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Preface

As I read the current textbooks on finite or linear

mathematics, I am struck by the superficial way that

counting problems or combi- natorics are handled. Counting

is treated as a methodical or me- chanical thing. The

student is asked to memorize a few important but

unenlightening algorithms that will always teil us the

number of ways that someone can choose and arrange her

outfits for the week.

Furthermore, the examples that are given use so much of

reality that the Student has more to learn about electronic

components, failed tests, and card games than they do

about counting in mathematics. Whatever happened to

problems that emphasized their mathematical content and

left a knowledge of Science and gaming to other

departments? I understand that, to some, mathematics is

best when it is used in applications. But why are we giving

up on teaching mathematical content in favor of these other

subjects?

Moreover, the why of it all, the justification, the beauty of

proof has left these courses entirely. There is no explanation

as to how the fundamental formulas are derived, and there

is no rationalization as to how certain formulas are formed.

The exercises that are given in modern texts are just slight

variations on the examples worked out in the chapter. And

in my opinion, the chapter examples are mostly uninspiring.

This book is aimed at College students, teaching

assistants, ad- junct instructors, or anyone who wants to

learn a little more el- ementary combinatorics than the

usual text contains. This book might also-be used as a

Supplement to the existing text for a finite mathematics

course or to Supplement a discrete mathematics course,

which several curriculums require.



The purpose of this book is to give a treatment of counting

combinatorics that allows for some discussion beyond what

is seen in today’s texts. We will discuss and justify our

formulas at every turn. Our examples will include, after the

most elementary of appli- cations, some ideas that do not

occur in other texts on the market at this time. The

applications never get beyond the use of Venn diagrams,

the inclusion/exclusion formula, the multiplication prin-

cipal, permutations, and combinations. But their uses are

clever and at times inspiring.

For example, we do some poker hand problems that are

not seen in modern texts, we count the number of bracelets

that can be made with n > 1 different colored beads, and

we count the number of derangements of {1, …, n}. We do

this without any more than the elementary tools for

counting. We then consider some probability problems by

doing some elementary counting. But we show some very

surprising, mathematically precise consequences of a

trained approach to the subject.

A second theme within this book is that the case-by-case

method for solving problems is emphasized. Of course we

use a formula when needed, but when it comes time to

derive a formula, we have decided to consistently give the

case-by-case approach to the Problem. In this way we are

asking the Student/reader to think mathematically and in

exactly the same way from problem to problem throughout

the book. Perhaps this is what the students will take with

them when they leave the course. They will misremember

the applications for the permutation formula, but they might

remember how to break a problem into pieces in order to

solve it.

The book is a series of short chapters that cover no more

than one topic each. We cover such topics as logic and

paradoxes, sets and set notation, power sets and their

cardinality, Venn diagrams, the multiplication principal,



permutations, combinations, problems combining the

multiplication principal, problems combining permutations

and combinations, problems involving the complement rule,

at least, and at most. We cover derangements, elementary

probability, conditional probability, independent probability,

and Bayes' Theorem. We close with a discussion of two

dimensional geometric simplex algorithm problems,

showing that the traditional geometric method breaks down

in the case where the variables take on only integer values.

In other words, the method breaks down in every example

done in the modern finite mathematics texts.

There are plenty of worked examples, as I want to do the

work for the reader, and there is a short list of homework

exercises. The examples given can also be used by an

instructor or a teaching assis- tant to gain a higher level of

understanding of the subject than the current texts offer,

thus providing the instructor with an overview of the subject

that the Student does not possess. This can aid the

classroom Situation since, as I believe, we do a better job of

teaching when we teach from a higher point of view in the

delivered subject. The instructor then has a Professional

confidence that (s)he can solve any problem that comes up

in dass.

The fact that the book is salted with explanations as to

why cer- tain formulas exist helps the Student and the

instructor understand what they are doing. This is different

from the rote memorization that many texts on this subject

require. In this book the justifica- tion for the formulas is

also there.

With this approach to the subject and to my readers, I

believe I have found a gradual, understandable path that

will bring a College student to a discussion of a subject on

combinatorics and probability that is more advanced than

any of the topics covered in the current texts on finite

mathematics.



