
Theodore G. Faticoni 

Combinatorics 
An Introduction 

@)WILEY 





Combinatorics 





Combinatorics 
An Introduction 

Theodore G. Faticoni 
Department of Mathematics 
Fordham University 
Bronx, NY 

(f)WILEY 
A JOHN WILEY & SONS, INC., PUBLICATION 



Cover Design: John Wiley & Sons, Inc. 
Cover Illustration: courtesy of Theodore G. Faticoni 

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 
Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax 
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should 
be addressed to the Permissions Department, John Wiley & Sons, Inc., III River Street, Hoboken, NJ 
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. 

Limit of LiabilitylDisclaimer of Warranty: While the publisher and author have used their best efforts in 
preparing this book, they make no representation or warranties with respect to the accuracy or 
completeness of the contents of this book and specifically disclaim any implied warranties of 
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profit or any other commercial damages, including 
but not limited to special, incidental, consequential, or other damages. 

For general information on our other products and services please contact our Customer Care 
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or 
fax (317) 572-4002. 

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, 
however, may not be available in electronic formats. For more information about Wiley products, visit 
our web site at www.wiley.com. 

Library of Congress Cataloging-in-Publication Data: 

Faticoni, Theodore G. (Theodore Gerard), 1954-
Combinatorics: an introduction / Theodore G. Faticoni, Department of Mathematics, Fordham 

University, Bronx, NY. 
pages cm 

Includes bibliographical references and index. 
ISBN 978-1-118-40436-2 (hardback) 

I. Combinatorial analysis. I. Title. 
QAI64.F382012 
511'.6-dc23 2012025751 

Printed in the United States of America. 

10 9 8 7 6 5 4 3 2 I 



To our mother, Margaret Faticoni. 
My sisters and I are one for our Mom's efforts. 





Contents 

Preface xi 

1 Logic 1 
1.1 Formal Logic ...... 1 
1.2 Basic Logical Strategies 7 
1.3 The Direct Argument . 11 
1.4 More Argument Forms 13 
1.5 Proof by Contradiction 17 
1.6 Exercises. ....... 26 

2 Sets 27 
2.1 Set Notation . 27 
2.2 Predicates .. 28 
2.3 Subsets .... 30 
2.4 Union and Intersection 32 
2.5 Exercises .. ...... 35 

3 Venn Diagrams 37 
3.1 Incl usion /Excl usion Principle 37 
3.2 Two-Circle Venn Diagrams . . 40 
3.3 Three-Square Venn Diagrams 44 
3.4 Exercises ....... 52 

Vll 



viii 

4 Multiplication Principle 
4.1 What Is the Principle? 
4.2 Exercises ....... . 

5 Permutations 
5.1 Some Special Numbers 
5.2 Permutations Problems . 
5.3 Exercises ........ . 

6 Combinations 
6.1 Some Special Numbers 
6.2 Combination Problems 
6.3 Exercises........ 

7 Problems Combining Techniques 
7.1 Significant Order ... 
7.2 Order Not Significant. 
7.3 Exercises........ 

8 Arrangement Problems 
8.1 Examples of Arrangements . 
8.2 Exercises.......... 

9 At Least, At Most, and Or 
9.1 Counting with Or . 
9.2 At Least, At Most 
9.3 Exercises ..... . 

10 Complement Counting 
10.1 The Complement Formula 
10.2 A New View of "At Least" 
10.3 Exercises. . . . . . . . 

11 Advanced Permutations 
11.1 Venn Diagrams and Permutations 
11.2 Exercises. . . . . . . . . . . . . . 

12 Advanced Combinations 
12.1 Venn Diagrams and Combinations. 
12.2 Exercises. . . . . . . . . . . . . . . 

CONTENTS 

57 
57 
63 

65 
66 
67 
71 

73 
73 
74 
79 

81 
81 
82 
89 

91 
92 
98 

99 
99 

.105 

.109 

111 
· 111 
.114 
· 118 

121 
· 121 
· 136 

139 
139 

· 148 



CONTENTS 

13 Poker and Counting 
13.1 Warm-Up Problems. 
13.2 Poker Hands. . 
13.3 Jacks or Better 
13.4 Exercises. . . . 

14 Advanced Counting 
14.1 Indistinguishable Objects. 
14.2 Circular Permutations 
14.3 Bracelets . 
14.4 Exercises. . . . . . . 

