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Preface

Recommender Systems are software tools and techniques providing suggestions for
items to be of use to a user. The suggestions provided are aimed at supporting their
users in various decision-making processes, such as what items to buy, what music

Development of recommender systems is a multi-disciplinary effort which in-
volves experts from various fields such as Artificial intelligence, Human Computer
Interaction, Information Technology, Data Mining, Statistics, Adaptive User Inter-
faces, Decision Support Systems, Marketing, or Consumer Behavior. Recommender
Systems Handbook: A Complete Guide for Research Scientists and Practitioners
aims to impose a degree of order upon this diversity by presenting a coherent and
unified repository of recommender systems’ major concepts, theories, methodolo-
gies, trends, challenges and applications. This is the first comprehensive book which
is dedicated entirely to the field of recommender systems and covers several aspects
of the major techniques. Its informative, factual pages will provide researchers, stu-

classical methods, as well as extensions and novel approaches that were recently in-
troduced. The book consists of five parts: techniques, applications and evaluation of
recommender systems, interacting with recommender systems, recommender sys-
tems and communities, and advanced algorithms. The first part presents the most
popular and fundamental techniques used nowadays for building recommender sys-
tems, such as collaborative filtering, content-based filtering, data mining methods
and context-aware methods. The second part starts by surveying techniques and ap-
proaches that have been used to evaluate the quality of the recommendations. Then
deals with the practical aspects of designing recommender systems, it describes de-
sign and implementation consideration, setting guidelines for the selection of the

vii

to listen, or what news to read. Recommender systems have proven to be valu-
able means for online users to cope with the information overload and have 

Correspondingly, various techniques for recommendation generation have been 
proposed and during the last decade, many of them have also been successfully 
deployed in commercial environments. 

become one of the most powerful and popular tools in electronic commerce. 

dents and practitioners in industry with a comprehensive, yet concise and con-
venient reference source to recommender systems. The book describes in detail the
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more suitable algorithms. The section continues considering aspects that may affect
the design and finally, it discusses methods, challenges and measures to be applied
for the evaluation of the developed systems. The third part includes papers dealing
with a number of issues related to the presentation, browsing, explanation and vi-
sualization of the recommendations, and techniques that make the recommendation
process more structured and conversational.

The fourth part is fully dedicated to a rather new topic, which is however rooted in
the core idea of a collaborative recommender, i.e., exploiting user generated content

Finally the last section collects a few papers on some advanced topics, such as
the exploitation of active learning principles to guide the acquisition of new knowl-
edge, techniques suitable for making a recommender system robust against attacks
of malicious users, and recommender systems that aggregate multiple types of user
feedbacks and preferences to build more reliable recommendations.

We would like to thank all authors for their valuable contributions. We would
like to express gratitude for all reviewers that generously gave comments on drafts or
counsel otherwise. We would like to express our special thanks to Susan Lagerstrom-
Fife and staff members of Springer for their kind cooperation throughout the pro-
duction of this book. Finally, we wish this handbook will contribute to the growth
of this subject, we wish to the novices a fruitful learning path, and to those more ex-
perts a compelling application of the ideas discussed in this handbook and a fruitful

Francesco Ricci
Lior Rokach

Bracha Shapira
May 2010 Paul B. Kantor

of various types to build new types and more credible recommendations.

development of this challenging research area.
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Thieme, Robert Jäschke, Andreas Hotho, Gerd Stumme and
Panagiotis Symeonidis
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
19.2 Social Tagging Recommenders Systems . . . . . . . . . . . . . . . . . . . . . . 617

19.2.1 Folksonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
19.2.2 The Traditional Recommender Systems Paradigm . . . . . . 619
19.2.3 Multi-mode Recommendations . . . . . . . . . . . . . . . . . . . . . . 620

19.3 Real World Social Tagging Recommender Systems . . . . . . . . . . . . . 621
19.3.1 What are the Challenges? . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
19.3.2 BibSonomy as Study Case . . . . . . . . . . . . . . . . . . . . . . . . . . 622
19.3.3 Tag Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

