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Preface

This book is divided into two parts. The first part is devoted to some advances
in testing for a stochastic ordering, and the second part is related to ANOVA
procedures for nonparametric inference in experimental designs. It is worth
noting that, before introducing specific arguments in the two main parts of the
book, we provide an introductory first chapter on basic theory of univariate
and multivariate permutation tests, with a special look at multiple-comparison
and multiple testing procedures.

The concept of stochastic ordering of distributions was introduced by
Lehmann (1955) and plays an important role in the theory of statistical in-
ference. It arises in many applications in which it is believed that, given a
response variable Y and an explanatory variable x, the statistical model as-
sumes that the distribution of Y |x belongs to a certain family of probability
distributions that is ordered in the sense, roughly speaking, that large values
of x lead to large values of the Y ’s.

Many types of orderings of varying degrees of strength have been defined in
the literature to compare the order of magnitude of two or more distributions
(see Shaked and Shanthikumar, 1994, for a review). These include likelihood
ratio ordering, hazard rate ordering, and simple stochastic ordering, which
are perhaps the main instances. On the one hand, these orderings make the
statistical inference procedures more complicated. On the other, they contain
statistical information as well, so that if properly incorporated they would be
more efficient than their counterparts, wherein such constraints are ignored.
These considerations emphasize the importance of statistical procedures to
detect the occurrence of such orderings on the basis of random samples. Infer-
ence based on stochastic orderings for univariate distributions has been stud-
ied extensively, whereas for multivariate distributions it has received much
less attention because the “curse of dimensionality” makes the statistical pro-
cedures considerably more complicated. For a review of constrained inference,
we refer to the recent monograph by Silvapulle and Sen (2005).

Likelihood inference is perhaps the default methodology for many statis-
tical problems; indeed, the overwhelming majority of work related to order-
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restricted problems is based on the likelihood principle. However, there are
instances when one might prefer a competitive procedure. Recently there have
been debates about the suitability of different test procedures: Perlman and
Chaudhuri (2004a) argue in favor of likelihood ratio tests, whereas Cohen and
Sackrowitz (2004) argue in favor of the so-called class of directed tests. In
multidimensional problems, it is rare that a “best” inference procedure exists.
However, even in such a complex setup, following Roy’s union-intersection
principle (Roy, 1953), it might be possible to look upon the null hypothesis as
the intersection of several component hypotheses and the alternative hypoth-
esis as the union of the same number of component alternatives, giving rise to
a multiple testing problem. A classical approach is to require that the proba-
bility of rejecting one or more true null hypotheses, the familywise error rate
(Hochberg and Tamhane, 1987), not exceed a given level. Generally, it is sur-
prising that some existing procedures seem to be satisfied to stop with a global
test just dealing with the acceptance or rejection of the intersection of all null
hypotheses. In the form presented, it will be difficult to interpret a statistically
significant finding: The statistical significance of the individual hypotheses in
multiple-endpoint or multiple-comparison problems remains very important
even if global tests indicate an overall effect. Indeed, most clinical trials are
conducted to compare a treatment group with a control group on multiple
endpoints, and the inferential goal after establishing an overall treatment ef-
fect is to identify the individual endpoints on which the treatment is better
than the control. For tests of equality of means in a one-way classification,
the ANOVA F test is available, but in the case of rejection of the global null
hypothesis of equality of all means, one will frequently want to know more
about the means than just that they are unequal.

In the majority of the situations we shall deal with, both the hypothesis
and the class of alternatives may be nonparametric, and as a result it may be
difficult even to construct tests that satisfactorily control the level (exactly or
asymptotically). For such situations, we will consider permutation methods
that achieve this goal under fairly general assumptions. Under exchangeability
of the data, the empirical distribution of the values of a given statistic recom-
puted over transformations of the data serves as a null distribution; this leads
to exact control of the level in such models. In addition, by making effective
use of resampling to implicitly estimate the dependence structure of multiple
test statistics, it is possible to construct valid and efficient multiple testing
procedures that strongly control the familywise error rate, as in Westfall and
Young (1993).

We bring out the permutation approach for models in which there is a
possibly multivariate response vector Y and an ordinal explanatory variable
x taking values {1, . . . , k}, which can be thought of as several levels of a treat-
ment. Let Y i denote the random vector whose distribution is the conditional
distribution of Y given x = i. We are interested in testing Y 1

d= . . .
d= Y k

against a stochastic ordering alternative Y 1

st
≤ . . .

st
≤ Y k with at least one

st
�.
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In the statistical literature, there is relatively little on multivariate models for
nonnormal response variables, such as ordinal response data. This is perhaps
due to the mathematical intractability of reasonable models and to related
computational problems. The aim is therefore to provide permutation meth-
ods that apply to multivariate discrete and continuous data. We deal with
univariate and multivariate ordinal data in Chapters 2 and 3, respectively,
and Chapter 4 contains results for multivariate continuous responses.