15 Algebra and Counting 
15.2 The Binomial Theorem. 
15.2 Identities. 
15.3 Exercises. . . . . . . . . 

16 Derangements 
16.1 Mathematical Induction 
16.2 Fixed-Point Theorems . 
16.3 His Own Coat . . . . . . 
16.4 Inclusion/Exclusion for Many Sets. 
16.5 A Common Miscount 
16.6 Exercises. . . . . . . . . . . . . . . 

17 Probability Vocabulary 
17.1 Vocabulary ..... . 

18 Equally Likely Outcomes 
18.1 Outcomes in Experiments 
18.2 Exercises ......... . 

19 Probability Trees 
19.1 Tree Diagrams. 
19.2 Exercises. . . . 

20 Independent Events 
20.1 Independence .......... . 
20.2 Logical Consequences of Influence 
20.3 Exercises ............. . 

ix 

149 
· 150 
· 152 
· 159 
· 161 

163 
· 163 
· 167 
· 170 
· 175 

177 
· 177 
· 180 
· 186 

187 
· 188 
· 192 
· 197 
· 198 
.203 
.206 

207 
.207 

213 
· 213 
.220 

223 
.223 
.232 

235 
.235 
.238 
.242 



x 

21 Sequences and Probability 
21.1 Sequences of Events. 
21. 2 Exercises. . . . . . . . 

22 ConditIonal Probability 
22.1 What Does Conditional Mean? 
22.2 Exercises. . . 

23 Bayes' Theorem 
23.1 The Theorem 
23.2 Exercises. 

24 Statistics 
24.1 Introduction . . . . . . . . . 
24.2 Probability Is Not Statistics 
24.3 Conversational Probability 
24.4 Conditional Statistics . 
24.5 The Mean . . 
24.6 Median. . . . 
24.7 Randomness . 

25 Linear Programming 
25.1 Continuous Variables 
25.2 Discrete Variables .. 
25.3 Incorrectly Applied Rules 

26 Subjective Truth 
26.1 The Absolute Truth of Axioms . 

Bibliography 

Index 

CONTENTS 

245 
.245 
· 251 

253 
.253 
.258 

261 
· 261 
.266 

269 
.269 
.269 
.270 
.278 
· 281 
.282 
.284 

291 
.292 
.296 
.300 

303 
.303 

309 

311 



Preface 

As I read the current textbooks on finite or linear mathematics, I 
am struck by the superficial way that counting problems or combi­
natorics are handled. Counting is treated as a methodi~al or me­
chanical thing. The student is asked to memorize a few important 
but unenlightening algorithms that will always tell us the number 
of ways that someone can choose and arrange her outfits for the 
week. 

Furthermore, the examples that are given use so much of reality 
that the student has more to learn about electronic components, 
failed tests, and card games than they do about counting in math­
ematics. Whatever happened to problems that emphasized their 
mathematical content and left a knowledge of science and gaming 
to other departments? I understand that, to some, mathematics is 
best when it is used in applications. But why are we giving up on 
teaching mathematical content in favor of these other subjects? 