19.4 Recommendation Algorithms for Social Tagging Systems . . . . . . . 626
19.4.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
19.4.2 Recommendation based on Ranking . . . . . . . . . . . . . . . . . . 630
19.4.3 Content-Based Social Tagging RS . . . . . . . . . . . . . . . . . . . . 634
19.4.4 Evaluation Protocols and Metrics . . . . . . . . . . . . . . . . . . . . 637

19.5 Comparison of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
19.6 Conclusions and Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 640
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

20 Trust and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Patricia Victor, Martine De Cock, and Chris Cornelis
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
20.2 Computational Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

20.2.1 Trust Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
20.2.2 Trust Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

20.3 Trust-Enhanced Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 655
20.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
20.3.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
20.3.3 Empirical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

20.4 Recent Developments and Open Challenges . . . . . . . . . . . . . . . . . . . 670



Contents xix

20.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

21 Group Recommender Systems: Combining Individual Models . . . . . . 677
Judith Masthoff
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
21.2 Usage Scenarios and Classification of Group Recommenders . . . . . 679

21.2.1 Interactive Television . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
21.2.2 Ambient Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
21.2.3 Scenarios Underlying Related Work . . . . . . . . . . . . . . . . . . 680
21.2.4 A Classification of Group Recommenders . . . . . . . . . . . . . 681

21.3 Aggregation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
21.3.1 Overview of Aggregation Strategies . . . . . . . . . . . . . . . . . . 682
21.3.2 Aggregation Strategies Used in Related Work . . . . . . . . . . 683
21.3.3 Which Strategy Performs Best . . . . . . . . . . . . . . . . . . . . . . . 685

21.4 Impact of Sequence Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
21.5 Modelling Affective State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

21.5.1 Modelling an Individual’s Satisfaction on its Own . . . . . . 689
21.5.2 Effects of the Group on an Individual’s Satisfaction . . . . . 690

21.6 Using Affective State inside Aggregation Strategies . . . . . . . . . . . . . 691
21.7 Applying Group Recommendation to Individual Users . . . . . . . . . . 693

21.7.1 Multiple Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
21.7.2 Cold-Start Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
21.7.3 Virtual Group Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

21.8 Conclusions and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
21.8.1 Main Issues Raised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
21.8.2 Caveat: Group Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
21.8.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Part V Advanced Algorithms

22 Aggregation of Preferences in Recommender Systems . . . . . . . . . . . . . 705
Gleb Beliakov, Tomasa Calvo and Simon James
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
22.2 Types of Aggregation in Recommender Systems . . . . . . . . . . . . . . . 706

22.2.1 Aggregation of Preferences in CF . . . . . . . . . . . . . . . . . . . . 708
22.2.2 Aggregation of Features in CB and

UB Recommendation 708
22.2.3 Profile Construction for CB, UB . . . . . . . . . . . . . . . . . . . . . 709
22.2.4 Item and User Similarity and Neighborhood Formation . . 709
22.2.5 Connectives in Case-Based Reasoning for RS . . . . . . . . . . 711
22.2.6 Weighted Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 711

22.3 Review of Aggregation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
22.3.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 712
22.3.2 Aggregation Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

22.4 Construction of Aggregation Functions . . . . . . . . . . . . . . . . . . . . . . . 722

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



xx Contents

22.4.1 Data Collection and Preprocessing . . . . . . . . . . . . . . . . . . . 722
22.4.2 Desired Properties, Semantics and Interpretation . . . . . . . 724
22.4.3 Complexity and the Understanding of

Function Behavior 725
22.4.4 Weight and Parameter Determination . . . . . . . . . . . . . . . . . 726

22.5 Sophisticated Aggregation Procedures in Recommender
Systems: Tailoring for Specific Applications . . . . . . . . . . . . . . . . . . . 726

22.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
22.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

23 Active Learning in Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 735
Neil Rubens, Dain Kaplan, and Masashi Sugiyama
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

23.1.1 Objectives of Active Learning in
Recommender Systems 737

23.1.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
23.1.3 Types of Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

23.2 Properties of Data Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
23.2.1 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

23.3 Active Learning in Recommender Systems . . . . . . . . . . . . . . . . . . . . 742
23.3.1 Method Summary Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

23.4 Active Learning Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
23.5 Uncertainty-based Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 746