As previously said, the second part of the book is dedicated to nonpara-
metric ANOVA within the permutation framework. Experimental designs are
useful research tools that are applied in almost all scientific fields. In factorial
experiments, processes of various natures whose behavior depends on several
factors are studied. In this context, a factor is any characteristic of the exper-
imental condition that might influence the results of the experiment. Every
factor takes on different values, called levels, that can be either quantitative
(dose) or qualitative (category). When several factors are observed in an ex-
periment, every possible combination of their levels is called a treatment. The
analysis of factorial designs through linear models allows us to study (and as-
sess) the effect of the experimental factors on the response, where factors are
under the control of the experimenter. They also allow for evaluating the joint
effect of two or more factors (also named main factors), which are known as
interaction factors. The statistical analysis is usually carried on by assuming a
linear model to fit the data. Here, the model to fit the response is an additive
model, where the effect of main factors and interactions are represented by un-
known parameters. In addition, a stochastic error component is considered in
order to represent the inner variability of the response. Usually, errors are as-
sumed to be i.i.d. homoscedastic random variables with zero mean. This model
requires some further assumptions in order to be applied. Some of them, such
as independence among experimental units or the identical distribution, are
reasonable and supported by experience. Other assumptions, such as normal-
ity of the experimental errors, are not always adequate. Generally it is possible
to check the assumption of normality only after the analysis has been made,
through diagnostic tools such as the Q−Q plot (Daniel, 1959). Nevertheless,
these tools are mainly descriptive; therefore the conclusions they may lead to
are essentially subjective. If the normality of errors is not satisfied or cannot
be justified, then the usual test statistics (such as the Student t test or the F
test) are approximate. It is therefore worthwhile to reduce some assumptions,
either to avoid the use of approximate tests or to extend the applicability of
the methods applied.

Permutation tests represent the ideal instrument in the experimental de-
sign field since they do not require assumptions on the distribution of errors
and, if normality can be assumed, they give results almost as powerful as their
parametric counterpart. There are other reasons to use permutation tests; for
instance, in the I×J replicated designs, even if data are normally distributed,
the two-way ANOVA test statistics are positively correlated. This means that
the inference on one factor may be influenced by other factors. There are
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other situations where parametric tests cannot be applied at all: In unrepli-
cated full factorial designs, the number of observations equals the number of
parameters to estimate in the model; therefore there are no degrees of freedom
left to estimate the error variance. Permutation tests deal with the notion of
exchangeability of the responses: The exchangeability is satisfied if the prob-
ability of the observed data is invariant with respect to random permutations
of the indexes. The exchangeability of the responses is a sufficient condition
to obtain an exact inference. In factorial design, the responses are generally
not exchangeable since units assigned to different treatments have different
expectations. Thus, either a restricted kind of permutation is needed or ap-
proximate solutions must be taken into account in order to obtain separate
inferences on the main factor/interaction effects.

Chapter 5 is an introduction to ANOVA in a nonparametric view. There-
fore, the general layout is introduced with minimal assumptions, with some
particular care about the exchangeability of errors. Some of the solutions from
the literature are introduced and discussed. The kinds of errors that may arise
(individual and family wise errors) in such a context are introduced, and some
preliminary methods to control them are suggested. The final part of the chap-
ter leads with direct applications of the existing methods from the literature
to practical examples.

In Chapter 6 a nonparametric solution to test for effects in replicated de-
signs is introduced. This part is dedicated to extending the solution proposed
by Pesarin (2001) and Salmaso (2003) for a 2×2 balanced replicated factorial
design with n units per treatment. Since the responses are not exchangeable,
the solution is based on a particular kind of permutations, named synchro-
nized permutations. In particular, by exchanging units within the same level
of a factor and by assuming the standard side conditions on the constraints,
it is possible to obtain a test statistic for main factors and interactions that
only depends on the effects under testing and on a combination of exchange-
able errors. The proposed tests are uncorrelated with each other, and they are
shown to be almost as powerful as the two-way ANOVA test statistics when
errors are normally distributed. After introducing the test statistics, two al-
gorithms are proposed to obtain Monte Carlo synchronized permutations. If
we desire a post hoc comparison, simultaneous confidence intervals on all pair
wise comparisons can be obtained by similarly applying synchronized permu-
tations. The tests proposed are then compared with the classical parametric
analysis.

Chapter 7 is devoted to the problem of the unreplicated full factorial de-
sign analysis. Again, the problem of exchangeability of the responses arises
and, given the peculiarity of the problem, it does not seem possible to ob-
tain exact permutation tests for all factors unless testing for the global null
hypothesis that there are no treatment effects. The paired permutation test
introduced by Pesarin and Salmaso (2002) is exact, but it is only applicable to
the first M largest effects. A further approximate solution is then proposed.
Such a solution is based on the decomposition of the total response variance
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under the full model and under some restricted models that are obtained in
accordance with the null hypothesis under testing. The test statistic is a ratio
of uncorrelated random variables, that allows us to evaluate the increase of
explained variance in the full model due to the main effect under testing. The
proposed test statistic allows the individual error rate to be controlled under
the effect sparsity assumption. It does not control the experimental error rate,
and its power is a decreasing function of the number of active effects and their
sizes (the bigger the size of one effect, the bigger the noncentrality parameter
in the denominator of the test statistic). To allow of control the experiment-
wise error rate and in order to gain power, another version of the statistical
procedure is introduced, a step-up procedure based on the comparison among
noncentrality parameters of the estimates of factor effects. This test needs a
calibration, which requires the central limit theorem, in order to control the
experiment-wise error rate. The calibration can be obtained by either provid-
ing some critical p-values for each step of the procedure in accordance with
a Bonferroni (or Bonferroni-Holm) correction or by obtaining a single critical
p-value based on the distribution of the minP from simulated data under the
global null hypothesis. This test is shown to be very powerful, as it can detect
active factors even when there is no effect sparsity assumption (except on the
smallest estimated effect, which cannot be tested). Note that a similar cali-
bration can be provided in order to control the individual error rate at level
α by choosing the critical α-quantile from the simulated null distribution of
the sequential p-values. A power comparison with Loughin and Noble’s test
(1997) and an application from Montgomery (1991) are finally reported and
discussed.

