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CHAPTER 1

INTRODUCTION

The solutions presented in this manual reflect the authors’

best attempt to provide insights and answers. While we

have done our best to be complete and accurate, errors

may occur and there may be more elegant solutions. Errata

will be posted at the ftp site dedicated to the text and

solutions manual:

ftp://ftp.wiley.com/public/sci_tech_med/loss_models/

Should you find errors or would like to provide improved

solutions, please send your comments to Stuart Klugman at

sklugman@soa.org.

http://ftp//ftp.wiley.com/public/sci_tech_med/loss_models/
http://sklugman@soa.org/
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CHAPTER 2 SOLUTIONS



2.1 SECTION 2.2
2.1

2.2 The requested plots follow. The triangular spike at zero

in the density function for Model 4 indicates the 0.7 of

discrete probability at zero.







2.3 f′(x) = 4(1 + x2)–3 – 24x2(l + x2)–4. Setting the

derivative equal to zero and multiplying by (1 + x2)4 give

the equation 4(1 + x2) – 24x2 = 0. This is equivalent to x2

= 1/5. The only positive solution is the mode of .

2.4 The survival function can be recovered as

Taking logarithms gives

and thus A = 0.2009.

2.5 The ratio is



From observation or two applications of L’Hôpital’s rule,

we see that the limit is infinity.
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CHAPTER 3 SOLUTIONS



3.1 SECTION 3.1
3.1

3.2 For Model 1, σ2 = 3,333.33 – 502 = 833.33, σ = 28.8675.

For Model 2, σ2 = 4,000,000 – 1,0002 = 3,000,000, σ =

1,732.05.  and  are both infinite so the skewness and

kurtosis are not defined.

For Model 3, σ2 = 2.25 – .932 = 1.3851, σ = 1.1769.

For Model 4, σ2 = 6,000,000,000 – 30,0002 = 5,100,000,000,

σ = 71,414.

For Model 5, σ2 = 2,395.83 – 43.752 = 481.77, σ = 21.95.



3.3 The Standard deviation is the mean times the coefficient,

of Variation, or 4, and so the variance is 16. From (3.3) the

second raw moment is 16 + 22 = 20. The third central

moment is (using Exercise 3.1) 136 – 3(20)(2) + 2(2)3 = 32.

The skewness is the third central moment divided by the cube

of the Standard deviation, or 32/43 = 1/2.

3.4 For a gamma distribution the mean is αθ. The second raw

moment is α(α + 1)θ2, and so the variance is αθ2. The

coefficient of Variation is /αθ = α–1/2 = 1. Therefore α = 1.

The third raw moment is α(α + 1)(α + 2)θ3 = 6θ3. From

Exercise 3.1, the third central moment is 6θ3 – 3(2θ2)θ + 2θ3

= 2θ3 and the skewness is 2θ3/(θ2)3/2 = 2.

3.5 For Model 1,

For Model 2,

For Model 3,



For Model 4,

The functions are straight lines for Models 1, 2, and 4. Model

1 has negative slope, Model 2 has positive slope, and Model 4

is horizontal.

3.6 For a uniform distribution on the interval from 0 to w, the

density function is f(x) = 1/w. The mean residual life is

The equation becomes

with a solution of w = 108.

3.7 From the definition,



3.8

3.9 For Model 1, from (3.8),

and from (3.10),

From (3.9),

For Model 2, from (3.8),

and from (3.10),

From (3.9),

For Model 3, from (3.8),



and from (3.10),

For Model 4, from (3.8),

and from (3.10),

3.10 For a discrete distribution (which all empirical

distributions are), the mean residual life function is

When d is equal to a possible value of X, the function cannot

be continuous because there is jump in the denominator but

not in the numerator. For an exponential distribution, argue as

in Exercise 3.7 to see that it is constant. For the Pareto

distribution,



which is increasing in d. Only the second statement is true.

3.11 Applying the formula from the solution to Exercise 3.10

gives

which cannot be correct. Recall that the numerator of the

mean residual life is E(X)–E(X  d). However, when α ≤ 1, the

expected value is infinite and so is the mean residual life.

3.12 The right truncated variable is defined as Y = X given

that X ≤ u. When X > u, this variable is not defined. The kth

moment is

3.13 This is a single parameter Pareto distribution with

parameters α = 2.5 and θ = 1. The moments are μ1 = 2.5/1.5

= 5/3 and μ2 = 2.5/.5 – (5/3)2 = 20/9. The coefficient of

Variation is /(5/3) = 0.89443.

