x dx p f x dx   


    

  subject to 0.K   

 If the conditional distribution functions 
2

( )F x   and 
1

( )F x   are 

known, then the objective function is simply 
2

(1 ) ( )p F K    

1
(1 ( )).p F K   

 



 

4 

CHAPTER 2: 

 

CONVEX SETS 

2.1 Let 
1 2

( )x conv S S  . Then there exists [0,1]   and 
1 2 1 2
,x x S S   

such that 
1 2

(1 )x x x    . Since 
1

x  and 
2

x  are both in 
1

S , x must be 

in 
1

( )conv S . Similarly, x must be in 
2

( )conv S . Therefore, 
1

( )x conv S   

2
( )conv S . (Alternatively, since 

1 1
( )S conv S  and 

2 2
( )S conv S , we 

have 
1 2 1 2

( ) ( )S S conv S conv S    or that 
1 2

[ ]conv S S   

1
( )conv S 

2
( )conv S .)  

      An example in which 
1 2

( )conv S S   
1

( )conv S   
2

( )conv S  is given 

below: 

    

1
S

2
S

 
 
 Here, 

1 2
( )conv S S   , while 

1 2 1
( ) ( )conv S conv S S   in this case. 

 
2.2 Let S be of the form { : }S x Ax b   in general, where the constraints 

might include bound restrictions. Since S is a polytope, it is bounded by 
definition. To show that it is convex, let y and z be any points in S, and let 

(1 )x y z    , for 0 1  . Then we have Ay b  and Az b , 

which implies that 

   (1 ) (1 )Ax Ay Az b b b          , 

 or that x S . Hence, S is convex. 
 
      Finally, to show that S is closed, consider any sequence { }

n
x x  such 

that 
n

x S , n . Then we have 
n

Ax b , n , or by taking limits as 

n   , we get Ax b , i.e., x S  as well. Thus S is closed. 
 
2.3 Consider the closed set S shown below along with ( )conv S , where 

( )conv S  is not closed: 



 

5 

 
 

 Now, suppose that pS    is closed. Toward this end, consider any 
sequence { }

n
x x , where ( )

n
x conv S , n . We must show that 

( )x conv S . Since ( )
n

x conv S , by definition (using Theorem 2.1.6), 

we have that we can write 
1

1

p
r

n nr n
r

x x



  , where r

n
x S  for 

1,..., 1r p  , n , and where 
1

1
1

p

nr
r





 , n , with 0

nr
  , ,r n . 

Since the 
nr
 -values as well as the r

n
x -points belong to compact sets, 

there exists a subsequence K such that { }
nr K r
  , 1,..., 1r p   , 

and { }r r
n

x x , 1,..., 1r p   . From above, we have taking limits as 

n   , n K , that 

  
1

1

p
r

r
r

x x



  , with 

1

1
1

p

r
r





 , 0

r
  , 1,..., 1r p   , 

 where rx S , 1,..., 1r p    since S is closed. Thus by definition, 

( )x conv S  and so ( )conv S  is closed.     

 

2.7 a. Let 1y  and 2y  belong to AS. Thus, 1 1y Ax  for some 1x S  and 
2y  = 2Ax  for some 2x S . Consider 1 2(1 )y y y    , for any 

0 1  . Then 1 2[ (1 ) ]y A x x    . Thus, letting 
1 2(1 )x x x    , we have that x S  since S is convex and that 

y Ax . Thus y AS , and so, AS is convex. 

 
 b. If 0  , then {0}S  , which is a convex set. Hence, suppose that 

0  . Let 1x  and 2x S  , where 1x S  and 2x S . Consider 
1 2(1 )x x x       for any 0 1  . Then, 1[x x     

2(1 ) ]x . Since 0  , we have that 1 2(1 )x x x    , or that 

x S  since S is convex. Hence x S   for any 0 1  , and 
thus S  is a convex set. 

 
2.8 

1 2 1 2 1 2
{( , ) : 0 1, 2 3}.S S x x x x       



 

6 

 
1 2 1 2 1 2

{( , ) : 1 0, 2 1}.S S x x x x          

 
2.12 Let 

1 2
S S S  . Consider any y, z S , and any (0,1)   such that 

1 2
y y y   and 

1 2
z z z  , with 

1 1 1
{ , }y z S  and 

2 2 2
{ , }y z S . 

Then 
1 2 1 2

(1 ) (1 ) (1 )y z y y z z             . Since both sets 

1
S  and 

2
S  are convex, we have (1 )

i i i
y z S    , i = 1, 2. Therefore, 

(1 )y z    is still a sum of a vector from 
1

S  and a vector from 
2

S , 

and so it is in S. Thus S is a convex set.  
 