Each chapter of the book contains R code to develop the proposed theory.
All R codes and related functions are available online at www.gest.unipd.it/
∼salmaso/web/springerbook. This Website will be maintained and updated
by the authors, also providing errata and corrigenda of the code and possible
mistakes in the book.

The authors wish to thank John Kimmel of Springer-Verlag and the refer-
ees for their valuable comments and publishing suggestions. In addition, they
would like to acknowledge the University of Padova and the Italian Ministry
for University and Scientific and Technological Research (MIUR - PRIN 2006)
for providing the financial support for the necessary research and developing
part of the R codes.
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1

Permutation Tests

1.1 Introduction

This book deals with the permutation approach to a variety of univariate
and multivariate problems of hypothesis testing in a nonparametric frame-
work. The great majority of univariate problems may be usefully and effec-
tively solved within standard parametric or nonparametric methods as well,
although in relatively mild conditions their permutation counterparts are gen-
erally asymptotically as good as the best parametric ones. Moreover, it should
be noted that permutation methods are essentially of a nonparametrically
exact nature in a conditional context. In addition, there are a number of
parametric tests the distributional behavior of which is only known asymp-
totically. Thus, for most sample sizes of practical interest, the relative lack
of efficiency of permutation solutions may sometimes be compensated by the
lack of approximation of parametric asymptotic counterparts. Moreover, when
responses are normally distributed and there are too many nuisance param-
eters to estimate and remove, due to the fact that each estimate implies a
reduction of the degrees of freedom in the overall analysis, it is possible for
the permutation solution to become better than its parametric counterpart
(see, for example, Chapter 6). In addition, assumptions regarding the validity
of parametric methods (such as normality and random sampling) are rarely
satisfied in practice, so that consequent inferences, when not improper, are
necessarily approximated, and their approximations are often difficult to as-
sess.

For most problems of hypothesis testing, the observed data set y =
{y1, . . . , yn} is usually obtained by a symbolic experiment performed n times
on a population variable Y , which takes values in the sample space Y. We
often add the adjective symbolic to names such as experiments, treatments,
treatment effects, etc., in order to refer to experimental, pseudo-experimental,
and observational contexts. For the purposes of analysis, the data set y is gen-
erally partitioned into groups or samples, according to the so-called treatment
levels of the experiment. In the context of this chapter, we use capital letters

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 1,
c© Springer Science+Business Media, LLC 2009



2 1 Permutation Tests

for random variables and lower case letters for the observed data set. In some
sections, we shall dispense with this distinction because the context is always
sufficiently clear. Of course, when a data set is observed at its y value, it is
presumed that a sampling experiment on a given underlying population has
already been performed, so that the resulting sampling distribution is related
to that of the parent population, which is usually denoted by P .

For any general testing problem, in the null hypothesis (H0), which usually
assumes that data come from only one (with respect to groups) unknown pop-
ulation distribution P , the whole set of observed data y is considered to be a
random sample, taking values on sample space Yn, where y is one observation
of the n-dimensional sampling variable Y(n) and where this random sample
does not necessarily have independent and identically distributed (i.i.d.) com-
ponents. We note that the observed data set y is always a set of sufficient
statistics in H0 for any underlying distribution. In order to see this in a sim-
ple way, let us assume that H0 is true and all members of a nonparametric
family P of nondegenerate and distinct distributions are dominated by one
dominating measure ξ; moreover, let us denote by fP the density of P with
respect to ξ, by f (n)

P (y) the density of the sampling variable Y(n), and by y
the data set. As the identity f (n)

P (y) = f
(n)
P (y) ·1 is true for all y ∈ Yn, except

for points such that f (n)
P (y) = 0, due to the well-known factorization theorem,

any data set y is therefore a sufficient set of statistics for whatever P ∈ P.
Note that a family of distributions P is said to behave nonparametrically

when we are not able to find a parameter θ, belonging to a known finite-
dimensional parameter space Θ, such that there is a one-to-one relationship
between Θ and P in the sense that each member of P cannot be identified by
only one member of Θ and vice versa.

By the sufficiency , likelihood , and conditionality principles of inference
for a review, see Cox and Hinkley, 1974, Chapter 2), given a sample point
y, if y∗ ∈ Yn is such that the likelihood ratio f (n)

P (y)/f (n)
P (y∗) = ρ(y,y∗) is

not dependent on fP for whatever P ∈ P, then y and y∗ are said to contain
essentially the same amount of information with respect to P , so that they
are equivalent for inferential purposes. The set of points that are equivalent
to y, with respect to the information contained, is called the coset of y
or the orbit associated with y, and is denoted by Yn/y, so that Yn/y = {y∗ :
ρ(y,y∗) is fP -independent}. It should be noted that, when data are obtained
by random sampling with i.i.d. observations, so that f (n)

P (y) =
∏

1≤i≤n fP (yi),
the orbit Yn/y associated with y contains all permutations of y and, in this
framework, the likelihood ratio satisfies the equation ρ(y,y∗) = 1. Also note
that, as in Chapter 6, orbits of fP -invariant points may be constructed without
permuting the whole data set.