Theodore G. Faticoni

Department of Mathematics

Fordham University

Bronx, New York 10458

faticoni@fordham.edu
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Chapter 1

Logic

There are several kinds of logic in mathematics. The one

based in the construction of Truth tables is called formal

logic. This is the logic used in Computer science to design

and construct the guts of your Computer. And then there is

Aristotle’s logic. This is the logic used to make arguments in

court or when arguing informally with another person. This

is the logic used to prove that something is, or to prove that

something is not. This is the logic used to examine

combinations of any of the mathematical ideas encountered

in this text. While we will examine formal logic and the logic

of sets and functions, we will be most interested in

Aristotle’s logic of the argument in this chapter and

throughout the rest of the text.

Oh, and there will be no need for a calculator in this book.

I have made an effort to emphasize the important

mathematical content in this book, not the superfluous,

tedious practice of arithmetic. Arithmetic is important when

you work with money, but in more challenging

mathematical problems it only gets in the way. So cradle

your electronic toy if you need to, but there will be almost

no use for it as we do our counting.

1.1 Formal Logic
Formal logic is just a series of tables describing how the

words and, or, not are defined. There is nothing illuminating

with this approach, but it does match the operations of the



inner workings of your Computer. We will minimally justify

the tables used here. We will just write them down and show

how they agree with your use of the words in your language.

These tables define logic. Not just in English, the language

that this book is being written in, but they describe logic in

every language on earth. If you are reading a Mandarin

Chinese translation of this book, then the logic presented

here will still be the logic of your language. It is also the

binary language in which the Software in your Computer is

written. Take time to savor that thought. Logic as it is

applied to languages and Computers is universal. Logic is

thus common to all forms of communication, analogue or

digital.

To begin with we need to know what the logical operations

are and what they operate on. Logic operates on

statements, and ordinarily we will use the letters P, Q, and R

to denote the statements that we we are working on. These

statements can take on the logical states T (for True) and F

(for False).

You already have an intuitive understanding’ of what it

means for a statement to be True or False. You know that

The sky is blue is True on earth, and you know that You and I

are human is a True statement. You have five dollars might

be True right now, but it might be False come late Friday

evening. Of course R is raining is a False statement on a

sunny day over my home, but it might be a True statement

for you where you live. So let us assume that we know what

T and F mean in this context.

The first logical operation that we will investigate is the

Operation not. The not operation takes a statement P and

changes or negates its logical states. It changes T to F and F

to T. Its Truth table, the table that lists the logical states of

the not operation, follows.

P not P

T F



F T

This is just a tabular way of defining what not is. Notice

that according to the table, if P is T then not P is F, and if P

is F then not P is T. As we said, not changes a statement’s

logical state to the complementary logical state.

EXAMPLE 1.1.1 1. If P is the statement The sky is blue on

earth, then not P is the statement The sky is not blue on

earth. We have negated P and changed its logical state from

T to F.

2. If P is 1 + 2 = 3 then not P is the statement 1 + 2 ≠ 3.

Again the logical state of P has been changed by an

application of not from T to F.

Because of the nature of the word not, two consecutive

applications of the operation not to P will leave the logical

states of P unchanged. For lingual reasons we let not not P

= not(not P). In tabular form the compound operation not

not is written as follows.

P not P not (not P)

T F T

F T F

Notice that if P is T then not P is F, and then not(not P) is T,

giving not(not P) the logical states of P. You know this as a

double negative from your English dass.

EXAMPLE 1.1.2 1. If P is The sky is blue on earth, then the

double negative not (not P) is the awkward sentence It is

False that the sky is not blue on earth. Your language skills

compel you to avoid the double negative and just write The

sky is blue on earth.

2. Suppose P is I think this is wrong. Then not P is I think

this is not wrong, and not(not P) is the very awkward I don’t

think that this is not wrong. You would be advised by your

language teacher to avoid the double negative and just say

I think this is wrong. The statements P and not (not P) are



written with different words, but logically they express the

same meaning.

Thus, by applying the logic of the operator not to a lingual

double negative, we can avoid the double not.

