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Preface

Microsystems in engineering or Micro Electromechanical Systems are miniaturized devices with
components in micrometers, which perform micrometer to nanometer scale complex functions
within a tiny space, such as sensing and actuation. Typical microsystems have both mechanical
parts and electrical parts, like read-write head in computer storage devices, or bending cantilevers
in atomic force microscopes. Dynamics studies the movement of systems of interconnected bodies
under the action of external forces. Bodies could be treated with rigid bodies or flexible bodies or
both subjects to applications. The dynamics of a rigid body system are defined by its equations of
motion, which are derived using either Newton-Euler equations or Lagrangian equations. The
dynamics of a flexible body system or structural dynamics have general dynamical equations of
motions, including stress and strain relations. Vibration investigates the oscillatory motion of an
object about an equilibrium point and the forces associated with it. Microsystem dynamics studies
the mechanical behavior and motion of microsystems, analyzes how these microsystems move and
respond to external forces, considering multiscales, multiphysics factors.

Unlike most conventional engineering systems, in microsystems, surface and micro level related
forces play significant roles and are not ignorable compared with body forces. A microsystem
with moving parts functionally operates with varied movements and thus involves vibrations and
dynamics. Numerous models have been developed for varied microsystems under individual con-
ditions. Microsystem and dynamics/vibrations used to be two distinct fields. However, with the
recent rapid developments in dynamical microsystems - especially the extensive applications of
dynamical microsystem in the IT hardware, battery-powered road vehicle and aircraft systems,
telecommunication systems, biomedical devices, manufacturing and robotic systems, engineers
and scientists are turning to combine microsystem and dynamics/vibrations for integrated and
efficient methods to handle and analyze the vast amounts of practical cases.

The need for information storage systems is tremendously high and ever increasing. There are
a variety of information storage systems with varying degrees of development and commercial-
ization. To date, magnetic information storage technology, particularly hard disk drive, is most
widely used for long-term data storage, whereas memory stick or USB flash drives is typically used
for short-term data storage. Microsystem dynamics was once the most challenging and critical
problem in the development of hard disk drives, and remains one of the most important tech-
niques to advance hard disk drive technology.

Rechargeable lithium-ion batteries have been used for a wide variety of applications from
small-scale portable electronics to massive-scale energy storage systems. Particularly, electric
vehicle battery building has been booming worldwide for the last several years. The limitations of
current battery technology include underutilization, capacity fade, thermal runaway, stress-induced
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fracture, and microscale material damage. To overcome these challenges, understanding the com-
plex multiphysics and multiscale microsystem dynamics of lithium-ion batteries is indispensable.

Microactuators or MEMS actuators are the devices that convert electrical energy to mechanical
motion. Microactuators are widely used in science and engineering. Examples include variable
capacitors, microrelays for low-power VLSI, optical phase shifters, next-generation displays,
microgrippers for robotic surgery, and focusing mechanisms for cameras in mobile devices. There
are various microactuators using different dynamical systems, which are characterized by micro-
system dynamics.

Understanding the nature of microsystem dynamics and solving the technological problems
associated with microsystem dynamics are the essence of these fields. The importance of micro-
system dynamics cannot be overemphasized for economic reasons, long-term reliability, and
safety. Modeling microsystem dynamics in engineering and scientific systems requires an accurate
description of microsystem and dynamics. Unfortunately, this is extremely challenging as it involves
complex phenomena in microscale. On the other hand, the resultant vibrations and dynamics in
microsystems often exhibit various nonlinear, nonstationary, and uncertain features due to complex
dynamics of microsystems. Moreover, small changes in parameters could have significant effect
on the resultant vibrations and dynamics, thus the scales of influencing factors span from mac-
roscales, microscales, to nanoscales, molecular, or even atomic scales. The boundary condition of
the problems is not fixed or given in prior, it is dependent on environmental conditions, operation
conditions, system interactions, and dependent on time. Because of the complexity of the problems,
tremendous efforts have been made in many engineering and scientific communities.

The purpose of this book is to present the principles of microsystem dynamics and their rele-
vance to various applications. This book offers a combined treatment of the modeling, analysis,
and testing of many microsystem dynamics problems that application engineers and scientists are
trying to solve. After delineating these mathematical characterizations, it presents several appli-
cations in use today for analyzing microsystem dynamics. Emphasis is put on the contemporary
knowledge and perspectives of microsystem dynamics.



1

Introduction

In this introductory chapter, the concepts of microsystems, dynamics/vibrations, and microsystem
dynamics are described. Then the significance of microsystem dynamics in engineering, science,
and everyday life is presented. In the last section, the organization of the book is introduced.