The same conclusion is obtained if f (n)
P (y) is assumed to be invariant with

respect to permutations of the arguments of y; i.e., the elements (y1, . . . , yn).
This happens when the assumption of independence for observable data is
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replaced by that of exchangeability, f (n)
P (y1, . . . , yn) = f

(n)
P (yu∗1 , . . . , yu∗n),

where (u∗1, . . . , u
∗
n) is any permutation of (1, . . . , n). Note that, in the con-

text of permutation tests, this concept of exchangeability is often referred to
as the exchangeability of the observed data with respect to groups. Orbits Yn/y
are also called permutation sample spaces. It is important to note that orbits
Yn/y associated with data sets y ∈ Yn always contain a finite number of points,
as n is finite.

Roughly speaking, permutation tests are conditional statistical procedures,
where conditioning is with respect to the orbit Yn/y associated with the ob-
served data set y. We will sometimes use use the notation Pr{·|y} instead of
Pr{·|Y/y} to denote the conditioning with respect to the orbit associated with
data set y even though the two notations are not necessarily equivalent.
Thus, Yn/y plays the role of reference set for the conditional inference (see
Lehmann and Romano, 2005). In this way, in the null hypothesis and assum-
ing exchangeability, the conditional probability distribution of a generic point
y′ ∈ Yn/y, for any underlying population distribution P ∈ P, is

Pr{y∗ = y′|Yn/y} =

∑
y∗=y′ f

(n)
P (y∗) · dξn∑

y∗∈Yn
/y
f

(n)
P (y∗) · dξn

=
#[y∗ = y′, y∗ ∈ Yn/y]

#[y∗ ∈ Yn/y]
,

which is P -independent. Of course, if there is only one point in Yn/y whose
coordinates coincide with those of y′, (i.e., if there are no ties in the data set),
and if permutations correspond to permutations of the arguments, then this
conditional probability becomes 1/n!. Thus, Pr{y∗ = y′|Yn/y} is uniform on
Yn/y for all P ∈ P.

These statements allow permutation inferences to be invariant with respect
to P in H0. Some authors, emphasizing this invariance property of permuta-
tion distribution in H0, prefer to give them the name of invariant tests. How-
ever, due to this invariance property, permutation tests are distribution-free
and nonparametric.

As a consequence, in the alternative hypothesisH1, conditional probability
shows quite different behavior and in particular may depend on P . To achieve
this in a simple way, let us consider, for instance, a two-sample problem where
f

(n1)
P1

and f (n2)
P2

are the densities, relative to the same dominating measure ξ,
of two sampling distributions related to two populations, P1 and P2, that are
assumed to differ at least in a set of positive probability. Suppose also that y1

and y2 are the two separate and independent data sets with sample sizes n1

and n2, respectively. Therefore, as the likelihood associated with the pooled
data set is f (n)

P (y) = f
(n1)
P1

(y1) · f (n2)
P2

(y2), from the sufficiency principle it
follows that the data set partitioned into two groups, (y1;y2), is now the set
of sufficient statistics. Indeed, by joint invariance of the likelihood ratio with
respect to both fP1 and fP2 , the coset of y is (Yn1

/y1
,Yn2
/y2

), where Yn1
/y1

and
Yn2
/y2

are partial orbits associated with y1 and y2, respectively. This implies
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that, conditionally, no datum from y1 can be exchanged with any other from
y2 because in H1 permutations are permitted only within groups, separately.

Consequently, when we are able to find statistics that are sensitive to
the diversity of two distributions, we may have a procedure for constructing
permutation tests. Of course, when constructing permutation tests, one should
also take into consideration the physical meaning of treatment effects, so that
the resulting inferential conclusions have clear interpretations.

Although the concept of conditioning for permutation tests is properly
related to the formal conditioning with respect to orbit Yn/y, henceforth we
shall generally adopt a simplified expression for this concept by stating that
permutation tests are inferential procedures that are conditional with respect
to the observed data set y. Indeed, once y is known and the exchangeability
condition is assumed in H0, Yn/y remains completely determined by y.

1.2 Basic Construction

In this section, we provide examples on the construction of a permutation
test. We will do this by considering a two-sample design. Let y1 and y2 be
two independent samples of size n1 and n2 from two population distributions
P1 and P2, respectively. In addition, let P1(y) = P2(y − δ). That is, the
population distributions differ only in location. A common testing problem
is to assess whether P1

d= P2 or not, where the symbol d= means equality
in distribution. In a location problem, there are several ways to specify the
underlying model generating the observed data; for instance, let

Yi1 = µ1 + εi1, i = 1, . . . , n1,
Yj2 = µ1 + δ + εj2, j = 1, . . . , n2,

(1.1)

be the models describing a generic observation from the first and second sam-
ples, respectively. Here δ = µ2 − µ1, µ1 and µ2 are population constants, and
εi1 and εj2 are identically distributed random variables with zero mean and
variance σ2 < +∞ (the so-called experimental errors), not necessarily inde-
pendent within the observations. The null hypothesis P1

d= P2 can be written
in terms of δ = 0 against the alternative hypothesis δ 6= 0. If H0 is true, then
Yi1 and Yj2 are identically distributued random variables. In addition, if εi1
and εj2 are exchangeable random variables, in the sense that Pr(ε) = Pr(ε∗),
where ε = [ε11, ε21, . . . , εn11, ε12, ε22, . . . , εn22]