23.5.1 Output Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
23.5.2 Decision Boundary Uncertainty . . . . . . . . . . . . . . . . . . . . . . 748
23.5.3 Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

23.6 Error-based Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
23.6.1 Instance-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
23.6.2 Model-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

23.7 Ensemble-based Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
23.7.1 Models-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
23.7.2 Candidates-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

23.8 Conversation-based Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . 760
23.8.1 Case-based Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
23.8.2 Diversity-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
23.8.3 Query Editing-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

23.9 Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
23.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

24 Multi-Criteria Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Gediminas Adomavicius, Nikos Manouselis and YoungOk Kwon
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
24.2 Recommendation as a Multi-Criteria Decision

Making Problem 771
24.2.1 Object of Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
24.2.2 Family of Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Contents xxi

24.2.4 Decision Support Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
24.3 MCDM Framework for Recommender Systems:

Lessons Learned 776
24.4 Multi-Criteria Rating Recommendation . . . . . . . . . . . . . . . . . . . . . . . 780

24.4.1 Traditional single-rating recommendation problem . . . . . . 781
24.4.2 Extending traditional recommender systems to include

multi-criteria ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
24.5 Survey of Algorithms for Multi-Criteria Rating Recommenders . . . 783

24.5.1 Engaging Multi-Criteria Ratings during Prediction . . . . . . 784
24.5.2 Engaging Multi-Criteria Ratings

during Recommendation 791
24.6 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
24.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798

25 Robust Collaborative Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . 805
Robin Burke, Michael P. O’Mahony and Neil J. Hurley
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
25.2 Defining the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

25.2.1 An Example Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
25.3 Characterising Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

25.3.1 Basic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
25.3.2 Low-knowledge attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
25.3.3 Nuke Attack Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
25.3.4 Informed Attack Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

25.4 Measuring Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
25.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
25.4.2 Push Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
25.4.3 Nuke Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
25.4.4 Informed Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
25.4.5 Attack impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820

25.5 Attack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
25.5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
25.5.2 Single Profile Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
25.5.3 Group Profile Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
25.5.4 Detection findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

25.6 Robust Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
25.6.1 Model-based Recomendation . . . . . . . . . . . . . . . . . . . . . . . . 828
25.6.2 Robust Matrix Factorisation (RMF) . . . . . . . . . . . . . . . . . . 829
25.6.3 Other Robust Recommendation Algorithms . . . . . . . . . . . . 830
25.6.4 The Influence Limiter and Trust-based

Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
25.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

24.2.3 Global Preference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 774



List of Contributors

Gediminas Adomavicius
Department of Information and Decision Sciences
Carlson School of Management, University of Minnesota, Minneapolis, MN 55455,
USA
e-mail: gedas@umn.edu

Xavier Amatriain
Telefonica Research, Via Augusta, 122, Barcelona 08021, Spain
e-mail: xar@tid.es

Riccardo Bambini
Fastweb, via Francesco Caracciolo 51, Milano, Italy
e-mail: riccardo.bambini@fastweb.it

Gleb Beliakov
School of Information Technology, Deakin University, 221 Burwood Hwy,
Burwood 3125, Australia,
e-mail: gleb@deakin.edu.au

Robert Bell
AT&T Labs – Research
e-mail: rbell@research.att.com

David Bonnefoy
Pearltrees,
e-mail: david.bonnefoy@pearltrees.com

Peter Briggs
CLARITY: Centre for Sensor Web Technologies, School of Computer Science &
Informatics, University College Dublin, Ireland,
e-mail: Peter.Briggs@ucd.ie

Robin Burke
Center for Web Intelligence, School of Computer Science, Telecommunication and

xxiii



xxiv List of Contributors

Information Systems, DePaul University, Chicago, Illinois, USA
e-mail: rburke@cs.depaul.edu

Tomasa Calvo
Departamento de Ciencias de la Computación, Universidad de Alcalá
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Chapter 1
Introduction to Recommender Systems
Handbook

Francesco Ricci, Lior Rokach and Bracha Shapira

Abstract Recommender Systems (RSs) are software tools and techniques providing
suggestions for items to be of use to a user. In this introductory chapter we briefly
discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent
and structured way, the chapters included in this handbook and to help the reader
navigate the extremely rich and detailed content that the handbook offers.

