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Chapter 0

Preliminaries

0.1 PROOFS

1. (a) (1) If n = 2k, k an integer, then n2 = (2k)2 = 4k2 is a multiple of 4.

(2) The converse is true: If n2 is a multiple of 4 then n must be even
because n2 is odd when n is odd (Example 1).

(c) (1) Verify: 23 − 6 · 22 + 11 · 2 − 6 = 0 and 33 − 6 · 32 + 11 · 3 − 6 = 0.

(2) The converse is false: x = 1 is a counterexample. because

13 − 6 12 + 11 · 1 − 6 /= 0.

2. (a) Either n = 2k or n = 2k + 1, for some integer k. In the first case n2 = 4k2;
in the second n2 = 4(k2 + k) + 1.

(c) If n = 3k, then n3 − n = 3(9k3 − k); if n = 3k + 1, then

n3 − n = 3(9k3 + 9k2 + 2k);

if n = 3k + 2, then n3 − n = 3(9k3 + 18k2 + 11k + 2).

3. (a) (1) If n is not odd, then n = 2k, k an integer, k ≥ 1, so n is not a prime.

(2) The converse is false: n = 9 is a counterexample; it is odd but is not a
prime.

(c) (1) If
√

a >
√

b then (
√

a)2 > (
√

b)2, that is a > b, contrary to the assump-
tion.

(2) The converse is true: If
√

a ≤
√

b then (
√

a)2 ≤ (
√

b)2, that is a ≤ b.

4. (a) If x > 0 and y > 0 assume
√

x + y =
√

x +
√

y. Squaring gives
x + y = x + 2

√
xy + y, whence 2

√
xy = 0. This means xy = 0 so x = 0 or

y = 0, contradicting our assumption.
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2 0. Preliminaries

(c) Assume all have birthdays in different months. Then there can be at most
12 people, one for each month, contrary to hypothesis.

5. (a) n = 11 is a counterexample because then n2 + n + 11 = 11 · 13 is not prime.
Note that n2 + n + 11 is prime if 1 ≤ n ≤ 9 as is readily verified, but n = 10
is also a counterexample as 102 + 10 + 11 = 112.

(c) n = 6 is a counterexample because there are then 31 regions. Note that the
result holds if 2 ≤ n ≤ 5.

0.2 SETS

1. (a) A = {x | x = 5k, k ∈ Z, k ≥ 1}
2. (a) {1, 3, 5, 7, . . .}

(c) {−1, 1, 3}
(e) { } =∅ is the empty set by Example 3.

3. (a) Not equal: −1 ∈ A but −1 /∈ B.

(c) Equal to {a, l, o, y}.
(e) Not equal: 0 ∈ A but 0 /∈ B.

(g) Equal to {−1, 0, 1}.
4. (a) ∅, {2}

(c) {1}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
5. (a) True. B ⊆ C means each element of B (in particular A) is an element of

C.

(c) False. For example, A = {1}, B = C = {{1}, 2}.
6. (a) Clearly A ∩ B ⊆ A and A ∩ B ⊆ B; If X ⊆ A and X ⊆ B, then x ∈ X im-

plies x ∈ A and x ∈ B, that is x ∈ A ∩ B. Thus X ⊆ A ∩ B.

7. If x ∈ A ∪ (B1 ∩ B2 ∩ . . . ∩ Bn), then x ∈ A or x ∈ Bi for all i. Thus x ∈ A ∪ Bi

for all i, that is x ∈ (A ∪ B1) ∩ (A ∪ B2) ∩ . . . ∩ (A ∪ Bn). Thus

A ∪ (B1 ∩ B2 ∩ . . . ∩ Bn) ⊆ (A ∪ B1) ∩ (A ∪ B2) ∩ . . . ∩ (A ∪ Bn),

and the reverse argument proves equality. The other formula is proved similarly.

9. A = {1, 2}, B = {1, 3}, C = {2, 3}.
10. (a) Let A × B = B × A, and fix a ∈ A and b ∈ B (since these sets are

nonempty). If x ∈ A, then (x, b) ∈ A × B = B × A. This implies x ∈ B; so
A ⊆ B. Similarly B ⊆ A.