′ and ε∗ is a permutation of ε,
then also Yi1 and Yj2 are exchangeable in the sense that Pr(Y) = Pr(Y∗),
where Y = [Y1,Y2]′ and Y∗ is the corresponding permutation of Y. As a
simple example, consider the common case where the observations are inde-
pendent. The likelihood can be written as

L(δ;y) = f
(n1)
P1

(y11, y21, . . . , yn11)f
(n2)
P2

(y12, y22, . . . , yn22)

=
n1∏
i=1

fP1(yi1)
n2∏
j=1

fP2(yi2),
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where y = [y1,y2]′ and fPj
(y) is the density of Yj , j = 1, 2. If H0 is true,

fP1(y) = fP2(y), so LH0(δ;y) = LH0(δ;y
∗). Roughly speaking, this means

that (conditionally), under H0, y1 and y2 are two independent samples from
the same population distribution P , or equivalently that y is a random sample
of size n = n1 + n2 from P .
In order to obtain a statistical test, we need to define a proper test statistic
and obtain its null distribution. How do we find the “best” test statistic for a
given inferential problem? There is no specific answer to this question when
the population distributions are unknown. One reasonable criterion is, for
instance, to let the unconditional expectation of a chosen test statistic depend
only on the parameter of interest. For instance, since unconditionally E[ȳ1] =
µ1 and E[ȳ2] = µ2, a suitable test statistic could be defined as T (y) = ȳ1− ȳ2.
Another reasonable choice is to look at the parametric counter-part: In a
two-sample location problem, the well-known t statistic

t =
ȳ1 − ȳ2[(

1
n1

+ 1
n2

)
s2
] 1

2

can also be considered. We will see that the t statistic and T (y) = ȳ1− ȳ2 are
equivalent within a permutation framework. By equivalent test statistics we
mean test statistics that lead to the same rejection region in the permutation
sample space Yn/y, so they also lead to the same inference for any given set
y ∈ Y.

Within a permutation framework, a test statistic T : Y/y → T is a
real function of all the observed data that takes values on the support
T = T (Y/y) ⊆ IR1. It is worth noting that the support T depends on y
in the sense that whenever y 6= y′ we may have Ty 6= Ty′ . Moreover, if T is
such that T (y∗′) 6= T (y∗′′) for any two distinct points of Y/y, in the null hy-
pothesis the distribution of T over T is uniform; that, is all points are equally
likely.

The null distribution of T (y) is given by the elements of the space T. We
will use the notation T (y), T o, or simply T to emphasize the observed value
of the test statistic (the one obtained from the observed data), whereas T ∗

indicates a value of the permutation distribution of the test statistic. Note
that T ∗ = T o if the identity permutation is applied to y.

To perform a statistical test, we only need to define a distance function
on T in order to specify which elements of Y/y are “far” from H0. That is,
we need a rule to determine the critical region of the test. To this end, let us
explore the space T through the two-sample location problem example. Let
T (y) = ȳ1 − ȳ2 be the test statistic and T ∗ = ȳ∗1 − ȳ∗2 be the generic element
of T. Conditionally, the expectation and variance of observations in y1 and
y2 are, respectively
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E(yi1|y) = ȳ1, E(y2
i1|y) =

1
n1

∑
i

y2
i1,

E(yj2|y) = ȳ2, E(y2
j2|y) =

1
n2

∑
j

y2
y2.

Now let y∗i1 be a generic observation in y∗1. Conditionally, Pr[y∗i1 ∈ y1|y] =
n1/n and Pr[y∗i1 ∈ y2|y] = n2/n. The conditional expected value of y∗i1 is
therefore

E[y∗i1|y] =
n1

n
ȳ1 +

n2

n
ȳ2 = ȳ.

Similarly, E[y∗j2|y] = ȳ. Consequently, E[T ∗|y] = 0, and therefore the null
distribution of T ∗ is centered, although it is not necessarily symmetric, in the
sense that FT∗(t∗) = 1 − FT∗(−t∗), t∗ ∈ T. It is symmetric, for instance, in
the balanced case where n1 = n2. As regards the variance

Var(y∗i1|y) = E[y∗i1
2|y]− E[y∗i1|y]2 =

1
n

2∑
l=1

nl∑
k=1

y2
kl − ȳ2 = σ̂2

0 ,

where σ̂2
0 is the maximum likelihood estimate of the variance under H0 when

data are normally distributed. Note that σ̂2
0 is constant, in a conditional frame-

work. Note also that the y∗i1’s are not independent. By the finite population
theory,

Var(ȳ∗1 |y) =
σ̂2

0

n1

(
n− n1

n− 1

)
=

σ̂2
0

n− 1
n2

n1
.