1.1 Introduction

Recommender Systems (RSs) are software tools and techniques providing sugges-
tions for items to be of use to a user [60, 85, 25]. The suggestions relate to various
decision-making processes, such as what items to buy, what music to listen to, or
what online news to read.

“Item” is the general term used to denote what the system recommends to users.
A RS normally focuses on a specific type of item (e.g., CDs, or news) and accord-
ingly its design, its graphical user interface, and the core recommendation technique
used to generate the recommendations are all customized to provide useful and ef-
fective suggestions for that specific type of item.

RSs are primarily directed towards individuals who lack sufficient personal ex-
perience or competence to evaluate the potentially overwhelming number of alter-
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native items that a Web site, for example, may offer [85]. A case in point is a book
recommender system that assists users to select a book to read. In the popular Web
site, Amazon.com, the site employs a RS to personalize the online store for each
customer [47]. Since recommendations are usually personalized, different users or
user groups receive diverse suggestions. In addition there are also non-personalized
recommendations. These are much simpler to generate and are normally featured in
magazines or newspapers. Typical examples include the top ten selections of books,
CDs etc. While they may be useful and effective in certain situations, these types of
non-personalized recommendations are not typically addressed by RS research.

In their simplest form, personalized recommendations are offered as ranked lists
of items. In performing this ranking, RSs try to predict what the most suitable prod-
ucts or services are, based on the user’s preferences and constraints. In order to
complete such a computational task, RSs collect from users their preferences, which
are either explicitly expressed, e.g., as ratings for products, or are inferred by inter-
preting user actions. For instance, a RS may consider the navigation to a particular
product page as an implicit sign of preference for the items shown on that page.

RSs development initiated from a rather simple observation: individuals often
rely on recommendations provided by others in making routine, daily decisions
[60, 70]. For example it is common to rely on what one’s peers recommend when
selecting a book to read; employers count on recommendation letters in their re-
cruiting decisions; and when selecting a movie to watch, individuals tend to read
and rely on the movie reviews that a film critic has written and which appear in the
newspaper they read.

In seeking to mimic this behavior, the first RSs applied algorithms to leverage
recommendations produced by a community of users to deliver recommendations
to an active user, i.e., a user looking for suggestions. The recommendations were
for items that similar users (those with similar tastes) had liked. This approach is
termed collaborative-filtering and its rationale is that if the active user agreed in the
past with some users, then the other recommendations coming from these similar
users should be relevant as well and of interest to the active user.

As e-commerce Web sites began to develop, a pressing need emerged for pro-
viding recommendations derived from filtering the whole range of available alter-
natives. Users were finding it very difficult to arrive at the most appropriate choices
from the immense variety of items (products and services) that these Web sites were
offering.

The explosive growth and variety of information available on the Web and the
rapid introduction of new e-business services (buying products, product compari-
son, auction, etc.) frequently overwhelmed users, leading them to make poor deci-
sions. The availability of choices, instead of producing a benefit, started to decrease
users’ well-being. It was understood that while choice is good, more choice is not
always better. Indeed, choice, with its implications of freedom, autonomy, and self-
determination can become excessive, creating a sense that freedom may come to be
regarded as a kind of misery-inducing tyranny [96].

RSs have proved in recent years to be a valuable means for coping with the infor-
mation overload problem. Ultimately a RS addresses this phenomenon by pointing
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a user towards new, not-yet-experienced items that may be relevant to the users
current task. Upon a user’s request, which can be articulated, depending on the rec-
ommendation approach, by the user’s context and need, RSs generate recommen-
dations using various types of knowledge and data about users, the available items,
and previous transactions stored in customized databases. The user can then browse
the recommendations. She may accept them or not and may provide, immediately
or at a next stage, an implicit or explicit feedback. All these user actions and feed-
backs can be stored in the recommender database and may be used for generating
new recommendations in the next user-system interactions.