(c) If x ∈ A ∩ B, then x ∈ A and x ∈ B, so (x, x) ∈ A × B. If (x, x) ∈ A × B,
then x ∈ A and x ∈ B, so x ∈ A ∩ B.

11. (a) (x, y) ∈ A × (B ∩ C)
if and only if x ∈ A and y ∈ (B ∩ C)
if and only if (x, y) ∈ A × B and (x, y) ∈ A × C
if and only if (x, y) ∈ (A × B) ∩ (A × C).
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(c) (x, y) ∈ (A ∩ B) × (A′ ∩ B′)
if and only if x ∈ A ∩ B and y ∈ A′ ∩ B′

if and only if (x, y) ∈ A × A′ and (x, y) ∈ (B × B′)
if and only if (x, y) ∈ (A × A′) ∩ (B × B′).

0.3 MAPPINGS

1. (a) Not a mapping: α(1) = −1 is not in N.

(c) Not a mapping: α(−1) =
√
−1 is not in R.

(e) Not a mapping: α(6) = α(2 · 3) = (2, 3) and α(6) = α(1 · 6) = (1, 6).

(g) Not a mapping: α(2) is not defined.

2. (a) Bijective. α(x) = α(x1) implies 3 − 4x = 3 − 4x1, so x = x1, and α is one-
to-one. Given y ∈ R, y = α

[
1
4 (3 − y)

]
, so α is onto.

(c) Onto: If m ∈ N , then m = α(2m − 1) = α(2m). Not one-to-one: In fact we
have α(1) = 1 = α(2).

(e) One-to-one: α(x) = α(x1) implies (x + 1, x − 1) = (x1 + 1, x1 − 1), whence
x = x1. Not onto: (0, 0) /= α(x) for any x because (0, 0) = (x + 1, x − 1)
would give x = 1 and x = −1.

(g) One-to-one: α(a) = α(a1) implies (a, b0) = (a1, b0) implies a = a1. Not onto
if |B| ≥ 2 since no element (a, b) is in α(A) for b /= b0.

3. (a) Given c ∈ C, let c = βα(a) with a ∈ A (because βα is onto). Hence
c = β(α(a)), where α(a) ∈ B, so β is onto.

(c) Let β(b) = β(b1). Write b = α(a) and b1 = α(a1) (since α is onto). Then
βα(a) = β(α(a)) = β(b) = β(b1) = β(α(a1)) = βα(a1),

so a = a1 (because βα is one-to-one), and hence b = b1 as required.

(e) Let b ∈ B. As α is onto, let b = α(a), a ∈ A. Hence

β(b) = β(α(a)) = βα(a) = β1α(a) = β1(α(a)) = β1(b).

Since b ∈ B was arbitrary, this shows that β = β1.

5. (a) If α2 = α, let x ∈ α(A), say x = α(a). Then α(x) = α2(a) = α(a) = x. Con-
versely, let α(x) = x for all x ∈ α(A). If a ∈ A, write α(a) = x. Then
α2(a) = α(α(a)) = α(x) = x = α(a), so α2 = α.

(c) α2 = (βγ)(βγ) = β(γβ)γ = β(1A)γ = βγ = α.

7. (a) If y ∈ R, write α−1(y) = x. Hence y = α(x), that is y = ax + b. Solving for
x gives α−1(y) = x = 1

a (y − b). As this is possible for all y ∈ R, this shows
that α−1(y) = 1

a (y − b) for all y ∈ R.

(c) First verify that α2 = 1N, that is αα = 1N. Hence α−1 = α by the definition
of the inverse of a function.

9. Let βα = 1A. Then α is one-to-one because α(a) = α(a1) implies that
a = βα(a) = βα(a1) = a1; and β is onto because if a ∈ A then a = βα(a)
= β(α(a)) and α(a) ∈ B. Hence both are bijections as |A| = |B| (Theorem 2),
and hence α−1 and β−1 exist. But then β−1 = β−11A = β−1(βα) = α. Similarly
α−1 = β.
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11. Let ϕ(α) = ϕ(α1) where α and α1 are in M. Then (α(1), α(2)) = (α1(1), α1(2)),
so α(1) = α1(1) and α(2) = α1(2). Thus α = α1 (by Theorem 1), so ϕ is one-
to-one. Conversely, let (x, y) ∈ B × B, and define α2 : {1, 2} → B by α2(1) = x
and α2(2) = y. Then α2 ∈ M, and ϕ(β) = (α2(1), α2(2)) = (x, y). Thus ϕ is
onto. Then ϕ−1 : B × B → M has action ϕ−1(x, y) = α2 where α2(1) = x and
α2(2) = y.