Now consider the relationship n1ȳ
∗
1 + n2ȳ

∗
2 = Y , where Y is the total of

observations, which is permutationally invariant. Then

Var(T ∗|y) = Var
(
ȳ∗1 −

Y

n2
+
n1ȳ

∗
1

n2
|y
)

= Var
(
n

n2
ȳ∗1 |y

)
=
n2

n2
2

Var(ȳ∗1 |y)

=
nσ̂2

0

n− 1
n

n1n2
=

nσ̂2
0

n− 1

(
n1 + n2

n1n2

)
= s20

(
1
n1

+
1
n2

)
,

which is like the denominator of the t test, despite the estimate of the popu-
lation variance. Note that s20 is the unbiased estimate of Var(Y ) when H0 is
true. Therefore, we can define a test statistic as

T ∗ =
n1n2

n

(ȳ∗1 − ȳ∗2)2

s20
, (1.2)

where the emphasis is on the fact that T ∗ is a random variable defined on Y/y.
Large values of (1.2) are significant against the null hypothesis. Since n1, n2

and s20 are constant, (1.2) is permutationally equivalent to T ∗′ = (ȳ∗1 − ȳ∗2)2

and to T ∗′′ = |ȳ∗1 − ȳ∗2 |.



1.3 Properties 7

A similar proof applies to the classic t statistic: Let t∗2 be the (squared)
value of the t statistic obtained from a random permutation of y∗,

t∗2 =
n1n2

n

(ȳ∗1 − ȳ∗2)2

s∗2
.

It can be easily proved (see Section 5.2) that this is a special case of one-way
ANOVA framework (when C = 2). Therefore, t∗2 is a monotone nondecreasing
function of T ∗′, and since permutation tests are based on the ordered values
of T (see Section 1.3), t∗2 is permutationally equivalent to T ∗ as well.

The exact p-value of the test is

p =
1
C

∑
T∗∈T

I(T ∗ ≥ T o) =
#[T ∗ ≥ T o]

C
,

where T o = T (y), I(·) is the indicator function, and C is the cardinality of
T. If Y is a continuous random variable (i.e., the probability of having ties is
zero), then

C =
(
n

n1

)
.

Clearly C increases very rapidly with n, so in practice the c.d.f. of T ∗ is
approximated by a Monte Carlo sampling from T. Let B be the number of
Monte Carlo permutations. Then the c.d.f. of T ∗ is estimated by

F̂T∗(t) =
#[T ∗ ≤ t]

B
t ∈ IR.

1.3 Properties

In this section, we investigate some properties of the permutation tests, such as
exactness and unbiasedness; for consistency we refer to Hoeffding (1952). Let
Y be a random variable such that E[Y ] = µ and Var[Y ] exists. Let H0 : µ ≤ µ0

be the null hypothesis to be assessed and T = T (Y) a suitable test statistic
for H0 (in the sense that large values of T are significant against H0). Then,
a (nonrandomized) test φ of size α is a function of the test statistic T = T (Y )
such as

φ(T ) =
{

1 if T ≥ T 1−α

0 if T < T 1−α,

where T 1−α is the 1 − α quantile of the null distribution of T , i.e. Pr[T ≥
T 1−α|Y/y] = α. The α-values that satisfy Pr[T ≥ T 1−α|Y/y] = α are called
attainable α-values. The set of attainable α-values is a proper subset of (0, 1].
Thus, if H0 : µ = µ0, permutation tests are exact for all attainable α-values,
whereas if H0 : µ ≤ µ0, they are conservative.

If the distribution of T is symmetric, one can define a test for two-sided
alternatives by replacing T with |T | in the definition of φ, or Tα with T 1−α if
the alternative hypothesis is H1 : µ < µ0. Clearly, the expected value of φ is
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E[φ] = 1 · Pr[T ≥ Tα] + 0 · Pr[T < Tα] = α.

That is why φ is usually called a test of size α.
Permutation tests are conditional procedures; therefore the definitions of

the usual properties of exactness and unbiasedness, and consistency require
an ad hoc notation: From now on, we denote by y(δ) the set of data when
the alternative hypothesis is true and by y(0) the set of data when the null
hypothesis is true.

The test φ of size α is said to be exact if ∀ 0 < α < 1:

Pr[φ = 1|y(0)] = α.

The test φ is said to be unbiased if

Pr[φ = 1|y(0)] ≤ α ≤ Pr[φ = 1|y(δ)].

The test φ is said to be consistent if

lim
n→+∞

Pr[φ = 1|y(δ)] = 1.

To prove the properties of permutation tests, we will still refer to a univari-
ate two-sample problem. In the previous section, we have given an informal
definition of a permutation test.

Formally, let Yn/y be the orbit associated with the observed vector of data
y. The points of Yn/y can also be defined as y∗ : y∗ = πy where π is a random
permutation of indexes 1, 2, . . . , n. Define a suitable test statistic T on Yn/y
for which large values are significant for a right-handed one-sided alternative:
The image of Yn/y through T is the set T that consists of C elements (if there
are no ties in the given data). Let

T ∗(1) ≤ T
∗
(2) ≤ · · · ≤ T

∗
(C)

be the ordered values of T. Let T o be the observed value of the test statistic,
T o = T (y). For a chosen attainable significance level α ∈ {1/C, 2/C, . . . , (C−
1)/C}, let k = C(1−α). Define a permutation test for a one-sided alternative
the function φ∗ = φ(T ∗)

φ∗(T ) =

{
1 if T o ≥ T ∗(k)
0 if T o < T ∗(k)

.

Since the critical values of the distribution of T ∗ depend on the observed data,
one can provide a more general definition of a permutation test based on the
p-values, whose distribution depends on sample size n:

φ∗(T ) =
{

1 if Pr[T ∗ ≥ T o|y] ≤ α
0 if Pr[T ∗ ≥ T o|y] > α

.