 Consider the following example, where 

1
S  and 

2
S  are closed, and convex. 

sequence { }
n

y sequence {z }
n

1
S 2

S

 
 
 Let 

n n n
x y z  , for the sequences { }

n
y  and { }

n
z  shown in the figure, 

where 
1

{ }
n

y S , and 
2

{ }
n

z S . Then { } 0
n

x   where 
n

x S , n , 

but 0 S . Thus S is not closed.  
 
      Next, we show that if 

1
S  is compact and 

2
S  is closed, then S is closed. 

Consider a convergent sequence { }
n

x  of points from S, and let x denote its 

limit. By definition, 
n n n

x y z  , where for each n, 
1n

y S  and 

2n
z S . Since { }

n
y  is a sequence of points from a compact set, it must be 

bounded, and hence it has a convergent subsequence. For notational 
simplicity and without loss of generality, assume that the sequence { }

n
y  

itself is convergent, and let y denote its limit. Hence, 
1

y S . This result 

taken together with the convergence of the sequence { }
n

x  implies that 

{ }
n

z  is convergent to z, say. The limit, z, of { }
n

z  must be in 
2

S , since 
2

S  

is a closed set. Thus, x y z  , where 
1

y S  and 
2

z S , and therefore, 

x S . This completes the proof.      
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2.15 a. First, we show that ˆ( )conv S S . For this purpose, let us begin by 

showing that 
1

S  and 
2

S  both belong to Ŝ . Consider the case of 
1

S  

(the case of 
2

S  is similar). If 
1

x S , then 
1 1

A x b , and so, ˆx S  

with y = x, z = 0, 
1

1  , and 
2

0  . Thus 
1 2

ˆS S S  , and since 

Ŝ  is convex, we have that 
1 2

ˆ[ ]conv S S S  .  

       Next, we show that ˆ ( )S conv S . Let ˆx S . Then, there exist 

vectors y and z such that x y z  , and 
1 1 1

A y b  , 
2 2 2

A z b   for 

some 
1 2

( , ) 0    such that 
1 2

1   . If 
1

0   or 
2

0  , then 

we readily obtain y = 0 or z = 0, respectively (by the boundedness of 

1
S  and 

2
S ), with 

2
x z S   or 

1
x y S  , respectively, which 

yields x S , and so ( )x conv S . If 
1

0   and 
2

0  , then 

1 1 2 2
x y z   , where 

1
1

1
y y


  and 

2
2

1
z z


 . It can be easily 

verified in this case that 
1 1

y S  and 
2 2

z S , which implies that both 

vectors 
1

y  and 
2

z  are in S. Therefore, x is a convex combination of 

points in S, and so ( )x conv S . This completes the proof      

 
 b. Now, suppose that 

1
S  and 

2
S  are not necessarily bounded. As above, 

it follows that ˆ( )conv S S , and since Ŝ  is closed, we have that 

ˆ( )c conv S S . To complete the proof, we need to show that 

ˆ ( )S c conv S  . Let ˆx S , where x y z   with 
1 1 1

A y b  , 

2 2 2
A z b  , for some 

1 2
( , ) 0    such that 

1 2
1   . If 

1 2
( , ) 0   , then as above we have that ( )x conv S , so that 

( )x c conv S  . Thus suppose that 
1

0   so that 
2

1   (the case of 

1
1   and 

2
0   is similar). Hence, we have 

1
0A y   and 

2 2
A z b , which implies that y is a recession direction of 

1
S  and 

2
z S  (if 

1
S  is bounded, then 0y   and then 

2
x z S   yields 

( )x c conv S  ). Let 
1

y S  and consider the sequence 

         
1

[ ] (1 ) ,
n n n

n

x y y z 


     where 0 1
n
   for all n. 
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  Note that 
1

1

n

y y S


  , 
2

z S , and so ( )
n

x conv S , n . 

Moreover, letting { } 0
n
  , we get that { }

n
x y z x   , and so 

( )x c conv S   by definition. This completes the proof.     

 
2.21 a. The extreme points of S are defined by the intersection of the two 

defining constraints, which yield upon solving for 
1

x  and 
2

x  in terms 

of 
3

x  that 

  
31

5 21 xx    , 3 3
2

3 5 2

2

x x
x

 



, where 

3
5

2
x  . 

  For characterizing the extreme directions of S, first note that for any 
fixed 

3
x , we have that S is bounded. Thus, any extreme direction must 

have 
3

0d  . Moreover, the maximum value of 
3

x  over S is readily 

verified to be bounded. Thus, we can set 
3

1d   . Furthermore, if 

(0,0,0)x   and 
1 2

( , , 1)d d d  , then x d S  , 0  , implies 

that  
                                     

1 2
2 1d d   (1) 

  and that 2 2
2 1

4 d d  , i.e., 2 2
2 1

4d d , 0  . Hence, if 
1

0d  , 

then we will have 
2

d   , and so (for bounded direction 

components) we must have 
1

0d   and 
2

0d  . Thus together with 

(1), for extreme directions, we can take 
2

0d   or 
2

1/2d  , yielding 

(0,0, 1)  and 
1

(0, , 1)
2
  as the extreme directions of S. 