13. For each a ∈ A there are m choices for α(a) ∈ B. Since |A| = n, there are mn

choices in all, and they all lead to different functions α because α is determined
by these choices.

15. (a) ⇒ (b) Given b ∈ B, write Ab = {a ∈ A | α(a) = b}. Then Ab /= ∅ for each
b (α is onto), so choose ab ∈ Ab for each b ∈ B. Then define β : B → A by
β(b) = ab. Then αβ(a) = α(β(b)) = α(ab) = b for each b; that is αβ = 1B .

(c) ⇒ (a) If b0 ∈ B − α(A), we deduce a contradiction. Choose a0 ∈ A, and
define β : B → B by:

β(b) =

{
b if b /= b0

α(a0) if b = b0.

Then α(a) /= b0 for all a ∈ A, so

βα(a) = β(α(a)) = α(a) = 1B(α(a)) = 1Bα(a)

for all a ∈ A. Hence, βα = 1Bα, so β = 1B by (c). Finally then
b0 = β(b0) = α(a0), a contradiction.

0.4 EQUIVALENCES

1. (a) It is an equivalence by Example 4.

[−1] = [0] = [1] = {−1, 0, 1}, [2] = {2}, [−2] = {−2}.
(c) Not an equivalence. x ≡ x only if x = 1, so the reflexive property fails.

(e) Not an equivalence. 1 ≡ 2 but 2 /≡ 1, so the symmetric property fails.

(g) Not an equivalence. x ≡ x is never true. Note that the transitive property
also fails.

(i) It is an equivalence by Example 4. [(a, b)] = {(x, y) | y − 3x = b − 3a} is
the line with slope 3 through (a, b).

2. In every case (a, b) ≡ (a1, b1) if α(a, b) = α(a1, b1) for an appropriate function
α : A → R. Hence ≡ is the kernel equivalence of α.

(a) The classes are indexed by the possible sums of elements of U .

Sum is 2: [(1, 1)] = {(1, 1)}
Sum is 3: [(1, 2)] = [(2, 1)] = {(1, 2), (2, 1)}
Sum is 4: [(1, 3)] = [(2, 2)] = [(3, 1)] = {(1, 3), (2, 2), (3, 1)}
Sum is 5: [(2, 3)] = [(3, 2)] = {(2, 3), (3, 2)}
Sum is 6: [(3, 3)] = {(3, 3)}.
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(c) The classes are indexed by the first components.

First component is 1: [(1, 1)] = [(1, 2)] = [(1, 3)] = {(1, 1), (1, 2), (1, 3)}
First component is 2: [(2, 1)] = [(2, 2)] = [(3, 2)] = {(2, 1), (2, 2), (2, 3)}
First component is 3: [(3, 1)] = [(3, 2)] = [(3, 3)] = {(3, 1), (3, 2), (3, 3)}.

3. (a) It is the kernel equivalence of α : Z→ Z where α(n) = n2. Here
[n] = {−n, n} for each n. Define σ : Z≡ → B by σ[n] = |n|, where |n| is
the absolute value. Then [m] = [n] ⇔ m ≡ n ⇔ |m| = |n|. Thus σ is well-
defined and one-to-one. It is clearly onto.

(c) It is the kernel equivalence of α : R→ R where α(x, y) = y. Define
σ : (R× R)≡ → B by σ[(x, y)] = y. Then

[(x, y)] = [(x1, y1)] ⇔ (x, y) ≡ (x1, y1) ⇔ y = y1,

so σ is well-defined and one-to-one. It is clearly onto.

(e) Reflexive: x ≡ x ∈ Z;
Symmetric: x ≡ y ⇒ x − y ∈ Z⇒ y − x ∈ Z⇒ y ≡ x;
Transitive: x ≡ y and y ≡ z gives x − y ∈ Z and y − z ∈ Z. Hence

x − z = (x − y) + (y − z) ∈ Z, that is x ≡ z.