The equivalence of the two definitions is ensured by the relationship
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Pr{Pr[T ∗ ≥ T o|y] ≤ α} = Pr{Pr[T ∗ ≤ T o|y] ≥ 1− α}
= Pr{FT∗(T o) ≥ 1− α}
= Pr{F−1

T∗ (FT∗(T o)) ≥ F−1
T∗ (1− α)}

= Pr{T o ≥ T ∗(k)}.

To prove exactness, suppose H0 is true. Then the elements of T are equally
likely under the null hypothesis. This means that

Pr{T ∗ = T o|y(0)} =
1
C

⇒ Pr{T o ∈ A|y(0)} =
#[T ∗ ∈ A]

C
,

where A is one element of the Borel set defined on T. Hence, for any attainable
significance level α

Pr{φ∗(T ) = 1|y(0)} = Pr{T o ≥ T ∗(k)|y(0)}

=
#[T ∗ ≥ T ∗(k)]

C
=
Cα

C
= α.

Note that, since permutation tests are conditionally exact, they are uncondi-
tionally exact as well.

As regards unbiasedness, we will refer to the two-sample problem of the
previous section. Let’s suppose that data of the two samples are generated
under the model (1.1), and let H0 : µ2 − µ1 ≤ 0 be the null hypothesis
to assess. Define the test statistic as T = ȳ2 − ȳ1. Let T o(0) and T o(δ) be
respectively the observed value of T when data are y(0) and y(δ), respectively,

T o(0) = T ∗(y(0)) : ȳ2 − ȳ1 = ε̄2 − ε̄1,
T o(δ) = T ∗(y(δ)) : ȳ2 − ȳ1 = δ + ε̄2 − ε̄1,

where ε̄2 and ε̄1 are sampling averages of n2 and n1 exchangeable errors,
respectively. Since the event Pr[T ∗ ≥ T o|Y/y] ≤ α implies the event {T o ≥
T ∗(k)|Y/y}, we may write

Pr[T o(0) ≥ T ∗(k)|y(0)] = Pr[ε̄2 − ε̄1 ≥ T ∗(k)]

and
Pr[T o(δ) ≥ T ∗(k)|y(δ)] = Pr[ε̄2 − ε̄1 ≥ T ∗(k) − δ].

Now, without loss of generality, let δ ≥ 0 and T ∗(k) ≥ 0. Then, from the
exactness of φ∗, we have:

Pr[φ∗ = 1|y(δ)] = Pr[T o ≥ T ∗(k)|y(δ)] ≥ Pr[T o ≥ T ∗(k)|y(0)] = Pr[φ∗ = 1|y(0)],

which proves unbiasedness.
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1.4 Multivariate Permutation Tests

There are some problems where the complexity requires a further approach.
Consider, for instance, a multivariate problem where q (possibly dependent)
variables are considered, or a multiaspect problem (such as the Beherens-
Fisher problem), or a stratified analysis. The difficulties arise because of the
underlying dependence structure among variables (or aspects), which is gener-
ally unknown. Moreover, a global answer involving several dependent variables
(aspects) is often required, so the question is how to combine the information
related to the q variables (aspects) into one global test.

Let us consider a one-sample multivariate problem with q dependent vari-
ables: Here the data set Y is an n × q matrix, where n is the sample size.
What we are generally interested in is to test the null hypothsis H0 : µ = µ0

against the alternative hypothesis H1 : µ 6= µ0, where µ is a q × 1 vector of
population means and µ0 = [µ01, µ02, . . . , µ0q] is a target vector. Assuming Yi

i = 1, . . . , n is a multivariate normal random variable, a parametric solution
is Hotelling’s T 2 test. In a bivariate problem, we may specify it as

T 2 = n[ȳ − µ0]′Σ−1[ȳ − µ0]

=
n[ȳ1 − µ1]2

s21(1− ρ̂2
12)

+
n[ȳ2 − µ2]2

s22(1− ρ̂2
12)
− 2

nρ̂12[ȳ1 − µ1][ȳ2 − µ2]
s21s

2
2(1− ρ̂2

12)
= T (x1, µ1|ρ̂12) + T (x2, µ2|ρ̂12)− 2T ′(x1,x2, µ1, µ2),

where T (·) and T ′(·) are test statistics, ρ̂12 is the estimate of the correlation
between Y1 and Y2, and s21 and s22 are unbiased estimates of population vari-
ances. Note that Hotelling’s T 2 is a combination of marginal tests on µ1 and
µ2 accounting for the dependence between Y1 and Y2. Hotelling’s T 2 depends
on the estimated variance-covariance matrix Σ, which has rank n− q, and it
is appropriate only for two-sided alternatives. This means that either when
n ≤ q or alternatives are one-sided, the Hotelling T 2 test cannot be applied.
If Y1 and Y2 are independent, Hotelling’s T 2 reduces to

T 2 =
n[ȳ1 − µ1]2

s21
+
n[ȳ2 − µ2]2

s22
= T (y1, µ1|ρ12 = 0) + T (y2, µ2|ρ12 = 0).

Within a conditional approach, there are no assumptions on the dependence
structure among the q variables. Let us consider the matrix of observations
partitioned into n q-dimensional arrays; that is,

Yn×q =


y11 y12 . . . y1q
y21 y22 . . . y2q
...

...
. . .

