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Preface

As | read the current textbooks on finite or linear
mathematics, | am struck by the superficial way that
counting problems or combi- natorics are handled. Counting
is treated as a methodical or me- chanical thing. The
student is asked to memorize a few important but
unenlightening algorithms that will always teil us the
number of ways that someone can choose and arrange her
outfits for the week.

Furthermore, the examples that are given use so much of
reality that the Student has more to learn about electronic
components, failed tests, and card games than they do
about counting in mathematics. Whatever happened to
problems that emphasized their mathematical content and
left a knowledge of Science and gaming to other
departments? | understand that, to some, mathematics is
best when it is used in applications. But why are we giving
up on teaching mathematical content in favor of these other
subjects?

Moreover, the why of it all, the justification, the beauty of
proof has left these courses entirely. There is no explanation
as to how the fundamental formulas are derived, and there
is no rationalization as to how certain formulas are formed.
The exercises that are given in modern texts are just slight
variations on the examples worked out in the chapter. And
in my opinion, the chapter examples are mostly uninspiring.

This book is aimed at College students, teaching
assistants, ad- junct instructors, or anyone who wants to
learn a little more el- ementary combinatorics than the
usual text contains. This book might also-be used as a
Supplement to the existing text for a finite mathematics
course or to Supplement a discrete mathematics course,
which several curriculums require.



The purpose of this book is to give a treatment of counting
combinatorics that allows for some discussion beyond what
is seen in today’s texts. We will discuss and justify our
formulas at every turn. Our examples will include, after the
most elementary of appli- cations, some ideas that do not
occur in other texts on the market at this time. The
applications never get beyond the use of Venn diagrams,
the inclusion/exclusion formula, the multiplication prin-
cipal, permutations, and combinations. But their uses are
clever and at times inspiring.

For example, we do some poker hand problems that are
not seen in modern texts, we count the number of bracelets
that can be made with n > 1 different colored beads, and
we count the number of derangements of {1, ..., n}. We do
this without any more than the elementary tools for
counting. We then consider some probability problems by
doing some elementary counting. But we show some very
surprising, mathematically precise consequences of a
trained approach to the subject.

A second theme within this book is that the case-by-case
method for solving problems is emphasized. Of course we
use a formula when needed, but when it comes time to
derive a formula, we have decided to consistently give the
case-by-case approach to the Problem. In this way we are
asking the Student/reader to think mathematically and in
exactly the same way from problem to problem throughout
the book. Perhaps this is what the students will take with
them when they leave the course. They will misremember
the applications for the permutation formula, but they might
remember how to break a problem into pieces in order to
solve it.

The book is a series of short chapters that cover no more
than one topic each. We cover such topics as logic and
paradoxes, sets and set notation, power sets and their
cardinality, Venn diagrams, the multiplication principal,



permutations, combinations, problems combining the
multiplication principal, problems combining permutations
and combinations, problems involving the complement rule,
at least, and at most. We cover derangements, elementary
probability, conditional probability, independent probability,
and Bayes' Theorem. We close with a discussion of two
dimensional geometric simplex algorithm problems,
showing that the traditional geometric method breaks down
in the case where the variables take on only integer values.
In other words, the method breaks down in every example
done in the modern finite mathematics texts.

There are plenty of worked examples, as | want to do the
work for the reader, and there is a short list of homework
exercises. The examples given can also be used by an
instructor or a teaching assis- tant to gain a higher level of
understanding of the subject than the current texts offer,
thus providing the instructor with an overview of the subject
that the Student does not possess. This can aid the
classroom Situation since, as | believe, we do a better job of
teaching when we teach from a higher point of view in the
delivered subject. The instructor then has a Professional
confidence that (s)he can solve any problem that comes up
in dass.

The fact that the book is salted with explanations as to
why cer- tain formulas exist helps the Student and the
instructor understand what they are doing. This is different
from the rote memorization that many texts on this subject
require. In this book the justifica- tion for the formulas is
also there.

With this approach to the subject and to my readers, |
believe | have found a gradual, understandable path that
will bring a College student to a discussion of a subject on
combinatorics and probability that is more advanced than
any of the topics covered in the current texts on finite
mathematics.