 b. Since S is a polyhedron in 3R , its extreme points are feasible solutions 
defined by the intersection of three linearly independent defining 
hyperplanes, of which one must be the equality restriction 

1 2
1x x  . Of the six possible choices of selecting two from the 

remaining four defining constraints, we get extreme points defined by 

four such choices (easily verified), which yields 
3

(0,1, )
2

, 
3

(1,0, )
2

, 

(0,1,0) , and (1,0,0)  as the four extreme points of S. The extreme 

directions of S are given by extreme points of 
1 2 3

{( , , ) :D d d d  

1 2 3
2 0d d d   , 

1 2
0d d  , 

1 2 3
1d d d   , 0}d  , which is 

empty. Thus, there are no extreme directions of S (i.e., S is bounded). 
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 c. From a plot of S, it is readily seen that the extreme points of S are 

given by (0, 0), plus all point on the circle boundary 2 2
1 2

2x x   that 

lie between the points ( 2/5, 2 2/5)  and ( 2/5, 2 2/5) , 

including the two end-points. Furthermore, since S is bounded, it has 
no extreme direction.  

 
2.24 By plotting (or examining pairs of linearly independent active constraints), 

we have that the extreme points of S are given by (0, 0), (3, 0), and (0, 2). 
Furthermore, the extreme directions of S are given by extreme points of 

1 2
{( , ) :D d d  

1 2
2 0d d    

1 2
3 0d d  , 

1 2
1d d  , 0}d  , 

which are readily obtained as 
2 1

( , )
3 3

 and 
3 1

( , )
4 4

. Now, let 

  1

2

4 3/4 ,1 1/4
x
x              

 where 1

2

3 0(1 ) ,0 2
x
x                  

 

 for ( , ) 0   . Solving, we get 7/9   and 20/9,   which yields 

  
7 2 204 3 0 3/4

1 0 2 1/49 9 9
                       

. 

 
2.31 The following result from linear algebra is very useful in this proof: 
 ( )  An ( 1) ( 1)m m    matrix G with a row of ones is invertible if and 

only if the remaining m rows of G are linearly independent. In other words, 

if 
1t

B a
G

e
    

, where B is an m m  matrix, a is an 1m   vector, and e 

is an 1m   vector of ones, then G is invertible if and only if B is 
invertible. Moreover, if G is invertible, then  

 1
t

M g
G

h f
     

, where 1 11
( )tM B I ae B


   , 11

g B a


  , 

11t th e B


  , and 
1

f


 , and where 11 te B a   . 

      By Theorem 2.6.4, an n-dimensional vector d is an extreme point of D 

if and only if the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N  such that 

B

N

d
d
 
 
 

, where 
N

d  = 0 and 1 0
B D D

d B b  , where 1D
b     

0 . From 

Property ( )  above, the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N , 

where 
D

B  is a nonsingular matrix, if and only if A can be decomposed into 

[ ]B N , where B is an m m  invertible matrix. Thus, the matrix 
D

B  must 
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necessarily be of the form 
1
j

t

B a

e

 
 
 

, where B is an m m  invertible 

submatrix of A. By applying the above equation for the inverse of G, we 
obtain 

   

1
1

1

1
1

1 1

j
j

B D D

B a B ad B b 








          

  
 

, 

 where 11 t
j

e B a   . Notice that 0
B

d   if and only if 0   and 

1 0
j

B a  . This result, together with Theorem 2.6.6, leads to the 

conclusion that d is an extreme point of D if and only if d is an extreme 
direction of S. 

 
 Thus, for characterizing the extreme points of D, we can examine bases of 

t
A
e
 
  

, which are limited by the number of ways we can select ( 1)m   

columns out of n, i.e.,  

     !
1 ( 1)!( 1)!

nn
m m n m

   
, 

 which is fewer by a factor of 
1

( 1)m 
 than that of the Corollary to 

Theorem 2.6.6. 
 

2.42 Problem P: Minimize { : , 0}.tc x Ax b x   

 (Homogeneous) Problem D: Maximize { : 0}t tb y A y  . 

 Problem P has no feasible solution if and only if the system Ax b , 
0x  , is inconsistent. That is, by Farkas’ Theorem (Theorem 2.4.5), this 

occurs if and only if the system 0tA y  , 0tb y   has a solution, i.e., if 

and only if the homogeneous version of the dual problem is unbounded.   
 

 
2.45 Consider the following pair of primal and dual LPs, where e is a vector of 

ones in m : 

  
: Max : Min 0

subject to 0
0.  unres.

t t

t
e p x
A p Ax e
p x

 


P D
 

 Then, System 2 has a solution  P	 is	 unbounded	 take	 any	 feasible	
solution	to	System	2,	multiply	it	by	a	scalar	λ,	and	take	   	 	D	