Moreover, the why of it all, the justification, the beauty of proof 
has left these courses entirely. There is no explanation as to how the 
fundamental formulas are derived, and there is no rationalization as 
to how certain formulas are formed. The exercises that are given 
in modern texts are just slight variations on the examples worked 
out in the chapter. And in my opinion, the chapter examples are 
mostly uninspiring. 

xi 
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This book is aimed at college students, teaching assistants, ad­
junct instructors, or anyone who wants to learn a little more el­
ementary combinatorics than the usual text contains. This book 
might also- be used as a supplement to the existing text for a fi­
nite mathematics course or to supplement a discrete mathematics 
course, which several curriculums require. 

The purpose of this book is to give a treatment of counting 
combinatorics that allows for some discussion beyond what is seen 
in today's texts. We will discuss and justify our formulas at every 
turn. Our examples will include, after the most elementary of appli­
cations, some ideas that do not occur in other texts on the market 
at this time. The applications never get beyond the use of Venn 
diagrams, the inclusion/exclusion formula, the multiplication prin­
cipal, permutations, and combinations. But their uses are clever 
and at times inspiring. 

For example, we do some poker hand problems that are not seen 
in modern texts, we count the number of bracelets that can be made 
with n > 1 different colored beads, and we count the number of 
derangements of {I, ... , n}. We do this without any more than the 
elementary tools for counting. We then consider some probability 
problems by doing some elementary counting. But we show some 
very surprising, mathematically precise consequences of a trained 
approach to the subject. 

A second theme within this book is that the case-by-case method 
for solving problems is emphasized. Of course we use a formula 
when needed, but when it comes time to derive a formula, we have 
decided to consistently give the case-by-case approach to the prob­
lem. In this way we are asking the student/reader to think math­
ematically and in exactly the same way from problem to problem 
throughout the book. Perhaps this is what the students will take 
with them when they leave the course. They will misremember the 
applications for the permutation formula, but they might remember 
how to break a problem into pieces in order to solve it. 

The book is a series of short chapters that cover no more than 
one topic each. We cover such topics as logic and paradoxes, sets 
and set notation, power sets and their cardinality, Venn diagrams, 
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the multiplication principal, permutations, combinations, problems 
combining the multiplication principal, problems combining permu­
tations and combinations, problems involving the complement rule, 
at least, and at most. We cover derangements, elementary proba­
bility, conditional probability, independent probability, and Bayes' 
Theorem. We close with a discussion of two dimensional geometric 
simplex algorithm problems, showing that the traditional geometric 
method breaks down in the case where the variables take on only 
integer values. In other words, the method breaks down in every 
example done in the modern finite mathematics texts. 

There are plenty of worked examples, as I want to do the work 
for the reader, and there is a short list of homework exercises. The 
examples given can also be used by an instructor or a teaching assis­
tant to gain a higher level of understanding of the subject than the 
current texts offer, thus providing the instructor with an overview 
of the subject that the student does not possess. This can aid the 
classroom situation since, as I believe, we do a better job of teaching 
when we teach from a higher point of view in the delivered subject. 
The instructor then has a professional confidence that (s)he can 
solve any problem that comes up in class. 

The fact that the book is salted with explanations as to why cer­
tain formulas exist helps the student and the instructor understand 
what they are doing. This is different from the rote memorization 
that many texts on this subject require. In this book the justifica­
tion for the formulas is also there. 

With this approach to the subject and to my readers, I believe I 
have found a gradual, understandable path that will bring a college 
student to a discussion of a subject on combinatorics and probability 
that is more advanced than any of the topics covered in the current 
texts on finite mathematics. 

Theodore G. Faticoni 
Department of Mathematics 
Fordham University 
Bronx, New York 10458 
faticoni@fordham.edu 





Chapter 1 

Logic 

There are several kinds of logic in mathematics. The one based 
in the construction of Truth tables is called formal logic. This is 
the logic used in computer science to design and construct the guts 
of your computer. And then there is Aristotle's logic. This is the 
logic used to make arguments in court or when arguing informally 
with another person. This is the logic used to prove that something 
is, or to prove that something is not. This is the logic used to 
examine combinations of any of the mathematical ideas encountered 
in this text. While we will examine formal logic and the logic of 
sets and functions, we will be most interested in Aristotle's logic of 
the argument in this chapter and throughout the rest of the text. 