Theodore G. Faticoni
Department of Mathematics
Fordham University

Bronx, New York 10458
faticoni@fordham.edu
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Chapter 1l

Logic

There are several kinds of logic in mathematics. The one
based in the construction of Truth tables is called formal
logic. This is the logic used in Computer science to design
and construct the guts of your Computer. And then there is
Aristotle’s logic. This is the logic used to make arguments in
court or when arguing informally with another person. This
is the logic used to prove that something is, or to prove that
something is not. This is the logic used to examine
combinations of any of the mathematical ideas encountered
in this text. While we will examine formal logic and the logic
of sets and functions, we will be most interested in
Aristotle’'s logic of the argument in this chapter and
throughout the rest of the text.

Oh, and there will be no need for a calculator in this book.
| have made an effort to emphasize the important
mathematical content in this book, not the superfluous,
tedious practice of arithmetic. Arithmetic is important when
you work with money, but in more challenging
mathematical problems it only gets in the way. So cradle
your electronic toy if you need to, but there will be almost
no use for it as we do our counting.

1.1 Formal Logic

Formal logic is just a series of tables describing how the
words and, or, not are defined. There is nothing illuminating
with this approach, but it does match the operations of the



inner workings of your Computer. We will minimally justify
the tables used here. We will just write them down and show
how they agree with your use of the words in your language.

These tables define logic. Not just in English, the language
that this book is being written in, but they describe logic in
every language on earth. If you are reading a Mandarin
Chinese translation of this book, then the logic presented
here will still be the logic of your language. It is also the
binary language in which the Software in your Computer is
written. Take time to savor that thought. Logic as it is
applied to languages and Computers is universal. Logic is
thus common to all forms of communication, analogue or
digital.

To begin with we need to know what the logical operations
are and what they operate on. Logic operates on
statements, and ordinarily we will use the letters P, Q, and R
to denote the statements that we we are working on. These
statements can take on the logical states T (for True) and F
(for False).

You already have an intuitive understanding’ of what it
means for a statement to be True or False. You know that
The sky is blue is True on earth, and you know that You and /
are human is a True statement. You have five dollars might
be True right now, but it might be False come late Friday
evening. Of course R is raining is a False statement on a
sunny day over my home, but it might be a True statement
for you where you live. So let us assume that we know what
T and F mean in this context.

The first logical operation that we will investigate is the
Operation not. The not operation takes a statement P and
changes or negates its logical states. It changes Tto Fand F
to T. Its Truth table, the table that lists the logical states of
the not operation, follows.

Pinot P
T|F




FIT_|
This is just a tabular way of defining what not is. Notice
that according to the table, if Pis T then not Pis F, and if P
is F then not Pis T. As we said, not changes a statement’s
logical state to the complementary logical state.
EXAMPLE 1.1.1 1. If Pis the statement The sky is blue on
earth, then not P is the statement The sky is not blue on
earth. We have negated P and changed its logical state from
Tto F.

2.1f Pis1l + 2 = 3 then not Pis the statement 1 + 2 = 3.
Again the logical state of P has been changed by an
application of notfrom Tto F.

Because of the nature of the word not, two consecutive
applications of the operation not to P will leave the logical
states of P unchanged. For lingual reasons we let not not P
= not(not P). In tabular form the compound operation not
not is written as follows.

P|not P|not (not P)
TIF |T
FIT |F

Notice that if Pis Tthen not Pis F, and then not(not P) is T,

giving not(not P) the logical states of P. You know this as a
double negative from your English dass.
EXAMPLE 1.1.2 1. If Pis The sky is blue on earth, then the
double negative not (not P) is the awkward sentence [/t is
False that the sky is not blue on earth. Your language skills
compel you to avoid the double negative and just write The
sky is blue on earth.

2. Suppose P is | think this is wrong. Then not P is | think
this is not wrong, and not(not P) is the very awkward / don’t
think that this is not wrong. You would be advised by your
language teacher to avoid the double negative and just say
| think this is wrong. The statements P and not (not P) are




written with different words, but logically they express the
same meaning.

Thus, by applying the logic of the operator not to a lingual
double negative, we can avoid the double not.

Throughout this discussion, suppose that we are given
statements P, Q. Several logical operations allow us to
compare the logical states of P, Q by combining them.