...
yn1 yn2 . . . ynq

 .
Each row of Y is a determination of the multivariate variable [Y1, Y2, . . . , Yq],
which has distribution P with unknown dependence structure. But, being



1.4 Multivariate Permutation Tests 11

determinations of the same random variable, the rows of Y (i.e., the data
related to the statistical units) have an intrinsic dependence structure, which
does not need to be modelled in order to do a permutation test if the permu-
tations involve the rows of Y. Note that this is true even if the vectors of the
observations are repeated measures, or functions of the same data (e.g., the
first r powers of a random variable Y ).

A suitable nonparametric test to assess the hypothesis on marginal distri-
butions H0j : µj = µ0j , j = 1, . . . , q, is McNemar’s test,

Sj =
n∑
i=1

I(yij − µ0j > 0),

where I(·) is the indicator function. If data in Yj are symmetric and H0j

is true, then µ0j represents the mean and the median of the distribution.
Therefore, if µ0j is true, Sj should be close to n/2. The null distribution of
Sj is binomial with parameters n and 1/2. Clearly, Sj is significant for small
and large values, and the p-value of the test is obtained as

pj = Pr[X ≤ (n− Sj)] + Pr[X ≥ Sj ] where X ∼ Bi(n, 1/2).

An equivalent version of McNemar’s test is the test statistic

T ∗(yj, µ0j) =
n∑
i=1

(yij − µ0j)sgn∗(yij − µ0j), (1.3)

where

Pr[sgn∗(yi − µ0) = z] =
{

1/2 if z = +1
1/2 if z = −1 .

Note that in one-sample location problems, the usual permutations do not
apply since what is really informative here on the location parameter is the
vector of observed signs Sj = [I(y1j − µ0j > 0), I(y2j − µ0j > 0), . . . , I(ynj −
µ0j > 0)]. According to McNemar’s test, two points y∗j and y′j have the
same likelihood if

∑n
i=1 I(y

∗
ij − µ0j > 0) =

∑n
i=1 I(y

′
i − µ0j > 0). Here, the

permutation sample space Y(n)/yj
is given by

Y(n)/yj
= {y∗j : y∗j = π±(yj − µ0j)},

where π± is a combination of n ± signs, µ0j = µ0j1n and 1n is an n×1 vector
of 1’s. The permutation sample space therefore has 2n points. Note that in
(1.3) we have

E[T ∗(yj, µ0j)|yj] = 0,

Var[T ∗(yj, µ0j)|yj] =
n∑
i=1

(yij − µ0j)2,



12 1 Permutation Tests

so the null distribution is always centered on µ0j .
Since we have the relationship

H0 : µ = µ0 =⇒
q⋂
j=1

H0j ,

the global null hypothesis H0 can be viewed as an intersection of partial null
hypotheses H0j . Let λj , j = 1, . . . , q, be a partial test statistic for the univari-
ate hypothesis H0j . By partial test we mean a test statistic to assess H0j :
µj = µ0j j = 1, . . . , q. For instance, one may consider λj = |T ∗j (yj, µ0j)| or
λj = T ∗j (yj, µ0j)

2, which is significant for large values against H0j : µj = µ0j .
The partial test statistics may also be significant for one-sided alternatives.
For instance if H1j : µj < µ0j , then a test statistic is λj = −T ∗j (yj, µ0j). Now
let

ψ∗ = ψ(Y∗,µ0) =
q∑
j=1

λj (1.4)

be a global test statistic. In order to account for the (possible) dependence
among the q variables, the domain of ψ∗ is

Y(n)/Y∗ =
{
Y∗ : Y∗ = [π±(y1 − µ01), π±(y2 − µ02), . . . , π±(yq − µ0q)]

}
,

where π± is the same combination of n ± signs applied to all q vectors. If the
q variables are independent, one may consider

Y(n)/Y⊥ =
{
Y∗
⊥ : Y∗

⊥ = [π±1 (y1 − µ01), π±2 (y2 − µ02), . . . , π±q (yq − µ0q)]
}
.

where the π±i ’s are q independent combinations of n ± signs.
Note that Y(n)/Y⊥ and Y(n)/Y∗ are different spaces. In particular, Y(n)/Y∗ ⊆

Y(n)/Y⊥ , where Y(n)/Y⊥ is the orbit associated to Y if the q variables are as-
sumed to be independent, whereas in Y(n)/Y∗ the inner dependence among
variables is maintained. The cardinality of Y(n)/Y⊥ is 2nq, whereas the car-
dinality of Y(n)/Y∗ is 2n since the same combinations of signs apply to all q
vectors.

If (1.5) is computed on Y(n)/Y∗ , then T ∗(yj, µ0j) = T ∗(yj, µ0j |Σ), where
Σ is the matrix of (true) variances and covariances among q variables. That
is, since the test statistic is defined on a permutation sample space accounting
for dependence, the partial test statistic T ∗j ’s also account for dependence. If
q = 2, then let

HG
0 =

{
H01 : µ1 ≤ 0
H02 : µ2 ≤ 0

be the global null hypothesis, which is true if the partial null hypotheses H01

and H02 are jointly true and which should be rejected whenever one of the
partial null hypotheses is rejected. Define a global test to assess HG

0 as

ψ∗ = ψ(Y∗,0) = T ∗1 (y1, 0) + T ∗2 (y2, 0), (1.5)