Oh, and there will be no need for a calculator in this book. I have 
made an effort to emphasize the important mathematical content 
in this book, not the superfluous, tedious practice of arithmetic. 
Arithmetic is important when you work with money, but in more 
challenging mathematical problems it only gets in the way. So cradle 
your electronic toy if you need to, but there will be almost no use 
for it as we do our counting. 

1.1 Formal Logic 
Formal logic is just a series of tables describing how the words and, 
or, not are defined. There is nothing illuminating with this ap­
proach, but it does match the operations of the inner workings of 

1 



2 CHAPTER 1. LOGIC 

your computer. We will minimally justify the tables used here. We 
will just write them down and show how they agree with your use 
of the words in your language. 

These t.ables define logic. Not just in English, the language that 
this book is being written in, but they describe logic in every lan­
guage on earth. If you are reading a Mandarin Chinese translation 
of this book, then the logic presented here will still be the logic of 
your language. It is also the binary language in which the software 
in your computer is written. Take time to savor that thought. Logic 
as it is applied to languages and computers is universal. Logic is 
thus common to all forms of communication, analogue or digital. 

To begin with we need to know what the logical operations are 
and what they operate on. Logic operates on statements, and ordi­
narily we will use the letters P, Q, and R to denote the statements 
that we we are working on. These statements can take on the logical 
states T (for True) and F (for False). 

You already have an intuitive understanding· of what it means 
for a statement to be True or False. You know that The sky is blue 
is True on earth, and you know that You and I are human is a True 
statement. You have five dollars might be True right now, but it 
might be False come late Friday evening. Of course It is raining is 
a False statement on a sunny day over my home, but it might be 
a True statement for you where you live. So let us assume that we 
know what T and F mean in this context. 

The first logical operation that we will investigate is the oper­
ation not. The not operation takes a statement P and changes or 
negates its logical states. It changes T to F and F to T. Its Truth 
table, the table that lists the logical states of the not operation, 
follows. 

P not P 
T F 
F T 

This is just a tabular way of defining what not is. Notice that 
according to the table, if P is T then not P is F, and if P is F then 
not P is T. As we said, not changes a statement's logical state to 
the complementary logical state. 
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EXAMPLE 1.1.1 1. If P is the statement The sky is blue on 
earth, then not P is the statement The sky is not blue on earth. We 
have negated P and changed its logical state from T to F. 

2. If po is 1 + 2 = 3 then not P is the statement 1 + 2 =j:. 3. 
Again the logical state of P has been changed by an application of 
not from T to F. 

Because of the nature of the word not, two consecutive appli­
cations of the operation not to P will leave the logical states of P 
unchanged. For lingual reasons we let not not P = not(not P). In 
tabular form the compound operation not not is written as follows. 

P not P not(not P) 
T F T 
F T F 

Notice that if P is T then not P is F, and then not(not P) is T, 
giving not(not P) the logical states of P. You know this as a double 
negative from your English class. 

EXAMPLE 1.1.2 1. If P is The sky is blue on earth, then the 
double negative not (not P) is the awkward sentence It is False that 
the sky is not blue on earth. Your language skills compel you to 
avoid the double negative and just write The sky is blue on earth. 

2. Suppose P is I think this is wrong. Then not P is I think this 
is not wrong, and not(not P) is the very awkward I don't think that 
this is not wrong. You would be advised by your language teacher 
to avoid the double negative and just say I think this is wrong. The 
statements P and not(not P) are written with different words, but 
logically they express the same meaning. 

Thus, by applying the logic of the operator not to a lingual 
double negative, we can avoid the double not. 