For instance, we can combine statements P, Q using the
and operation. This is the and that you use all of the time
when you write. When applied to P, Q the and operation
yields the statement “P and Q”. This is just the compound
statement formed by combing P, Q with the conjunction and
from English.

EXAMPLE 1.1.3 1. If Pis The sky is blue on Earth and if Q is
You are a man then “P and Q" is the statement The sky is
blue on Earth and you are a man.

2. If Pis This is wrong and if Qis These are red then “P and
Q" is This is wrong and these are red.

The logical states of Pand Q are closely related to the way
that the word and behaves in language. Thus the logical
state of Pand Qis T (True) exactly when both Pand Q are T.
In every other instance, “P and Q" is F (False). Put another
way, if one or more of the logical states of P, Q are F (False)
then the statement “P and Q" is a Falsehood, its logical
value is F.

In the form of a Truth table the and operation is
diagrammed as follows:

PlQ/Pand Q
T
F
F
F

The first row states that if both P, Q have logical state T
then the conjunction “P and Q" also has logical state T.

T
T
F
F

IR




Once we know that the right hand entry of the first line in
the table is T then the rest of the rows follow as F.
EXAMPLE 1.1.4 1. If Pis | am a human being and if Q is /
am sitting in my chairthen “Pand Q" is T exactly when / am
a human being is T and | am sitting in my chair is T. Any
other combination of T's and F's for P, Q will produce a
logical state Ffor “Pand Q”.

2. If Pis The sky is red over me and if Q is The ground is
dry beneath me then the logical value of “Pand Q" is F if we
are on Earthsince the sky is not red there. If we are on Mars
then the logical value of “P and Q" is T because the sky is
red and the ground is dry on Mars.

Another way to combine statements is through the use of
the conjunction or. The use of orin logic is denoted by the
operation or. Thus, statements P, Q are combined to form
the conjunctive statement “P or Q”, which is read just like
the or statements that you read and write.

The compound statement “P or Q" has logical state T
exactly when one or more of the statements has logical
state 7. But it might be easier to remember how or behaves
with False statements. When the logical states of both P and
Q are Fthen “Por Q" has logical state F, and this is the only
case in which the logical state of “Por Q" is F.

We will always use the inclusive or here so that the

statement “P or Q" includes the case where both P, Q have
logical state 7. That is, we we read “Por Q" as P, Q, or both
P and Q.
EXAMPLE 1.1.5 1. If Pis The river is wide and if Q is The
water is cold then “Por Q" is read as The river is wide or the
water is cold. Since “Por Q" is T when either P, Q has logical
state 7, the compound statement The river is wide or the
water is cold has logical state T if the river is wide.

2. The river is wide or the water is cold is T if we are
talking about the Missouri River and its waters are cold. The
river is wide or the water is cold is T if we are talking about



the Missouri River and the water we are talking about is in
my coffee.

3. Let P be the statement A/l is nothing and let Q be the
arithmetical statement 1 + 1 = 3. Both Pand Q have logical
state F, so that “Por Q" has logical state F. Since both P, Q
have logical state Fthen “Por Q" has logical state F.

The next logical operations, called DeMorgan’s laws, show
us how the logical operations and, or, not combine with
each other. Simply put, DeMorgan’s laws are lingual ways of
simplifying a sentence that uses and, or, and not is a more
complex manner.

Given statements P, Q then DeMorgan’s laws are written
as

not(Por Q) = (not P) and (not Q)
not(Pand Q) = (not P) or (not Q).

Notice that in our use of DeMorgan’s Law, the distribution
of the not operator changes or to and, or it changes and to
or. Compare this to the following lingual examples of uses of
DeMorgan’s laws. When read properly, you will see that the
symbolism we use here is the same as our use of and, or,
not above.

We will use parentheses to emphasize a statement’s
meaning, so that there is no confusion as to what word
modifies what phrase.

EXAMPLE 1.1.6 1. The statement
(The river is not wide) or (the water is not cold)
is equivalent to the statement

It is not True that (The river is wide and the water is cold).

Complex to be sure, but that is the purpose behind
DeMorgan’s laws. It will take a complicated statement and
make it easier to read.

2. The statement

(This is not a king) and (this is not a queen),



is equivalent to the statement
This is not (a king or a queen).
3. The statement
This box does not contain (a red and a yellow crayon),

is equivalent to

(This box does not contain a red crayon) or

(it does not contain a yellow crayon).
EXAMPLE 1.1.7 1. Let P be the statement that This is a
king and let Q be the statement that This is a queen. The
statement “not (Por Q)” is also written as
It is False that (this is a king or a queen),

while “(not P) and (not Q)” is written as

(This is not a king) and (this is not a queen).

Which do you prefer? Logically they both mean the same
thing.

2. Let P be the statement that This box contains a red
crayon and let Q be This box contains a yellow crayon. Then
“not (Pand Q)" is written as

It is False that (this box contains a red and yellow crayon),
while its equivalent formulation “(not P) or (not Q)” under
DeMorgan’s laws is

(This box does not contain a red crayon) or
(this box does not contain a yellow crayon).

1.2 Basic Logical
Strategies

We will make exclusive use of logical arguments due to
Aristotle some 500 years B.C. They are the basis for every
intelligent conversation and every legal argument made
since.

The first logical observation is that one statement always
has a logical state of F.



The statement “P and (not P)” is a universal Falsehood.

No matter what the logical state of Pis, “Pand (not P)” is a
Falsehood.

To see this, notice that because not changes logical states,
at any time either Por not Pis F. Thus the and statement “P
and (not P)” has logical state F. The Truth table for “P and
(not P)” is then given as follows:

P|inot P|Pand (not P)
TIF |F
FIT |F

Observe that the right-hand column of the table is made
up of Fs. Thus, the statement “P and (not P)” is a
Falsehood.

EXAMPLE 1.2.1 1. Let Pbe The sky is blue. Then (the sky is
blue) and (the sky is not blue) is a Falsehood.

2. Let P be This statement is True. Then “P and (not P)” is
the statement This statement is True and this statement is
not True, and this is a Falsehood.

3. Let P be There is a mountain. Then “P and (not P)” is
(There is a mountain) and (there is no mountain), which is a
Falsehood. So is First there is a mountain, then there is no
mountain, then there is.

We continue our discussion of logical arguments. Given
statements P, Q, the statement “P implies Q" is called an
implication, and it is symbolically written as

P= Q.

The statement P is called the premise of the implication
and Qs called its conclusion.

The logical states of P = Q are determined by one line of
explanation.

If your argument is correct then Truth leads to Truth.




In other words, if your argument is T and if your premise P
is T then your conclusion Q is T. Every other logical state of
P = Q follows from this boxed statement.

Note that line one of the following Truth table for “P = Q"
is logically equivalent to the boxed statement above.
PIQP=0Q
T
F
=
=

ARIEIE

T
F
T
F

Let us fill in the remaining Truth values for this table. Let P
and Q be statements and consider “P = Q”. We will show
how a few simple Truths about argument discovered by
Aristotle can be used to fill in the Truth table for the
implication.

EXAMPLE 1.2.2 We will continually refer to the Truth table
for “P= Q".

1. Because Truth implies Truth when the argument is

correct,

If your argument is correct (7), and if Pis Tthen Qis T.
P Q | P=Q

This is why line 1 is r T ‘ T
2. Since Truth implies Truth when the argument is correct,

Your argument is False if Pis Tand Qis F.
P Q | P=qQ

This is why line 2 of the Truth tableis 1 £ | F
3. Since any argument begun with a False premise is
correct, we can write

Your argument is Tif Pis F.




This is why lines 3 and 4 of the Truth table ar
P Q|P=>Q

T F‘ F . The column under Q is the list of all
possible logical states for Q in the Truth table for “P= Q".

4. Since a False premise leads to either a True or False
conclusion,

Your conclusion is ambiguous if Pis F.

This is why lines 3 and 4 of the Truth table are
P Q|P=>~Q

T F‘ F " The column under Q completely describes
an ambiguous conclusion Q. The T's under “P = Q" result
from the part 3.