Throughout this discussion, suppose that we are given

statements P, Q. Several logical operations allow us to

compare the logical states of P, Q by combining them.

For instance, we can combine statements P, Q using the

and operation. This is the and that you use all of the time

when you write. When applied to P, Q the and operation

yields the statement “P and Q”. This is just the compound

statement formed by combing P, Q with the conjunction and

from English.

EXAMPLE 1.1.3 1. If P is The sky is blue on Earth and if Q is

You are a man then “P and Q” is the statement The sky is

blue on Earth and you are a man.

2. If P is This is wrong and if Q is These are red then “P and

Q” is This is wrong and these are red.

The logical states of P and Q are closely related to the way

that the word and behaves in language. Thus the logical

state of P and Q is T (True) exactly when both P and Q are T.

In every other instance, “P and Q” is F (False). Put another

way, if one or more of the logical states of P, Q are F (False)

then the statement “P and Q” is a Falsehood, its logical

value is F.

In the form of a Truth table the and operation is

diagrammed as follows:

P Q P and Q

T T T

T F F

F T F

F F F

The first row states that if both P, Q have logical state T

then the conjunction “P and Q” also has logical state T.



Once we know that the right hand entry of the first line in

the table is T then the rest of the rows follow as F.

EXAMPLE 1.1.4 1. If P is I am a human being and if Q is I

am sitting in my chair then “P and Q” is T exactly when I am

a human being is T and I am sitting in my chair is T. Any

other combination of T’s and F’s for P, Q will produce a

logical state F for “P and Q”.

2. If P is The sky is red over me and if Q is The ground is

dry beneath me then the logical value of “P and Q” is F if we

are on Earthsince the sky is not red there. If we are on Mars

then the logical value of “P and Q” is T because the sky is

red and the ground is dry on Mars.

Another way to combine statements is through the use of

the conjunction or. The use of or in logic is denoted by the

operation or. Thus, statements P, Q are combined to form

the conjunctive statement “P or Q”, which is read just like

the or statements that you read and write.

The compound statement “P or Q” has logical state T

exactly when one or more of the statements has logical

state T. But it might be easier to remember how or behaves

with False statements. When the logical states of both P and

Q are F then “P or Q” has logical state F, and this is the only

case in which the logical state of “P or Q” is F.

We will always use the inclusive or here so that the

statement “P or Q” includes the case where both P, Q have

logical state T. That is, we we read “P or Q” as P, Q, or both

P and Q.

EXAMPLE 1.1.5 1. If P is The river is wide and if Q is The

water is cold then “P or Q” is read as The river is wide or the

water is cold. Since “P or Q” is T when either P, Q has logical

state T, the compound statement The river is wide or the

water is cold has logical state T if the river is wide.

2. The river is wide or the water is cold is T if we are

talking about the Missouri River and its waters are cold. The

river is wide or the water is cold is T if we are talking about



the Missouri River and the water we are talking about is in

my coffee.

3. Let P be the statement All is nothing and let Q be the

arithmetical statement 1 + 1 = 3. Both P and Q have logical

state F, so that “P or Q” has logical state F. Since both P, Q

have logical state F then “P or Q” has logical state F.

The next logical operations, called DeMorgan’s laws, show

us how the logical operations and, or, not combine with

each other. Simply put, DeMorgan’s laws are lingual ways of

simplifying a sentence that uses and , or, and not is a more

complex manner.

Given statements P, Q then DeMorgan’s laws are written

as

not(P or Q) = (not P) and (not Q)

not(P and Q) = (not P) or (not Q).

Notice that in our use of DeMorgan’s Law, the distribution

of the not operator changes or to and, or it changes and to

or. Compare this to the following lingual examples of uses of

DeMorgan’s laws. When read properly, you will see that the

symbolism we use here is the same as our use of and, or,

not above.

We will use parentheses to emphasize a statement’s

meaning, so that there is no confusion as to what word

modifies what phrase.

EXAMPLE 1.1.6 1. The statement

(The river is not wide) or (the water is not cold)

is equivalent to the statement

It is not True that (The river is wide and the water is cold).

Complex to be sure, but that is the purpose behind

DeMorgan’s laws. It will take a complicated statement and

make it easier to read.

2. The statement

(This is not a king) and (this is not a queen),



is equivalent to the statement

This is not (a king or a queen).

3. The statement

This box does not contain (a red and a yellow crayon),

is equivalent to

(This box does not contain a red crayon) or

(it does not contain a yellow crayon).

EXAMPLE 1.1.7 1. Let P be the statement that This is a

king and let Q be the statement that This is a queen. The

statement “not (P or Q)” is also written as

It is False that (this is a king or a queen),

while “(not P) and (not Q)” is written as

(This is not a king) and (this is not a queen).

Which do you prefer? Logically they both mean the same

thing.

2. Let P be the statement that This box contains a red

crayon and let Q be This box contains a yellow crayon. Then

“not (P and Q)” is written as

It is False that (this box contains a red and yellow crayon),

while its equivalent formulation “(not P) or (not Q)” under

DeMorgan’s laws is

(This box does not contain a red crayon) or

(this box does not contain a yellow crayon).

1.2 Basic Logical

Strategies
We will make exclusive use of logical arguments due to

Aristotle some 500 years B.C. They are the basis for every

intelligent conversation and every legal argument made

since.

The first logical observation is that one statement always

has a logical state of F.



The statement “P and (not P)” is a universal Falsehood.

No matter what the logical state of P is, “P and (not P)” is a

Falsehood.

To see this, notice that because not changes logical states,

at any time either P or not P is F. Thus the and statement “P

and (not P)” has logical state F. The Truth table for “P and

(not P)” is then given as follows:

P not P P and (not P)

T F F

F T F

Observe that the right-hand column of the table is made

up of F’s. Thus, the statement “P and (not P)” is a

Falsehood.

EXAMPLE 1.2.1 1. Let P be The sky is blue. Then (the sky is

blue) and (the sky is not blue) is a Falsehood.

2. Let P be This statement is True. Then “P and (not P)” is

the statement This statement is True and this statement is

not True, and this is a Falsehood.

3. Let P be There is a mountain. Then “P and (not P)” is

(There is a mountain) and (there is no mountain), which is a

Falsehood. So is First there is a mountain, then there is no

mountain, then there is.

We continue our discussion of logical arguments. Given

statements P, Q, the statement “P implies Q” is called an

implication, and it is symbolically written as

P  Q.

The statement P is called the premise of the implication

and Q is called its conclusion.

The logical states of P  Q are determined by one line of

explanation.

If your argument is correct then Truth leads to Truth.



In other words, if your argument is T and if your premise P

is T then your conclusion Q is T. Every other logical state of

P  Q follows from this boxed statement.

Note that line one of the following Truth table for “P  Q”

is logically equivalent to the boxed statement above.

P Q P  Q

T T T

T F F

F T T

F F T

Let us fill in the remaining Truth values for this table. Let P

and Q be statements and consider “P  Q”. We will show

how a few simple Truths about argument discovered by

Aristotle can be used to fill in the Truth table for the

implication.

EXAMPLE 1.2.2 We will continually refer to the Truth table

for “P  Q”.

1. Because Truth implies Truth when the argument is

correct,

If your argument is correct (T), and if P is T then Q is T.

This is why line 1 is .

2. Since Truth implies Truth when the argument is correct,

Your argument is False if P is T and Q is F.

This is why line 2 of the Truth table is .

3. Since any argument begun with a False premise is

correct, we can write

Your argument is T if P is F.



This is why lines 3 and 4 of the Truth table ar 

. The column under Q is the list of all

possible logical states for Q in the Truth table for “P  Q”.

4. Since a False premise leads to either a True or False

conclusion,

Your conclusion is ambiguous if P is F.

This is why lines 3 and 4 of the Truth table are 

. The column under Q completely describes

an ambiguous conclusion Q. The T’s under “P  Q” result

from the part 3.

Let us put this implication to work in some elementary

arguments.