Throughout this discussion, suppose that we are given state­
ments P, Q. Several logical operations allow us to compare the 
logical states of P, Q by combining them. 
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For instance, we can combine statements P, Q using the and 
operation. This is the and that you use all of the time when you 
write. When applied to P, Q the and operation yields the state­
ment "P and Q". This is just the compound statement formed by 
combing P, Q with the conjunction and from English. 

EXAMPLE 1.1.3 1. If P is The sky is blue on Earth and if Q is 
You are a man then "P and Q" is the statement The sky is blue on 
Earth and you are a man. 

2. If P is This is wrong and if Q is These are red then "P and Q" 
is This is wrong and these are red. 

The logical states of P and Q are closely related to the way 
that the word and behaves in language. Thus the logical state of 
P and Q is T (True) exactly when both P and Q are T. In every 
other instance, "P and Q" is F (False). Put another way, if one or 
more of the logical states of P, Q are F (False) then the statement 
"P and Q" is a Falsehood, its logical value is F. 

In the form of a Truth table the and operation is diagrammed 
as follows: 

P Q 
T T 
T F 
F T 
F F 

P and Q 
T 
F 
F 
F 

The first row states that if both P, Q have logical state T then the 
conjunction "P and Q" also has logical state T. Once we know that 
the right hand entry of the first line in the table is T then the rest 
of the rows follow as F. 

EXAMPLE 1.1.4 1. If P is I am a human being and if Q is I 
am sitting in my chair then "P and Q" is T exactly when I am a 
human being is T and I am sitting in my chair is T. Any other 
combination of T's and F's for P, Q will produce a logical state F 
for "P and Q". 

2. If P is The sky is red over me and if Q is The ground is 
dry beneath me then the logical value of "P and Q" is F if we are 
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on Earthsince the sky is not red there. If we are on Mars then 
the logical value of "P and Q" is T because the sky is red and the 
ground is dry on Mars. 

Another way to combine statements is through the use of the 
conjunction or. The use of or in logic is denoted by the operation 
or. Thus, statements P, Q are combined to form the conjunctive 
statement "P or Q", which is read just like the or statements that 
you read and write. 

The compound statement "P or Q" has logical state T exactly 
when one or more of the statements has logical state T. But it 
might be easier to remember how or behaves with False statements. 
When the logical states of both P and Q are F then "P or Q" has 
logical state F, and this is the only case in which the logical state 
of "P or Q" is F. 

We will always use the inclusive or here so that the statement 
"P or Q" includes the case where both P, Q have logical state T. 
That is, we we read "P or Q" as P, Q, or both P and Q. 

EXAMPLE 1.1.5 1. If P is The river is wide and if Q is The 
water is cold then "P or Q" is read as The river is wide or the 
water is cold. Since "P or Q" is T when either P, Q has logical 
state T, the compound statement The river is wide or the water is 
cold has logical state T if the river is wide. 

2. The river is wide or the water is cold is T if we are talking 
about the Missouri River and its waters are cold. The river is wide 
or the water is cold is T if we are talking about the Missouri River 
and the water we are talking about is in my coffee. 

3. Let P be the statement All is nothing and let Q be the 
arithmetical statement 1 + 1 = 3. Both P and Q have logical state 
F, so that "P or Q" has logical state F. Since both P, Q have 
logical state F then "P or Q" has logical state F. 

The next logical operations, called DeMorgan's laws, show us 
how the logical operations and, or, not combine with each other. 
Simply put, DeMorgan's laws are lingual ways of simplifying a sen­
tence that uses and, or, and not is a more complex manner. 
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Given statements P, Q then DeMorgan's laws are written as 

not(P or Q) 
not(P and Q) 

(not P) and (not Q) 
(not P) or (not Q). 

Notice that in our use of DeMorgan's Law, the distribution of the 
not operator changes or to and, or it changes and to or. Compare 
this to the following lingual examples of uses of DeMorgan's laws. 
When read properly, you will see that the symbolism we use here is 
the same as our use of and, or, not above. 