Let us put this implication to work in some elementary

arguments.
EXAMPLE 1.2.3 1. Here is a Greek classic. We will use
Example 1.2.2(1). Begin with P : Socrates is a man. The
conclusion will be Q : Socrates is mortal. The implication P
= Q is If Socrates is a man then Socrates is mortal. Since
the implication P = Q is correct, and since the Truth of the
premise P implies the Truth of the conclusion Q, Socrates is
mortal.

2. The premise is P: | stand on dry land on earth, and the
conclusion is Q : The sky above me is blue. The implication
is If | stand on dry land on Earth then the sky above me is
blue is True. Since Pis True, and since Truth leads to Truth, Q
is True.

3. The premise is P : Digital technology is like pockets, and
the conclusion is Q : We have had digital technology for
hundreds of years. The implication is “P = Q" We have had
pockets for hundreds of years. Let us assume that the
premise Pis True. Since Q is Falsehood, the implication “P =
Q" has logical state F. But if we assume that the premise P




is False, then Q@ is still False, but the implication “P = Q" is
True.

4. Under what conditions will P in part 3 lead us to a True
conclusion @7 Have fun with this one.

1.3 The Direct Argument

This formal manipulation of statements is not exactly what
we are interested in for this chapter. It is good to know that
an argument has logical state T or F, but it is better to know
how we can use the implication to correctly deduce a
conclusion.

The first line T, T, T of the Truth table for P = Q can be
restated as /f our argument is correct then Truth leads to
Truth, or in other words, If the premise is True and if the
argument is correct then the conclusion is True. This form of
argument is called the direct argument. It is not new to you
since you unconsciously use direct arguments in your
everyday life.

EXAMPLE 1.3.1 1. The premise is P : The sky is not blue
and the conclusion is Q : We are not on earth. A correct
argument is

If the sky is not blue then we are not on earth.

Conclude that the conclusion Q is True.

2. Something more mathematical begins like this. The
premiseis P: 1+ 1 = 2. Argue correctly as follows:

1+1=2

If we add 1 to both sidesof1 +1 =2thenl +1+1=2
+ 1.

f2+1=3thenl+1+1=3.

The conclusion @: 1+ 1 + 1 = 3 is then True.

A chain-like form of argument shows us the structure
inherent in longer arguments called transitive property.
These longer arguments are what people make when they



logically move from one idea to the next. Basically, the
transitive property of implications is a way to leap from two
or more implications to one implication. Hence

If P= Qand if Q= Rthen P= R.

A series of implications and the transitive property provide

us with a method for arguing efficiently with many
implications. This series of implications is called the
transitive argument.

Assume the Truth of the premise P.
Show that P= Qis True
Show that Q= R is True
Conclude the Truth of R.

To justify that this column forms an argument that we can
use to deduce R from P, we will argue lingually.

Proof: Assume the Truth of P. If P= Q is True then by the
Direct Argument Q is True. If Q@ = R is True then by the
Direct Argument we conclude the Truth of R. Therefore, our
transitive argument concludes the Truth of R from the Truth
of P.

Let us review what we just argued in terms of True
statements. We begin with a True statement P. The
assumption is that P= Q and Q = R are True, which allows
us to make a correct transitive argument

P = @ and Q = R implies P = R.

From the Truth of P and the Truth of P = R we use the
Direct Argument to conclude the Truth of R.

In a later section we will argue as we did above and in
greater detail, thus producing three more argument forms.
EXAMPLE 1.3.2 This example shows how the above
discussion can be applied to longer arguments.

a) The premise is P. 10 < 210



b) P= Q: Because 10 < 210 = 1024 then 11 < 210,
C) Q= R: Because 11 < 210 then 11 < 2 - 210 = 211

d) Conclude R: 11 < 211

Using this iterated form of argument people form longer

and more complicated arguments, which allows them to
perform more complicated intellectual tasks. These tasks
could be just a way of adding numbers, or it could be the
design of your computer’s Software, or it could be that the
arguments take the arguer to intellectual places that no one
had conceived before. The lesson to learn here is that, while
the tabular thinking of logic is good for some tasks, there
will always come a time in problem solving when we must
use argument and a more enlightened form of thinking if we
are to make progress on hard problems.
REMARK 1.3.3 When your Computer operates it is working
its way through a very long and tedious argument based on
the very simple binary logic introduced in this section. The
steps in the computer’'s argument are mechanical, a form of
arithmetic completed by a machine. The men and women
who designed this Computer had to think through the binary
logic during the implementation phase of the Software.