EXAMPLE 1.2.3 1. Here is a Greek classic. We will use

Example 1.2.2(1). Begin with P : Socrates is a man. The

conclusion will be Q : Socrates is mortal. The implication P

 Q is If Socrates is a man then Socrates is mortal. Since

the implication P  Q is correct, and since the Truth of the

premise P implies the Truth of the conclusion Q, Socrates is

mortal.

2. The premise is P : I stand on dry land on earth, and the

conclusion is Q : The sky above me is blue. The implication

is If I stand on dry land on Earth then the sky above me is

blue is True. Since P is True, and since Truth leads to Truth, Q

is True.

3. The premise is P : Digital technology is like pockets, and

the conclusion is Q : We have had digital technology for

hundreds of years. The implication is “P  Q” We have had

pockets for hundreds of years. Let us assume that the

premise P is True. Since Q is Falsehood, the implication “P 

Q” has logical state F. But if we assume that the premise P



is False, then Q is still False, but the implication “P  Q” is

True.

4. Under what conditions will P in part 3 lead us to a True

conclusion Q? Have fun with this one.

1.3 The Direct Argument
This formal manipulation of statements is not exactly what

we are interested in for this chapter. It is good to know that

an argument has logical state T or F, but it is better to know

how we can use the implication to correctly deduce a

conclusion.

The first line T, T, T of the Truth table for P  Q can be

restated as If our argument is correct then Truth leads to

Truth, or in other words, If the premise is True and if the

argument is correct then the conclusion is True. This form of

argument is called the direct argument. It is not new to you

since you unconsciously use direct arguments in your

everyday life.

EXAMPLE 1.3.1 1. The premise is P : The sky is not blue

and the conclusion is Q : We are not on earth. A correct

argument is

If the sky is not blue then we are not on earth.

Conclude that the conclusion Q is True.

2. Something more mathematical begins like this. The

premise is P : 1 + 1 = 2. Argue correctly as follows:

1 + 1 = 2

If we add 1 to both sides of 1 + 1 = 2 then 1 + 1 + 1 = 2

+ 1.

If 2 + 1 = 3 then 1 + 1 + 1 = 3.

The conclusion Q : 1 + 1 + 1 = 3 is then True.

A chain-like form of argument shows us the structure

inherent in longer arguments called transitive property.

These longer arguments are what people make when they



logically move from one idea to the next. Basically, the

transitive property of implications is a way to leap from two

or more implications to one implication. Hence

If P  Q and if Q  R then P  R.

A series of implications and the transitive property provide

us with a method for arguing efficiently with many

implications. This series of implications is called the

transitive argument.

Assume the Truth of the premise P.

Show that P  Q is True

Show that Q  R is True

Conclude the Truth of R.

To justify that this column forms an argument that we can

use to deduce R from P, we will argue lingually.

Proof: Assume the Truth of P. If P  Q is True then by the

Direct Argument Q is True. If Q  R is True then by the

Direct Argument we conclude the Truth of R. Therefore, our

transitive argument concludes the Truth of R from the Truth

of P.

Let us review what we just argued in terms of True

statements. We begin with a True statement P. The

assumption is that P  Q and Q  R are True, which allows

us to make a correct transitive argument

From the Truth of P and the Truth of P  R we use the

Direct Argument to conclude the Truth of R.

In a later section we will argue as we did above and in

greater detail, thus producing three more argument forms.

EXAMPLE 1.3.2 This example shows how the above

discussion can be applied to longer arguments.

a) The premise is P: 10 < 210.



b) P  Q: Because 10 < 210 = 1024 then 11 < 210.

c) Q  R: Because 11 < 210 then 11 < 2 · 210 = 211.

d) Conclude R: 11 < 211.

Using this iterated form of argument people form longer

and more complicated arguments, which allows them to

perform more complicated intellectual tasks. These tasks

could be just a way of adding numbers, or it could be the

design of your computer’s Software, or it could be that the

arguments take the arguer to intellectual places that no one

had conceived before. The lesson to learn here is that, while

the tabular thinking of logic is good for some tasks, there

will always come a time in problem solving when we must

use argument and a more enlightened form of thinking if we

are to make progress on hard problems.

REMARK 1.3.3 When your Computer operates it is working

its way through a very long and tedious argument based on

the very simple binary logic introduced in this section. The

steps in the computer’s argument are mechanical, a form of

arithmetic completed by a machine. The men and women

who designed this Computer had to think through the binary

logic during the implementation phase of the Software.

However, for the men and women who put the larger

internal logical parts of the Computer together in the design

phase, the problems encountered could not be solved with a

simple manipulation of binary logic. They had to think

creatively through the problems presented to them by the

design phase. These solutions would often include a leap of

the imagination that could not be anticipated when the

design for the Computer was initially proposed. The logical

problems yet to come will require those leaps of the

imagination before we can solve our problems.

1.4 More Argument Forms



Converse Statements

The implication P  Q comes with what is called its

converse.

The converse of P  Q is Q  P.

Let us write down the Truth table for Q  P and compare it

to P  Q.

As you can see, the implication and its converse do not

have the same Truth table. The logical state of the

implication P  Q in the third row is T, while the logical

state of the implication Q  P in the third row is F. Thus the

converse implication Q  P can have logical state F even

when P  Q has logical state T. For this reason, the

converse cannot be used as a True statement even when

the original implication is True. Hence all are forewarned to

avoid the classic error of using the converse of an

implication to advance an argument.

EXAMPLE 1.4.1 These examples show that we cannot

interchange the implication with its converse. They will have

different logical states.

1. Let P be the T statement The sky is blue, and let Q be

The world is flat. Then “P  Q” is F.

The converse of “P  Q” is the statement “Q  P:” If the

world is flat then the sky is blue. Since its premise Q is F, “Q

 P” is T. Thus the implication is False while the converse is

True, and we cannot exchange them in arguments or

conversation.



2. The implication is If today is Monday then my schedule

is clear and its converse is If my schedule is clear then

today is Monday. The implication may be True, but the

converse is False since my schedule is clear on Sunday.

Contrapositive Statements

Suppose that we consider the implication P  Q, assuming

that it is T. If Q is F then the Truth table for P  Q shows us

that P is also F. Thus, a False premise Q implies a False

conclusion P. This is an important implication known as the

contrapositive.

not Q  not P.

When one writes out the Truth table for the implication and

its contrapositive, a curious things occurs. This Truth table

reveals that the two arguments have identical Truth tables.

P Q P  Q not Q  not P

T T T T

T F F F

F T T T

F F T T

Notice that the rightmost two columns are identical lists of

T’s and F’s. This is completely different from what we found

with the converse. The table shows that

 The implication and its converse are logically

equivalent. One can be substituted for the other

without loss of Truth.

In other words, the statements “P  Q” and “not Q  not

P” are both True for the same logical values of P and Q.

EXAMPLE 1.4.2 1. The implication If the sky is not blue

then this is not earth has as contrapositive If this is earth

then the sky is blue. The implication and its contrapositive

are making the same logical statement about the sky.



2. The implication If my GPS is working then I am not lost

has contrapositive If I am lost then my GPS is not working.

Notice that both the implication and its contrapositive are

making the same logical statement, assuming I always use

my GPS.

3. The implication If my spell-check program is running

then I do not misspell all the time has contrapositive If I

misspell all the time then my spell-check program is not

running. Notice that both the implication and its

contrapositive make the same logical statement about a

man who cannot spell without technological help.

Counterexamples

The next form of argument does not use T’s and F’s. It is

strictly lingual.

Let P be a statement. A counterexample to P is an

example that is in logical conflict with the content of P. The

existence of a counterexample to P proves that P is False.

The idea behind the proof by counterexample is this. If I

claim that P : All colors are white is True then you can

disprove my claim by producing some color that is not

white. One non-white color will do. I choose red. With the

existence of the color red you have refuted my claim. You

have proved that All colors are white is a Falsehood.

In the very same manner, we can disprove any statement

that asserts that all of the X’s in the world are short Y’s. All

we need do is find a counterexample X that is not a short Y.

The proof by counterexample can be summed up as

follows:

The statement All X ’s have property Y is disproved

by a counterexample of an X that does not have

property Y.

These proofs by counterexample all proceed in the same

way. Producing just one X that does not have quality Y is