We will use parentheses to emphasize a statement's meaning, so 
that there is no confusion as to what word modifies what phrase. 

EXAMPLE 1.1.6 1. The statement 

(The river is not wide) or (the water is not cold) 

is equivalent to the statement 

It is not True that (The river is wide and the water is cold). 

Complex to be sure, but that is the purpose behind DeMorgan's 
laws. It will take a complicated statement and make it easier to 
read. 

2. The statement 

(This is not a king) and (this is not a queen), 

is equivalent to the statement 

This is not (a king or a queen). 

3. The statement 

This box does not contain (a red and a yellow crayon), 

is equivalent to 

(This box does not contain a red crayon) or 
(it does not contain a yellow crayon). 
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EXAMPLE 1.1. 7 1. Let P be the statement that This is a king 
and let Q be the statement that This is a queen. The statement 
"not(P or Q)" is also written as 

It is False that (this is a king or a queen), 

while "(not P) and (not Q)" is written as 

(This is not a king) and (this is not a queen). 

Which do you prefer? Logically they both mean the same thing. 
2. Let P be the statement that This box contains a red crayon 

and let Q be This box contains a yellow crayon. Then "not(P and Q)" 
is written as 

It is False that (this box contains a red and yellow crayon), 

while its equivalent formulation "(not P) or (not Q)" under De­
Morgan's laws is 

(This box does not contain a red crayon) or 
(this box does not contain a yellow crayon). 

1.2 Basic Logical Strategies 
We will make exclusive use of logical arguments due to Aristotle 
some 500 years B.C. They are the basis for every intelligent conver­
sation and every legal argument made since. 

The first logical observation is that one statement always has a 
logical state of F. 

The statement "P and (not P)" is a universal Falsehood. 

No matter what the logical state of Pis, "P and (not P)" is a 
Falsehood. 

To see this, notice that because not changes logical states, at any 
time either P or not Pis F. Thus the and statement "P and (not P)" 
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has logical state F. The Truth table for "P and (not P)" is then 
given as follows: 

P not P P and (not P) 
T F F 
F T F 

Observe that the right-hand column of the table is made up of F's. 
Thus, the statement "P and (not P)" is a Falsehood. 

EXAMPLE 1.2.1 1. Let P be The sky is blue. Then (the sky is 
blue) and (the sky is not blue) is a Falsehood. 

2. Let P be This statement is True. Then "P and (not P)" 
is the statement This statement is True and this statement is not 
True, and this is a Falsehood. 

3. Let P be There is a mountain. Then "P and (not P)" is 
(There is a mountain) and (there is no mountain), which is a False­
hood. So is First there is a mountain, then there is no mountain, 
then there is. 

We continue our discussion of logical arguments. Given state­
ments P, Q, the statement "P implies Q" is called an implication, 
and it is symbolically written as 

P :::} Q. 

The statement P is called the premise of the implication and Q is 
called its conclusion. 

The logical states of P :::} Q are determined by one line of ex­
planation. 

If your argument is correct then Truth leads to Truth. 

In other words, if your argument is T and if your premise P is T 
then your conclusion Q is T. Every other logical state of P :::} Q 
follows from this boxed statement. 
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Note that line one of the following Truth table for "P ::::} Q" is 
logically equivalent to the boxed statement above. 

P Q P::::}Q 
T T T 
T F F 
F T T 
F F T 

Let us fill in the remaining Truth values for this table. Let P and 
Q be statements and consider "P ::::} Q". We will show how a few 
simple Truths about argument discovered by Aristotle can be used 
to fill in the Truth table for the implication. 

EXAMPLE 1.2.2 We will continually refer to the Truth table for 
"P ::::} Q" . 

1. Because Truth implies Truth when the argument is correct, 

If your argument is correct (T), and if P is T then Q is T. 

This is why line 1 is ~ ~ I P; Q . 