3.14 μ = 0.05(100) + 0.2(200) + 0.5(300) + 0.2(400) +

0.05(500) = 300.

σ2 = 0.05(–200)2 + 0.2(–100)2 + 0.5(0)2 + 0.2(100)2 +

0.05(200)2 = 8,000.

μ3 = 0.05(–200)3 + 0.2(–100)3 + 0.5(0)3 + 0.2(100)3 +

0.05(200)3 = 0.



μ4 = 0.05(–200)4+0.2(–100)4+0.5(0)4+0.2(100)4+0.05(200)4

= 200,000,000.

Skewness is = γ1 = μ3/σ3 = 0. Kurtosis is γ2 = μ4/σ4 =

200,000,000/8,0002 = 3.125.

3.15 The Pareto mean residual life function is

and so eX (2θ)/eX(θ) = (2θ + θ)/(θ + θ) = 1.5.

3.16 Sample mean: 0.2(400) + 0.7(800) + 0.1(1,600) = 800.

Sample variance: 0.2(–400)2 + 0.7(0)2 + 0.1(800)2 = 96,000.

Sample third central moment: 0.2(–400)3 + 0.7(0)3 + 0.1

(800)3 = 38,400,000. Skewness coefficient:

38,400,000/96,0001.5 = 1.29.



3.2 SECTION 3.2

3.17 The pdf is f(x) = 2x–3, x ≥ 1. The mean is  2x–2dx = 2.

The median is the solution to .5 = F(x) = 1 – x–2, which is

1.4142. The mode is the value where the pdf is highest.

Because the pdf is strictly decreasing, the mode is at its

smallest value, 1.

3.18 For Model 2, solve  and so πp =

2,000[(1 – p)–1/3 – 1] and the requested percentiles are 519.84

and 1419.95.

For Model 4, the distribution function jumps from 0 to 0.7 at

zero and so π0.5 = 0. For percentile above 70, solve p = 1 –

0.3e–0.00001πp, and so πp = –100,000 ln[(1 – p)/0.3] and π0.8

= 40,546.51.

For Model 5, the distribution function has two specifications.

From x = 0 to x = 50 it rises from 0.0 to 0.5, and so for

percentiles at 50 or below, the equation to solve is p = 0.01πp

for πp = 100p. For 50 < x ≤ 75, the distribution function rises

from 0.5 to 1.0, and so for percentiles from 50 to 100 the

equation to solve is p = 0.02πp – 0.5 for πp = 50p + 25. The

requested percentiles are 50 and 65.

3.19 The two percentiles imply

Rearranging the equations and taking their ratio yield



Taking logarithms of both sides gives ln 9 = α ln 3 for α = ln

9/ln 3 = 2.

3.20 The two percentiles imply

Subtracting and then taking logarithms of both sides give

Dividing the second equation by the first gives

Finally, taking logarithms of both sides gives τ ln 100 = ln[ln

0.25/ln 0.75] for τ = 0.3415.



3.3 SECTION 3.3
3.21 The sum has a gamma distribution with parameters α =

16 and θ = 250. Then, Pr(S16 > 6,000) = 1 – Γ(16; 6,000/250)

= 1 – Γ(16;24). From the Central Limit Theorem, the sum has

an approximate normal distribution with mean αθ = 4,000 and

variance αθ2 = 1,000,000 for a Standard deviation of 1000.

The probability of exceeding 6,000 is 1 – Φ[(6,000 –

4,000)/1,000] = 1 – Φ(2) = 0.0228.

3.22 A single claim has mean 8,000/(5/3) = 4,800 and

variance

The sum of 100 claims has mean 480,000 and variance

9,216,000,000, which is a Standard deviation of 96,000. The

probability of exceeding 600,000 is approximately

3.23 The mean of the gamma distribution is 5(1,000) = 5,000

and the variance is 5(1,000)2 = 5,000,000. For 100

independent claims, the mean is 500,000 and the variance is

500,000,000 for a Standard deviation of 22,360.68. The

probability of total claims exceeding 525,000 is

3.24 The sum of 2,500 contracts has an approximate normal

distribution with mean 2,500(1,300) = 3,250,000 and Standard

deviation (400) = 20,000. The answer is Pr(X >

3,282,500)  Pr[Z > (3,282,500 – 3,250,000)/20,000] = Pr(Z >

1.625) = 0.052.