However, for the men and women who put the larger
internal logical parts of the Computer together in the design
phase, the problems encountered could not be solved with a
simple manipulation of binary logic. They had to think
creatively through the problems presented to them by the
design phase. These solutions would often include a leap of
the imagination that could not be anticipated when the
design for the Computer was initially proposed. The logical
problems yet to come will require those leaps of the
imagination before we can solve our problems.

1.4 More Argument Forms



Converse Statements

The implication P = Q comes with what is called its
converse.

The converse of P= Qis Q= P.

Let us write down the Truth table for Q = P and compare it
to P= Q.

P Q|P=Q P Q|Q=P
7 /& i & T
4 d€F I £ I T
F T T F T F
F F T F F T

As you can see, the implication and its converse do not
have the same Truth table. The logical state of the
implication P = Q in the third row is 7, while the logical
state of the implication Q = P in the third row is F. Thus the
converse implication Q = P can have logical state F even
when P = Q has logical state T. For this reason, the
converse cannot be used as a True statement even when
the original implication is True. Hence all are forewarned to
avoid the classic error of using the converse of an
implication to advance an argument.

EXAMPLE 1.4.1 These examples show that we cannot
interchange the implication with its converse. They will have
different logical states.

1. Let P be the T statement The sky is blue, and let Q be
The world is flat. Then “P=> Q" is F.

The converse of “P= Q" is the statement “Q = P.” If the
world is flat then the sky is blue. Since its premise Qis F, “Q
= P” is T. Thus the implication is False while the converse is
True, and we cannot exchange them in arguments or
conversation.



2. The implication is If today is Monday then my schedule
is clear and its converse is If my schedule is clear then
today is Monday. The implication may be True, but the
converse is False since my schedule is clear on Sunday.

Contrapositive Statements

Suppose that we consider the implication P = Q, assuming
that itis 7. If Q is F then the Truth table for P = Q shows us
that P is also F. Thus, a False premise Q implies a False
conclusion P. This is an important implication known as the
contrapositive.

not Q = not P.

When one writes out the Truth table for the implication and
its contrapositive, a curious things occurs. This Truth table
reveals that the two arguments have identical Truth tables.

PQ|P= Qnot Q= not P
TT|T T
TF|F F
FT|T T
FF|T T

Notice that the rightmost two columns are identical lists of
T's and F's. This is completely different from what we found
with the converse. The table shows that

The implication and its converse are logically
equivalent. One can be substituted for the other
without loss of Truth.

In other words, the statements “P= Q" and “not Q = not
P’ are both True for the same logical values of Pand Q.
EXAMPLE 1.4.2 1. The implication If the sky is not blue
then this is not earth has as contrapositive If this is earth
then the sky is blue. The implication and its contrapositive
are making the same logical statement about the sky.



2. The implication If my GPS is working then | am not lost
has contrapositive If I am lost then my GPS is not working.
Notice that both the implication and its contrapositive are
making the same logical statement, assuming | always use
my GPS.

3. The implication If my spell-check program is running
then | do not misspell all the time has contrapositive /f /
misspell all the time then my spell-check program is not
running. Notice that both the implication and its
contrapositive make the same logical statement about a
man who cannot spell without technological help.

Counterexamples

The next form of argument does not use T's and F's. It is
strictly lingual.

Let P be a statement. A counterexample to P is an
example that is in logical conflict with the content of P. The
existence of a counterexample to P proves that Pis False.

The idea behind the proof by counterexample is this. If |
claim that P : All colors are white is True then you can
disprove my claim by producing some color that is not
white. One non-white color will do. | choose red. With the
existence of the color red you have refuted my claim. You
have proved that All colors are white is a Falsehood.

In the very same manner, we can disprove any statement
that asserts that all of the X's in the world are short Y's. All
we need do is find a counterexample X that is not a short Y.

The proof by counterexample can be summed up as
follows:

The statement A/l X ’s have property Y is disproved
by a counterexample of an X that does not have
property Y.

These proofs by counterexample all proceed in the same
way. Producing just one X that does not have quality Y is