2. Since Truth implies Truth when the argument is correct, 

Your argument is False if P is T and Q is F. 

This is why line 2 of the Truth table is ~ ~ I P =; Q . 

3. Since any argument begun with a False premise is correct, we 
can write 

Your argument is T if P is F. 
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P Q P=}Q 
This is why lines 3 and 4 of the Truth table are F T T 

F F T 

The column under Q is the list of all possible logical states for Q in 
the Truth table for "P =} Q". 

4. Since a False premise leads to either a True or False conclu­
sion, 

Your conclusion is ambiguous if P is F. 

P Q P=}Q 
This is why lines 3 and 4 of the Truth table are F T T 

F F T 

The column under Q completely describes an ambiguous conclusion 

Q. The T's under "P =} Q" result from the part 3. 

Let us put this implication to work in some elementary argu­
ments. 

EXAMPLE 1.2.3 1. Here is a Greek classic. We will use Example 
1.2.2(1). Begin with P : Socrates is a man. The conclusion will be 
Q : Socrates is mortal. The implication P =} Q is If Socrates is 
a man then Socrates is mortal. Since the implication P =} Q is 
correct, and since the Truth of the premise P implies the Truth of 
the conclusion Q, Socrates is mortal. 

2. The premise is P : I stand on dry land on earth, and the 
conclusion is Q : The sky above me is blue. The implication is If I 
stand on dry land on Earth then the sky above me is blue is True. 
Since P is True, and since Truth leads to Truth, Q is True. 

3. The premise is P : Digital technology is like pockets, and 
the conclusion is Q : We have had digital technology for hundreds 
of years. The implication is "P =} Q" We have had pockets for 
hundreds of years. Let us assume that the premise P is True. Since 
Q is Falsehood, the implication "P =} Q" has logical state F. But 
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if we assume that the premise P is False, then Q is still False, but 
the implication "P =} Q" is True. 

4. Under what conditions will P in part 3 lead us to a True 
conclusion .Q? Have fun with this one. 

1.3 The Direct Argument 
This formal manipulation of statements is not exactly what we are 
interested in for this chapter. It is good to know that an argument 
has logical state T or F, but it is better to know how we can use 
the implication to correctly deduce a conclusion. 

The first line T, T, T of the Truth table for P =} Q can be 
restated as If our argument is correct then Truth leads to Truth, or 
in other words, If the premise is True and if the argument is correct 
then the conclusion is True. This form of argument is called the 
direct argument. It is not new to you since you unconsciously use 
direct arguments in your everyday life. 

EXAMPLE 1.3.1 1. The premise is P : The sky is not blue and 
the conclusion is Q: We are not on earth. A correct argument is 

If the sky is not blue then we are not on earth. 

Conclude that the conclusion Q is True. 
2. Something more mathematical begins like this. The premise 

is P : 1 + 1 = 2. Argue correctly as follows: 

1+1=2 
If we add 1 to both sides of 1 + 1 = 2 then 1 + 1 + 1 = 2 + 1. 
If 2 + 1 = 3 then 1 + 1 + 1 = 3. 
The conclusion Q : 1 + 1 + 1 = 3 is then True. 

A chain-like form of argument shows us the structure inherent in 
longer arguments called transitive property. These longer arguments 
are what people make when they logically move from one idea to 
the next. Basically, the transitive property of implications is a way 
to leap from two or more implications to one implication. Hence 

If P =} Q and if Q =} R then P =} R. 
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A series of implications and the transitive property provide us with 
a method for arguing efficiently with many implications. This series 
of implications is called the transitive argument. 

Assume the Truth of the premise P. 
Show that P ~ Q is True 
Show that Q ~ R is True 
Conclude the Truth of R. 

To justify that this column forms an argument that we can use to 
deduce R from P, we will argue lingually. 