As noted above, the study of recommender systems is relatively new compared to
research into other classical information system tools and techniques (e.g., databases
or search engines). Recommender systems emerged as an independent research area
in the mid-1990s [35, 60, 70, 7]. In recent years, the interest in recommender sys-
tems has dramatically increased, as the following facts indicate:

1. Recommender systems play an important role in such highly rated Internet sites
as Amazon.com, YouTube, Netflix, Yahoo, Tripadvisor, Last.fm, and IMDb.
Moreover many media companies are now developing and deploying RSs as part
of the services they provide to their subscribers. For example Netflix, the online
movie rental service, awarded a million dollar prize to the team that first suc-
ceeded in improving substantially the performance of its recommender system
[54].

2. There are dedicated conferences and workshops related to the field. We refer
specifically to ACM Recommender Systems (RecSys), established in 2007 and
now the premier annual event in recommender technology research and appli-
cations. In addition, sessions dedicated to RSs are frequently included in the
more traditional conferences in the area of data bases, information systems and
adaptive systems. Among these conferences are worth mentioning ACM SIGIR
Special Interest Group on Information Retrieval (SIGIR), User Modeling, Adap-
tation and Personalization (UMAP), and ACM’s Special Interest Group on Man-
agement Of Data (SIGMOD).

3. At institutions of higher education around the world, undergraduate and graduate
courses are now dedicated entirely to RSs; tutorials on RSs are very popular at
computer science conferences; and recently a book introducing RSs techniques
was published [48].

4. There have been several special issues in academic journals covering research
and developments in the RS field. Among the journals that have dedicated issues
to RS are: AI Communications (2008); IEEE Intelligent Systems (2007); Inter-
national Journal of Electronic Commerce (2006); International Journal of Com-
puter Science and Applications (2006); ACM Transactions on Computer-Human
Interaction (2005); and ACM Transactions on Information Systems (2004).

In this introductory chapter we briefly discuss basic RS ideas and concepts. Our
main goal is not much to present a self-contained comprehensive introduction or
survey on RSs but rather to delineate, in a coherent and structured way, the chapters
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included in this handbook and to help the reader navigate the extremely rich and
detailed content that the handbook offers.

The handbook is divided into five sections: techniques; applications and evalua-
tion of RSs; interacting with RSs; RSs and communities; and advanced algorithms.

The first section presents the techniques most popularly used today for build-
ing RSs, such as collaborative filtering; content-based, data mining methods; and
context-aware methods.

The second section surveys techniques and approaches that have been utilized to
evaluate the quality of the recommendations. It also deals with the practical aspects
of designing recommender systems; describes design and implementation consider-
ations; and sets guidelines for selecting the more suitable algorithms. The section
also considers aspects that may affect RS design (domain, device, users, etc.). Fi-
nally, it discusses methods, challenges and measures to be applied in evaluating the
developed systems.

The third section includes papers dealing with a number of issues related to how
recommendations are presented, browsed, explained and visualized. The techniques
that make the recommendation process more structured and conversational are dis-
cussed here.

The fourth section is fully dedicated to a rather new topic, exploiting user-
generated content (UGC) of various types (tags, search queries, trust evaluations,
etc.) to generate innovative types of recommendations and more credible ones. De-
spite its relative newness, this topic is essentially rooted in the core idea of a collab-
orative recommender,

The last selection presents papers on various advanced topics, such as: the ex-
ploitation of active learning principles to guide the acquisition of new knowledge;
suitable techniques for protecting a recommender system against attacks of mali-
cious users; and RSs that aggregate multiple types of user feedbacks and preferences
to build more reliable recommendations.

1.2 Recommender Systems Function

In the previous section we defined RSs as software tools and techniques providing
users with suggestions for items a user may wish to utilize. Now we want to refine
this definition illustrating a range of possible roles that a RS can play. First of all,
we must distinguish between the role played by the RS on behalf of the service
provider from that of the user of the RS. For instance, a travel recommender system
is typically introduced by a travel intermediary (e.g., Expedia.com) or a destination
management organization (e.g., Visitfinland.com) to increase its turnover (Expedia),
i.e., sell more hotel rooms, or to increase the number of tourists to the destination
[86]. Whereas, the user’s primary motivations for accessing the two systems is to
find a suitable hotel and interesting events/attractions when visiting a destination.

In fact, there are various reasons as to why service providers may want to exploit
this technology:


