Theodore G. Faticoni

Combinatorics

An Introduction

¥ WILEY







Combinatorics






Combinatorics
An Introduction

Theodore G. Faticoni

Department of Mathematics
Fordham University
Bronx, NY

FWILEY

A JOHN WILEY & SONS, INC., PUBLICATION



Cover Design: John Wiley & Sons, Inc.
Cover Illustration: courtesy of Theodore G. Faticoni

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fe¢ to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic formats. For more information about Wiley products, visit
our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Faticoni, Theodore G. (Theodore Gerard), 1954—

Combinatorics : an introduction / Theodore G. Faticoni, Department of Mathematics, Fordham
University, Bronx, NY.

pages cm
Includes bibliographical references and index.

ISBN 978-1-118-40436-2 (hardback)
1. Combinatorial analysis. I. Title.

QA164.F38 2012

511'.6—dc23 2012025751

Printed in the United States of America.

10987654321



To our mother, Margaret Faticona.
My sisters and I are one for our Mom’s efforts.






Contents

3.1
3.2
3.3
3.4

Preface
1 Logic
1.1 Formal Logic . ... ... ... ... ... ......
1.2 Basic Logical Strategies . . ... ... ... .....
1.3 The Direct Argument . . . . . .. ... ... .....
1.4 More Argument Forms . . . . ... .. ... .. ...
1.5 Proof by Contradiction . . . . .. ... ... .....
16 Exercises. .. . . . . . . . .. . ... ...
2 Sets
2.1 Set Notation . . . .. .. ... ... ... ... ....
2.2 Predicates . . .. ... ... ... ..
23 Subsets. . . .. ...
2.4 Union and Intersection . . . . .. ... ... .....
25 Exercises. . . . . . . . . ... 0.
3 Venn Diagrams

Inclusion/Exclusion Principle . . ... ... ... ..
Two-Circle Venn Diagrams . . . . . .. .. ... ...
Three-Square Venn Diagrams . . ... .. ... ...
Exercises . . . . .. .. ... ... .

vii



viii

4 Multiplication Principle

4.1 What Is the Principle? . . . . ... ..
42 Exercises. . . . ... ... ... ....

5 Permutations

5.1 Some Special Numbers . . . . ... ..
5.2 Permutations Problems . . . . . . . ..
53 Exercises. . . .. . ... .. .. ....

6 Combinations

6.1 Some Special Numbers . . . . .. . ..
6.2 Combination Problems . . . . . . . ..
6.3 Exercises. .. ... ... ........

7 Problems Combining Techniques

7.1 Significant Order . . . ... ... ...
7.2 Order Not Significant . . . . . ... ..
73 Exercises. .. ..............

8 Arrangement Problems

8.1 Examples of Arrangements . . . . . . .
82 Exercises. . .. ... ..........

9 At Least, At Most, and Or

9.1 Counting with Or . . . . . ... .. ..
9.2 At Least, At Most . ... .......
9.3 Exercises. . .. .............

10 Complement Counting

10.1 The Complement Formula . . . . . . .
10.2 A New View of “At Least” . . . . . ..
10.3 Exercises . . . . . . ... ...

11 Advanced Permutations
11.1 Venn Diagrams and Permutations

11.2 Exercises . . . . . . . . . . . ... ...

12 Advanced Combinations
12.1 Venn Diagrams and Combinations

122 Exercises . . . . . . .. ...

CONTENTS

57

........ o7
........ 63

65

........ 66
........ 67
........ 71

73

........ 73
........ 74
........ 79

81

........ 81
........ 82
........ 89

91

........ 92
........ 98



CONTENTS ix

13 Poker and Counting 149
13.1 Warm-Up Problems . . . . . ... ... ... ..... 150
13.2 Poker Hands . . . . . . .. . .. ... ... ... ... 152
13.3 Jacksor Better . . . . ... ... ... ... ... .. 159
13.4 Exercises . . . . . . . .. ... 161

14 Advanced Counting 163
14.1 Indistinguishable Objects . . . . . . .. ... ... .. 163
14.2 Circular Permutations . . . .. ... ... ... ... 167
14.3 Bracelets . . . . . . . . ... ... .. .. ..., 170
144 Exercises . . . . . . . . . o 175

15 Algebra and Counting 177
15.2 The Binomial Theorem . . . . . . .. ... ... ... 177
15.2 Identities. . . . . . . . . . ... .. ... 180
153 Exercises . . . . . . . . ... .. ... . 186

16 Derangements 187
16.1 Mathematical Induction . . . . ... ... ... ... 188
16.2 Fixed-Point Theorems . .. ... .. ... ...... 192
163 HisOwn Coat . . . . . . .. .. ... ... .. .... 197
16.4 Inclusion/Exclusion for Many Sets. . . . . . ... .. 198
16.5 A Common Miscount . . . . .. .. ... ....... 203
16.6 Exercises . . . . . . . . ... ... .. 206

17 Probability Vocabulary 207
17.1 Vocabulary . ... ... ... ... .. ........ 207

18 Equally Likely Outcomes 213
18.1 Outcomes in Experiments . . . .. .. ... ... .. 213
18.2 Exercises . . . . . . . .. ... 220

19 Probability Trees 223
19.1 Tree Diagrams . . . . . . . . . ... .. ... ..... 223
19.2 Exercises . . . . . . . . .. ... 232

20 Independent Events 235
20.1 Independence . . . ... ... ... ... ... .... 235
20.2 Logical Consequences of Influence . . . . . . . .. .. 238

20.3 Exercises . . . . . . .. 242



X

21 Sequences and Probability
21.1 Sequences of Events . . . . . .
21.2 Exercises . . . . .. ... ...

22 Conditional Probability
22.1 What Does Conditional Mean?
222 Exercises . . . . ... ... ..

23 Bayes’ Theorem
23.1 The Theorem . .. ... ...
23.2 Exercises . . . . ... .. ...

24 Statistics
24.1 Introduction . . . . . . . . ..
24.2 Probability Is Not Statistics .
24.3 Conversational Probability . .
24.4 Conditional Statistics . . . . .
245 The Mean . .. ... ... ..
246 Median . . . . . ... ... ..
24.7 Randomness . . . . .. . . ..

25 Linear Programming
25.1 Continuous Variables . . . . .
25.2 Discrete Variables . . . . . . .
25.3 Incorrectly Applied Rules . .

26 Subjective Truth
26.1 The Absolute Truth of Axioms

Bibliography

Index

CONTENTS

245
............. 245

253
............ 253
............. 258

261
............. 261
............. 266

269
............. 269
............. 269
............. 270
............. 278
............. 281
............. 282
............. 284

2901
............. 292
............. 296
............. 300

303
............. 303

309

311



Preface

As I read the current textbooks on finite or linear mathematics, I
am struck by the superficial way that counting problems or combi-
natorics are handled. Counting is treated as a methodical or me-
chanical thing. The student is asked to memorize a few important
but unenlightening algorithms that will always tell us the number
of ways that someone can choose and arrange her outfits for the
week.

Furthermore, the examples that are given use so much of reality
that the student has more to learn about electronic components,
failed tests, and card games than they do about counting in math-
ematics. Whatever happened to problems that emphasized their
mathematical content and left a knowledge of science and gaming
to other departments? I understand that, to some, mathematics is
best when it is used in applications. But why are we giving up on
teaching mathematical content in favor of these other subjects?

Moreover, the why of it all, the justification, the beauty of proof
has left these courses entirely. There is no explanation as to how the
fundamental formulas are derived, and there is no rationalization as
to how certain formulas are formed. The exercises that are given
in modern texts are just slight variations on the examples worked
out in the chapter. And in my opinion, the chapter examples are
mostly uninspiring.

xi



xii PREFACE

This book is aimed at college students, teaching assistants, ad-
junct instructors, or anyone who wants to learn a little more el-
ementary combinatorics than the usual text contains. This book
might also-be used as a supplement to the existing text for a fi-
nite mathematics course or to supplement a discrete mathematics
course, which several curriculums require.

The purpose of this book is to give a treatment of counting
combinatorics that allows for some discussion beyond what is seen
in today’s texts. We will discuss and justify our formulas at every
turn. Our examples will include, after the most elementary of appli-
cations, some ideas that do not occur in other texts on the market
at this time. The applications never get beyond the use of Venn
diagrams, the inclusion/exclusion formula, the multiplication prin-
cipal, permutations, and combinations. But their uses are clever
and at times inspiring.

For example, we do some poker hand problems that are not seen
in modern texts, we count the number of bracelets that can be made
with n > 1 different colored beads, and we count the number of
derangements of {1,...,n}. We do this without any more than the
elementary tools for counting. We then consider some probability
problems by doing some elementary counting. But we show some
very surprising, mathematically precise consequences of a trained
approach to the subject.

A second theme within this book is that the case-by-case method
for solving problems is emphasized. Of course we use a formula
when needed, but when it comes time to derive a formula, we have
decided to consistently give the case-by-case approach to the prob-
lem. In this way we are asking the student/reader to think math-
ematically and in exactly the same way from problem to problem
throughout the book. Perhaps this is what the students will take
with them when they leave the course. They will misremember the
applications for the permutation formula, but they might remember
how to break a problem into pieces in order to solve it.

The book is a series of short chapters that cover no more than
one topic each. We cover such topics as logic and paradoxes, sets
and set notation, power sets and their cardinality, Venn diagrams,
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the multiplication principal, permutations, combinations, problems
combining the multiplication principal, problems combining permu-
tations and combinations, problems involving the complement rule,
at least, and at most. We cover derangements, elementary proba-
bility, conditional probability, independent probability, and Bayes’
Theorem. We close with a discussion of two dimensional geometric
simplex algorithm problems, showing that the traditional geometric
method breaks down in the case where the variables take on only
integer values. In other words, the method breaks down in every
example done in the modern finite mathematics texts.

There are plenty of worked examples, as I want to do the work
for the reader, and there is a short list of homework exercises. The
examples given can also be used by an instructor or a teaching assis-
tant to gain a higher level of understanding of the subject than the
current texts offer, thus providing the instructor with an overview
of the subject that the student does not possess. This can aid the
classroom situation since, as I believe, we do a better job of teaching
when we teach from a higher point of view in the delivered subject.
The instructor then has a professional confidence that (s)he can
solve any problem that comes up in class.

The fact that the book is salted with explanations as to why cer-
tain formulas exist helps the student and the instructor understand
what they are doing. This is different from the rote memorization
that many texts on this subject require. In this book the justifica-
tion for the formulas is also there.

With this approach to the subject and to my readers, I believe I
have found a gradual, understandable path that will bring a college
student to a discussion of a subject on combinatorics and probability
that is more advanced than any of the topics covered in the current
texts on finite mathematics.

Theodore G. Faticoni
Department of Mathematics
Fordham University

Bronx, New York 10458
faticoni@fordham.edu






Chapter 1
Logic

There are several kinds of logic in mathematics. The one based
in the construction of Truth tables is called formal logic. This is
the logic used in computer science to design and construct the guts
of your computer. And then there is Aristotle’s logic. This is the
logic used to make arguments in court or when arguing informally
with another person. This is the logic used to prove that something
is, or to prove that something is not. This is the logic used to
examine combinations of any of the mathematical ideas encountered
in this text. While we will examine formal logic and the logic of
sets and functions, we will be most interested in Aristotle’s logic of
the argument in this chapter and throughout the rest of the text.

Oh, and there will be no need for a calculator in this book. I have
made an effort to emphasize the important mathematical content
in this book, not the superfluous, tedious practice of arithmetic.
Arithmetic is important when you work with money, but in more
challenging mathematical problems it only gets in the way. So cradle
your electronic toy if you need to, but there will be almost no use
for it as we do our counting,.

1.1 Formal Logic

Formal logic is just a series of tables describing how the words and,
or, not are defined. There is nothing illuminating with this ap-
proach, but it does match the operations of the inner workings of

1



2 CHAPTER 1. LOGIC

your computer. We will minimally justify the tables used here. We
will just write them down and show how they agree with your use
of the words in your language.

These tables define logic. Not just in English, the language that
this book is being written in, but they describe logic in every lan-
guage on earth. If you are reading a Mandarin Chinese translation
of this book, then the logic presented here will still be the logic of
your language. It is also the binary language in which the software
in your computer is written. Take time to savor that thought. Logic
as it is applied to languages and computers is universal. Logic is
thus common to all forms of communication, analogue or digital.

To begin with we need to know what the logical operations are
and what they operate on. Logic operates on statements, and ordi-
narily we will use the letters P, ), and R to denote the statements
that we we are working on. These statements can take on the logical
states T' (for True) and F' (for False).

You already have an intuitive understanding of what it means
for a statement to be True or False. You know that The sky is blue
is True on earth, and you know that You and I are human is a True
statement. You have five dollars might be True right now, but it
might be False come late Friday evening. Of course It is raining is
a False statement on a sunny day over my home, but it might be
a True statement for you where you live. So let us assume that we
know what 7" and F' mean in this context.

The first logical operation that we will investigate is the oper-
ation not. The not operation takes a statement P and changes or
negates its logical states. It changes T' to ' and F to 7. Its Truth
table, the table that lists the logical states of the not operation,
follows.

Plnot P
T F
F T

This is just a tabular way of defining what not is. Notice that
according to the table, if P is T then not P is F', and if P is F' then
not P is T. As we said, not changes a statement’s logical state to
the complementary logical state.
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EXAMPLE 1.1.1 1. If P is the statement The sky is blue on
earth, then not P is the statement The sky is not blue on earth. We
have negated P and changed its logical state from T to F'.

2. If Pis 1 +2 = 3 then not P is the statement 1 4 2 # 3.
Again the logical state of P has been changed by an application of
not from T to F.

Because of the nature of the word not, two consecutive appli-
cations of the operation not to P will leave the logical states of P
unchanged. For lingual reasons we let not not P = not(not P). In
tabular form the compound operation not not is written as follows.

P | not P | not(not P)
T ! F ' T

Fy T F

Notice that if P is T then not P is F, and then not(not P) is T,
giving not(not P) the logical states of P. You know this as a double
negative from your English class.

EXAMPLE 1.1.2 1. If P is The sky is blue on earth, then the
double negative not(not P) is the awkward sentence It is False that
the sky is not blue on earth. Your language skills compel you to
avoid the double negative and just write The sky is blue on earth.

2. Suppose P is I think this is wrong. Then not P is I think this
is not wrong, and not(not P) is the very awkward I don’t think that
this is not wrong. You would be advised by your language teacher
to avoid the double negative and just say I think this ¢s wrong. The
statements P and not(not P) are written with different words, but
logically they express the same meaning.

Thus, by applying the logic of the operator not to a lingual
double negative, we can avoid the double not.

Throughout this discussion, suppose that we are given state-
ments P, (). Several logical operations allow us to compare the
logical states of P, () by combining them.
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For instance, we can combine statements P, () using the and
operation. This is the and that you use all of the time when you
write. When applied to P, ) the and operation yields the state-
ment “P and @”. This is just the compound statement formed by
combing P, ) with the conjunction and from English.

EXAMPLE 1.1.3 1. If P is The sky is blue on Farth and if @ is
You are a man then “P and ()” is the statement The sky is blue on
Earth and you are a man.

2. If P is This is wrong and if Q) is These are red then “P and Q”
is This is wrong and these are red.

The logical states of P and ) are closely related to the way
that the word and behaves in language. Thus the logical state of
P and Q is T (True) exactly when both P and @ are 7. In every
other instance, “P and Q” is F' (False). Put another way, if one or
more of the logical states of P, Q are F' (False) then the statement
“P and @” is a Falsehood, its logical value is F'.

In the form of a Truth table the and operation is diagrammed
as follows:

P @Q|PandQ@
T T T
T F F
F T F
F F F

The first row states that if both P, @) have logical state 7" then the
conjunction “P and )” also has logical state 7. Once we know that
the right hand entry of the first line in the table is 7" then the rest
of the rows follow as F'.

EXAMPLE 1.1.4 1. If P is I am a human being and if Q is |
am sitting in my chair then “P and @” is T exactly when I am a
human being is T and I am sitting in my chair is T. Any other
combination of 7’s and F’s for P, Q will produce a logical state F’
for “P and Q”.

2. If P is The sky is red over me and if Q) is The ground is
dry beneath me then the logical value of “P and @)” is F if we are
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on Earthsince the sky is not red there. If we are on Mars then
the logical value of “P and @” is T because the sky is red and the
ground is dry on Mars.

Another way to combine statements is through the use of the
conjunction or. The use of or in logic is denoted by the operation
or. Thus, statements P, ) are combined to form the conjunctive
statement “P or )", which is read just like the or statements that
you read and write.

The compound statement “P or ()” has logical state T' exactly
when one or more of the statements has logical state 7. But it
might be easier to remember how or behaves with False statements.
When the logical states of both P and ) are F then “P or @)” has
logical state F', and this is the only case in which the logical state
of “Por Q" is F.

We will always use the inclusive or here so that the statement
“P or @ includes the case where both P, ) have logical state 7.
That is, we we read “P or Q” as P, @), or both P and Q.

EXAMPLE 1.1.5 1. If P is The riwer is wide and if Q is The
water is cold then “P or ()" is read as The river is wide or the
water is cold. Since “P or ()” is T when either P, ) has logical
state T', the compound statement The river is wide or the water is
cold has logical state T if the river is wide.

2. The river is wide or the water is cold is T if we are talking
about the Missouri River and its waters are cold. The river is wide
or the water is cold is T if we are talking about the Missouri River
and the water we are talking about is in my coffee.

3. Let P be the statement All is nothing and let @) be the
arithmetical statement 1 + 1 = 3. Both P and () have logical state
F, so that “P or )7 has logical state F. Since both P, Q) have
logical state F' then “P or Q" has logical state F'.

The next logical operations, called DeMorgan’s laws, show us
how the logical operations and, or, not combine with each other.
Simply put, DeMorgan’s laws are lingual ways of simplifying a sen-
tence that uses and , or, and not is a more complex manner.
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Given statements P, () then DeMorgan’s laws are written as

not(P or Q) (not P) and (not Q)
not(P and @) = (not P) or (not Q).

Notice that in our use of DeMorgan’s Law, the distribution of the
not operator changes or to and, or it changes and to or. Compare
this to the following lingual examples of uses of DeMorgan’s laws.
When read properly, you will see that the symbolism we use here is
the same as our use of and, or, not above.

We will use parentheses to emphasize a statement’s meaning, so
that there is no confusion as to what word modifies what phrase.

EXAMPLE 1.1.6 1. The statement
(The river is not wide) or (the water is not cold)
is equivalent to the statement
It is not True that (The river is wide and the water is cold).

Complex to be sure, but that is the purpose behind DeMorgan’s
laws. It will take a complicated statement and make it easier to
read.

2. The statement

(This is not a king) and (this is not a queen),
is equivalent to the statement
This is not (a king or a queen).
3. The statement
This box does not contain (a red and a yellow crayon),
is equivalent to

(This box does not contain a red crayon) or
(it does not contain a yellow crayon).
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EXAMPLE 1.1.7 1. Let P be the statement that This is a king
and let ) be the statement that This is a queen. The statement
“not(P or Q))” is also written as

It is False that (this is a king or a queen),
while “(not P) and (not Q)" is written as
(This is not a king) and (this is not a queen).

Which do you prefer? Logically they both mean the same thing.

2. Let P be the statement that This box contains a red crayon
and let @ be This box contains a yellow crayon. Then “not(P and Q)
is written as

”

It is False that (this box contains a red and yellow crayon),

while its equivalent formulation “(not P) or (not Q)” under De-
Morgan’s laws is

(This box does not contain a red crayon) or
(this box does not contain a yellow crayon).

1.2 Basic Logical Strategies

We will make exclusive use of logical arguments due to Aristotle
some 500 years B.C. They are the basis for every intelligent conver-
sation and every legal argument made since.

The first logical observation is that one statement always has a
logical state of F.

The statement “P and (not P)” is a universal Falsehood.

No matter what the logical state of P is, “P and (not P)” is a
Falsehood.

To see this, notice that because not changes logical states, at any
time either P or not P is F'. Thus the and statement “P and (not P)”
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has logical state F'. The Truth table for “P and (not P)” is then
given as follows:

P|not P| P and (not P)
T| F F
F| T F

Observe that the right-hand column of the table is made up of F's.
Thus, the statement “P and (not P)” is a Falsehood.

EXAMPLE 1.2.1 1. Let P be The sky is blue. Then (the sky is
blue) and (the sky is not blue) is a Falsehood.

2. Let P be This statement is True. Then “P and (not P)”
is the statement This statement is True and this statement is not
True, and this is a Falsehood.

3. Let P be There is a mountain. Then “P and (not P)” is
(There is a mountain) and (there is no mountain), which is a False-
hood. So is First there is a mountain, then there is no mountain,
then there is.

We continue our discussion of logical arguments. Given state-
ments P, @, the statement “P implies Q” is called an implication,
and it is symbolically written as

P=qQ.

The statement P is called the premise of the implication and Q) is
called its conclusion.

The logical states of P = () are determined by one line of ex-
planation.

If your argument is correct then Truth leads to Truth.

In other words, if your argument is 7" and if your premise P is T
then your conclusion @ is T. Every other logical state of P = @
follows from this boxed statement.
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Note that line one of the following Truth table for “P = Q" is
logically equivalent to the boxed statement above.

P Q|P=>Q
T T T
T F F
F' T T
F F T

Let us fill in the remaining Truth values for this table. Let P and
Q@ be statements and consider “P = @)”. We will show how a few
simple Truths about argument discovered by Aristotle can be used
to fill in the Truth table for the implication.

EXAMPLE 1.2.2 We will continually refer to the Truth table for
“P => Q” R
1. Because Truth implies Truth when the argument is correct,

If your argument is correct (T'), and if P is T then Q is T'.

P Q|P=Q
T T| T

2. Since Truth implies Truth when the argument is correct,

This is why line 1 is

Your argument is False if P is T and @ is F.

P Q | P=qQ
T F | F

3. Since any argument begun with a False premise is correct, we
can write

This is why line 2 of the Truth table is

Your argument is T if P is F'.




10 CHAPTER 1. LOGIC

P Q|P=Q
This is why lines 3 and 4 of the Truth table are F T T
F F T

The column under @ is the list of all possible logical states for @ in
the Truth table for “P = Q”.

4. Since a False premise leads to either a True or False conclu-
sion,

Your conclusion is ambiguous if P is F.

P Q|P=Q
This is why lines 3 and 4 of the Truth table are F° T T
F F T

The column under ) completely describes an ambiguous conclusion

Q. The T’s under “P = @” result from the part 3.

Let us put this implication to work in some elementary argu-
ments.

EXAMPLE 1.2.3 1. Here is a Greek classic. We will use Example
1.2.2(1). Begin with P : Socrates is a man. The conclusion will be
Q : Socrates is mortal. The implication P = Q is If Socrates is
a man then Socrates is mortal. Since the implication P = @ is
correct, and since the Truth of the premise P implies the Truth of
the conclusion @), Socrates is mortal.

2. The premise is P : I stand on dry land on earth, and the
conclusion is Q : The sky above me is blue. The implication is If I
stand on dry land on Earth then the sky above me is blue is True.
Since P is True, and since Truth leads to Truth, @ is True.

3. The premise is P : Digital technology is like pockets, and
the conclusion is @) : We have had digital technology for hundreds
of years. The implication is “P = Q" We have had pockets for
hundreds of years. Let us assume that the premise P is True. Since
Q is Falsehood, the implication “P = )” has logical state F'. But
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if we assume that the premise P is False, then @) is still False, but
the implication “P = Q” is True.

4. Under what conditions will P in part 3 lead us to a True
conclusion ()7 Have fun with this one.

1.3 The Direct Argument

This formal manipulation of statements is not exactly what we are
interested in for this chapter. It is good to know that an argument
has logical state T' or F', but it is better to know how we can use
the implication to correctly deduce a conclusion.

The first line T,7,T of the Truth table for P = ) can be
restated as If our argument is correct then Truth leads to Truth, or
in other words, If the premise is True and if the argument is correct
then the conclusion is True. This form of argument is called the
direct argument. It is not new to you since you unconsciously use
direct arguments in your everyday life.

EXAMPLE 1.3.1 1. The premise is P : The sky is not blue and
the conclusion is @) : We are not on earth. A correct argument is

If the sky is not blue then we are not on earth.

Conclude that the conclusion @ is True.
2. Something more mathematical begins like this. The premise
is P:1+4+1=2. Argue correctly as follows:

1+1=2

If we add 1 to both sidesof 1 +1=2then1+1+1=2+1.
If24+1=3thenl+1+1=23.

The conclusion () : 1 + 1+ 1 = 3 is then True.

A chain-like form of argument shows us the structure inherent in
longer arguments called transitive property. These longer arguments
are what people make when they logically move from one idea to
the next. Basically, the transitive property of implications is a way
to leap from two or more implications to one implication. Hence

If P= Q and if Q = R then P = R.
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A series of implications and the transitive property provide us with
a method for arguing efficiently with many implications. This series
of implications is called the transitive argument.

Assume the Truth of the premise P.
Show that P = @ is True
Show that @) = R is True
Conclude the Truth of R.

To justify that this column forms an argument that we can use to
deduce R from P, we will argue lingually.

Proof: Assume the Truth of P. If P = @ is True then by the
Direct Argument @ is True. If Q = R is True then by the Direct
Argument we conclude the Truth of R. Therefore, our transitive
argument concludes the Truth of R from the Truth of P.

Let us review what we just argued in terms of True statements.
We begin with a True statement P. The assumption is that P = @
and @ = R are True, which allows us to make a correct transitive
argument

P = @ and @ = R implies P = R.

From the Truth of P and the Truth of P = R we usé the Direct
Argument to conclude the Truth of R.

In a later section we will argue as we did above and in greater
detail, thus producing three more argument forms.

EXAMPLE 1.3.2 This example shows how the above discussion
can be applied to longer arguments.

a) The premise is P: 10 < 219,

b) P = @Q: Because 10 < 219 = 1024 then 11 < 2%.
c) Q@ = R: Because 11 < 21° then 11 < 2. 210 = 211,
d) Conclude R: 11 < 2%,

Using this iterated form of argument people form longer and
more complicated arguments, which allows them to perform more
complicated intellectual tasks. These tasks could be just a way
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of adding numbers, or it could be the design of your computer’s
software, or it could be that the arguments take the arguer to in-
tellectual places that no one had conceived before. The lesson to
learn here is that, while the tabular thinking of logic is good for
some tasks, there will always come a time in problem solving when
we must use argument and a more enlightened form of thinking if
we are to make progress on hard problems.

REMARK 1.3.3 When your computer operates it is working its
way through a very long and tedious argument based on the very
simple binary logic introduced in this section. The steps in the com-
puter’s argument are mechanical, a form of arithmetic completed by
a machine. The men and women who designed this computer had
to think through the binary logic during the implementation phase
of the software.

However, for the men and women who put the larger internal
logical parts of the computer together in the design phase, the prob-
lems encountered could not be solved with a simple manipulation
of binary logic. They had to think creatively through the problems
presented to them by the design phase. These solutions would of-
ten include a leap of the imagination that could not be anticipated
when the design for the computer was initially proposed. The logi-
cal problems yet to come will require those leaps of the imagination
before we can solve our problems.

1.4 More Argument Forms

Converse Statements

The implication P = () comes with what is called its converse.

The converse of P = @ is Q = P.




14 CHAPTER 1. LOGIC

Let us write down the Truth table for ) = P and compare it to
P=qQ.

P Q| P=Q P Q|@Q@=P
T T T T T T
T F F T F T
F T T F T F
F F T F F T

As you can see, the implication and its converse do not have the
same Truth table. The logical state of the implication P = @ in
the third row is T', while the logical state of the implication Q) = P
in the third row is F'. Thus the converse implication Q = P can
have logical state F' even when P = () has logical state 7". For this
reason, the converse cannot be used as a True statement even when
the original implication is True. Hence all are forewarned to avoid
the classic error of using the converse of an implication to advance
an argument.

EXAMPLE 1.4.1 These examples show that we cannot inter-
change the implication with its converse. They will have different
logical states.

1. Let P be the T statement The sky is blue, and let QQ be The
world is flat. Then “P = Q" is F.

The converse of “P = )" is the statement “Q = P :” If the
world is flat then the sky is blue. Since its premise Q) is F', “Q = P”
is T. Thus the implication is False while the converse is True, and
we cannot exchange them in arguments or conversation.

2. The implication is If today is Monday then my schedule s
clear and its converse is If my schedule is clear then today is Monday.
The implication may be True, but the converse is False since my
schedule is clear on Sunday.

Contrapositive Statements

Suppose that we consider the implication P = (), assuming that it
is T. If Q is F then the Truth table for P = @ shows us that P is
also F. Thus, a False premise @ implies a False conclusion P. This