Proof: Assume the Truth of P. If P ~ Q is True then by the 
Direct Argument Q is True. If Q ~ R is True then by the Direct 
Argument we conclude the Truth of R. Therefore, our transitive 
argument concludes the Truth of R from the Truth of P. 

Let us review what we just argued in terms of True statements. 
We begin with a True statement P. The assumption is that P ~ Q 
and Q ~ R are True, which allows us to make a correct transitive 
argument 

P ~ Q and Q ~ R implies P ~ R. 

From the Truth of P and the Truth of P ~ R we use the Direct 
Argument to conclude the Truth of R. 

In a later section we will argue as we did above and in greater 
detail, thus producing three more argument forms. 

EXAMPLE 1.3.2 This example shows how the above discussion 
can be applied to longer arguments. 

a) The premise is P: 10 < 210. 

b) P ~ Q: Because 10 < 210 = 1024 then 11 < 210 . 

c) Q ~ R: Because 11 < 210 then 11 < 2.210 = 211. 
d) Conclude R: 11 < 211. 

Using this iterated form of argument people form longer and 
more complicated arguments, which allows them to perform more 
complicated intellectual tasks. These tasks could be just a way 
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of adding numbers, or it could be the design of your computer's 
software, or it could be that the arguments take the arguer to in­
tellectual places that no one had conceived before. The lesson to 
learn here is that, while the tabular thinking of logic is good for 
some tasks, there will always come a time in problem solving when 
we must use argument and a more enlightened form of thinking if 
we are to make progress on hard problems. 

REMARK 1.3.3 When your computer operates it is working its 
way through a very long and tedious argument based on the very 
simple binary logic introduced in this section. The steps in the com­
puter's argument are mechanical, a form of arithmetic completed by 
a machine. The men and women who designed this computer had 
to think through the binary logic during the implementation phase 
of the software. 

However, for the men and women who put the larger internal 
logical parts of the computer together in the design phase, the prob­
lems encountered could not be solved with a simple manipulation 
of binary logic. They had to think creatively through the problems 
presented to them by the design phase. These solutions would of­
ten include a leap of the imagination that could not be anticipated 
when the design for the computer was initially proposed. The logi­
cal problems yet to come will require those leaps of the imagination 
before we can solve our problems. 

1.4 More Argument Forms 

Converse Statements 

The implication P ::::} Q comes with what is called its converse. 

The converse of P ::::} Q is Q ::::} P. 
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Let us write down the Truth table for Q =} P and compare it to 
P=} Q. 

P Q P=}Q P Q Q=}P 
T T T T T T 
T F F T F T 
F T T F T F 
F F T F F T 

As you can see, the implication and its converse do not have the 
same Truth table. The logical state of the implication P =} Q in 
the third row is T, while the logical state of the implication Q =} P 
in the third row is F. Thus the converse implication Q =} P can 
have logical state F even when P =} Q has logical state T. For this 
reason, the converse cannot be used as a True statement even when 
the original implication is True. Hence all are forewarned to avoid 
the classic error of using the converse of an implication. to advance 
an argument. 

EXAMPLE 1.4.1 These examples show that we cannot inter­
change the implication with its converse. They will have different 
logical states. 

1. Let P be the T statement The sky is blue, and let Q be The 
world is fiat. Then "P =} Q" is F. 

The converse of "P =} Q" is the statement "Q =} P :" If the 
world is fiat then the sky is blue. Since its premise Q is F, "Q =} P" 
is T. Thus the implication is False while the converse is True, and 
we cannot exchange them in arguments or conversation. 

2. The implication is If today is Monday then my schedule is 
clear and its converse is If my schedule is clear then today is Monday. 
The implication may be True, but the converse is False since my 
schedule is clear on Sunday. 

Contrapositive Statements 

Suppose that we consider the implication P =} Q, assuming that it 
is T. If Q is F then the Truth table for P =} Q shows us that P is 
also F. Thus, a False premise Q implies a False conclusion P. This 