Now define σ : R≡ → B by σ[x] = x − �x� where �x� denotes the
greatest integer ≤ x. Then [x] = [y] ⇒ x ≡ y ⇒ x − y = n, n ∈ Z. Thus
x = y + n, so �x� = �y� + n. Hence,

x − �x� = (y + n) − (�y� + n) = y − �y�,
and σ is well-defined. To see that σ is one-to-one, let σ[x] = σ[y], that is
x − �x� = y − �y�. Then x − y = �y� − �x� ∈ Z, so x ≡ y, that is �x� = �y�.
Finally, σ is onto because, if 0 ≤ x < 1, �x� = 0, so x = σ[x].

5. (a) If a ∈ A, then a ∈ Ci and a ∈ Dj for some i and j, so a ∈ Ci ∩ Dj . If
Ci ∩ Dj /= Ci′ ∩ Dj′ , then either i /= i′ or j /= j′. Thus

(Ci ∩ Dj) ∩ (Ci′ ∩ Dj′) = ∅
in either case.

7. (a) Not well defined: α(2) = α
(

2
1

)
= 2 and α(2) = α

(
4
2

)
= 4.

(c) Not well defined: α
(

1
2

)
= 3 and α

(
1
2

)
= α

(
2
4

)
= 6.

9. (a) [a] = [a1] ⇔ a ≡ a1 ⇔ α(a) = α(a1). The implication ⇒ proves σ is well
defined; the implication ⇐ shows it is one-to-one. If α is onto, so is σ.

(c) If we regard σ : A≡ → a(A), then σ is a bijection.



Chapter 1

Integers and Permutations

1.1 INDUCTION

1. In each case we give the equation that makes pk imply pk+1.

(a) k(2k − 1) + (4k + 1) = 2k2 + 3k + 1 = (k + 1)(2k + 1)

(c) 1
4k2(k + 1)2 + (k + 1)3 = 1

4 (k + 1)2(k2 + 4k + 4) = 1
4 (k + 1)2(k + 2)2

(e) 1
12k(k + 1)(k + 2)(3k + 5) + (k + 1)(k + 2)2

= 1
12 (k + 1)(k + 2)(3k2 + 17k + 24) = 1

12 (k + 1)(k + 2)(k + 3)(3k + 8)

(g) k
3 (4k2 − 1) + (2k + 1)2 = k

3 (2k − 1)(2k + 1) + (2k + 1)2

= 1
3 (2k + 1)[2k2 + 5k + 3] = 1

3 (2k + 1)(k + 1)(2k + 3)
= 1

3 (k + 1)[4(k + 1)2 − 1]

(i) 1 − 1
(k+1)! + k+1

(k+2)! = 1 − 1
(k+2)! [(k + 2) − (k + 1)] = 1 − 1

(k+2)!

2. In each case we give the inequality that makes pk imply pk+1.

(a) 2k+1 = 2 · 2k > 2 · k ≥ k + 1.

(c) If k! ≤ 2k2
, then (k + 1)! = (k + 1)k! ≤ (k + 1)2k2 ≤ 2(k+1)2 provided

k + 1 ≤ 22k+1. This latter inequality follows, again by induction on k ≥ 1,
because 22k+3 = 4 · 22k+1 ≥ 4(k + 1) ≥ k + 2.

(e) 1√
1

+ · · · + 1√
k

+ 1√
k+1

≥
√

k + 1√
k+1

=
√

k2+k+1√
k+1

≥ k+1√
k+1

=
√

k + 1.

3. In each case we give the calculation that makes pk imply pk+1.

(a) If k3 + (k + 1)3 + (k + 2)3 = 9m, then
(k + 1)3 + (k + 2)3 + (k + 3)3 = 9m − k3 + (k + 3)3 = 9m + 9k2 + 27k + 27.

(c) If 32k+1 + 2k+2 = 7m, then

32k+3 + 2k+3 = 9(7m − 2k+2) + 2k+3 = 9 · 7m − 2k+2(9 − 2).
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