1.1 Definition of Microsystem, Vibrations and Dynamics

Microsystems or microelectromechanical systems (MEMS) are miniaturized devices with com-
ponents measured in micrometers that perform micro- to nanometer scale electronic machine
functions such as sensing and actuation. Typical microsystems have both mechanical and electrical
parts, like read-write heads in computer storage devices, or bending cantilevers in atomic force
microscopes [1-13].

Vibration studies the oscillatory motion of an object around an equilibrium point and the forces
associated with it. The oscillations may be periodic or random. The associated forces may be linear
or nonlinear. Vibration is usually detrimental, and occasionally “desirable” for engineering sys-
tems. Dynamics studies the movement of systems of interconnected bodies under the action of
external forces. For rigid-body dynamics, the moving bodies are assumed to be rigid, which sim-
plifies the analysis by reducing the parameters that describe the configuration of the system to
the translation and rotation of reference frames attached to each body. The dynamics of a rigid
body system are defined by its equations of motion, which are derived using either Newton-Euler
equations or Lagrangian equations. The dynamics of a flexible body system or structural dynamics
have general dynamical equations of motions, including stress and strain relations.

Unlike most conventional engineering systems, in microsystems, surface-related forces play
significant roles and are not ignorable compared with body forces. A microsystem with moving
parts functionally operates with varied movements and thus involves vibrations and dynamics.
Numerous models have been developed for varied microsystems under individual conditions.
Microsystems and vibration/dynamics used to be two distinct fields. However, with the recent
rapid developments in dynamical microsystems — especially the extensive applications of dynam-
ical microsystems in IT hardware, telecommunications, biomedical technology, manufacturing
and robotic systems, transportation, and aerospace, engineers are turning to combining microsys-
tem and dynamics/vibrations for integrated and efficient methods to handle and analyze the vast
amounts of practical cases.

Microsystem Dynamics: Principles and Applications, First Edition. Gang S. Chen, Jianfeng Xu and Wei Hua.
© 2025 John Wiley & Sons Ltd. Published 2025 by John Wiley & Sons Ltd.
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1 Introduction

This book, Microsystem Dynamics, offers a combined treatment of the modeling, analysis, and
testing of many problems that application engineers are trying to solve. After delineating these
mathematical characterizations, it presents several applications in use today for analyzing micro-
system dynamics. Emphasis is put on the contemporary knowledge and perspectives of microsys-
tem dynamics.

1.2 Engineering and Scientific Significance of
Microsystem Dynamics

Several decades have passed since the discovery and development of microsystems. Microsystem
technology is beginning to explode with extensive applications.

Varied microsystems are used in numerous scientific and engineering systems and our
everyday life. Just to name a few: active sliders in computer hard disk drives; accelerometers
and pressure sensors in vehicles; lithium-ion batteries in electric vehicles; micromirrors in TVs;
radiofrequency switches and MEMS microphones in cell phones; varied microactuators, such as
MEMS valves, pumps, and microfluidics; electrical and optical relays and switches; MEMS grip-
pers, tweezers, and tongs; MEMS linear and rotary motors; inkjet printer heads; microvehicles
(e.g. microaircraft, microcars). After several decades of development, the fabrication methods of
bulk and surface micromachining for microsystems are now matured and almost standardized.

The examples of microsystem dynamics phenomena cover numerous mechanisms in sci-
ence and engineering. Even in laptops, we rely on dynamic microsystems for data storage and
retrieval. Microsystem dynamics extend beyond engineering applications, it includes numerous
phenomena in science and nature. This book considers microsystem dynamics in its broader
meaning yet concentrates on fundamentals and engineering applications.

To give some examples of the problems treated in the book, let’s consider the immense efforts
that are being put into dealing with microsystem dynamics in the information storage industry,
lithium-ion battery industry, and microactuator industry.

We are living in an information age. The needs for information storage systems are tremen-
dously high and ever-increasing. There are a variety of information storage systems with varying
degrees of development and commercialization. To date, magnetic information storage technology,
particularly hard disk drives, is the most widely used. We are all familiar with computers in
which the hard disk is one of key components. The worldwide hard disk drive revenue had
reached $50 billion. Magnetic hard disk drives are based on the same fundamental principles of
magnetic recording which involves a recording head and a recording medium. The former is on
a suspension-supported slider, while the latter is on a spinning disk. The slider is flying on the
spinning disk with the air gap. The operation of the hard disk drive is based on a self-pressurized
air-bearing between the slider and the spinning disk, which maintains a constant separation called
flying height. The state-of-the-art flying height is on the order of below 10 nm, while the relative
speed between the slider and disk is extremely high (20 m/s or higher). The mechanical spacing
between the slider and the disk must be further reduced to less than 2 nm to achieve an areal
density beyond 1 Tbit/in% In these regimes, microsystem dynamics have been the most challeng-
ing and critical problem for the products. On the other hand, over the last decade, the microsystem
dynamics technique have been one of the most important techniques to advance slider disk inter-
face and hard disk drive technology.



1.2 Engineering and Scientific Significance of Microsystem Dynamics

Rechargeable lithium-ion batteries (LIBs) have been used for a wide variety of applications
from small-scale portable electronics to massive-scale energy storage systems. Particularly, electric
vehicle battery building has been booming worldwide for the last several years. The market value
of the LIBs industry was about $55 billion in 2023. With the enhanced demand for LIBs, experts
predict this market will grow steadily, with a compound annual growth rate of around 20% from
2024 to 2030. A typical LIB cell is made up of an anode, cathode, separator, electrolyte, and two
current collectors (positive and negative). The anode and cathode (both with thickness between
50 and 100 pum) store the lithium. The electrolyte carries positively charged lithium ions from
the anode to the cathode and vice versa through the separator. The movement of the lithium
ions creates free electrons in the anode which creates a charge at the positive current collector.
The electrical current then flows from the current collector through a device being powered (cell
phone, computer, vehicle motor, etc.) to the negative current collector. The separator (with a thick-
ness between 20 and 30 um) blocks the flow of electrons inside the battery. While LIB is discharg-
ing and providing an electric current, the anode releases lithium ions to the cathode, generating a
flow of electrons from one side to the other. When plugging in the used LIB to the electrical grid
for charging, the opposite happens: lithium ions are released by the cathode and received by the
anode. However, the existing problems of LIBs limit their reliable applications in vehicles due to
the stringent safety standards. The limitations of current battery technology include underutiliza-
tion, capacity fade, thermal runaway, stress-induced fracture, and microscale material damage. To
overcome these challenges, understanding the complex multiphysics and multiscale dynamics of
LIBs is indispensable.

Microactuators or MEMS actuators are devices that convert electrical energy to mechanical
motion, which comprise more than 50% of the rapidly growing microsystems/MEMS market
which has a worldwide revenue of about $20 billion. Microactuators are widely used in science
and engineering. Examples include variable capacitors, microrelays for low-power VLSI, optical
phase shifters, next-generation displays, microgrippers for robotic surgery, and focusing mecha-
nisms for cameras in mobile devices. There are various microactuators using different dynamical
systems, which are characterized by microsystem dynamics with various electrostatic, thermal,
piezoelectric, and magnetic features.

Understanding the nature of microsystem dynamics and solving the technological problems
associated with microsystem dynamics are the essence of these fields.

Modeling of microsystem dynamics in engineering and scientific systems requires an accurate
description of microsystems and dynamics. Unfortunately, this is extremely challenging as it involves
complex surface phenomena in microscales. On the other hand, the resultant vibrations and dynamics
in microsystems often exhibit various nonlinear, nonstationary, and uncertain features due to complex
surface or interfacial forces. Moreover, small changes in interfacial parameters could have significant
effect on the resultant vibrations and dynamics, thus, the scales of influencing factor span from
macro-, micro-, to nanometer levels. The boundary condition of the problems is not fixed or given
in prior, it is dependent on environmental conditions, operation conditions, system interactions, and
dependent on time. Because of the complexity of the problems, tremendous efforts have been made in
many engineering and scientific communities.

The recent extensive efforts in modeling, analytical, and experimental investigation have
made a lot of substantial progress in many practical applications. Many advanced techniques of
measurement, nonlinear dynamics, signal processing, computational intelligence, and system
identification have been used as efficient means to address nonlinear, nonstationary, and uncer-
tain vibrations and dynamics, which enables to efficient quantify microsystem dynamics and

3
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1 Introduction

leads to the development of the insight of microsystem in micro, nano, molecular, or even
atomic scales.

The purpose of research in microsystem dynamics lies in many ways, just to name a few: to
develop a fundamental understanding of dynamical microsystems; to make use of its principle
to design novel engineering microsystems; to make use of the microsystem dynamics to explore
phenomena in complex process where the other means are not accessible; and understandably to
reduce and eliminate the instability and vibrations in engineering microsystems thus enhance the
durability, reliability and safety of products.

1.3 Organization of the Book

The book has been set out with a twofold aim in view. The first aim is to give a general introduction to
the theory of vibrations, dynamics, and surface and interface interactions at the microscale, offering
a physical picture of the fundamental theory. The second aim is to give a series of examples of the
applications of the theoretical approaches. The author is expected to provide contemporary coverage
of the primary concepts and techniques in the treatment of microsystem dynamics.

This book brings together into one accessible text the fundamentals of the many disciplines
needed by today’s engineers working in the field of microsystem dynamics. This book consists
of six chapters. The basic principles of vibrations, dynamics, surface forces and interactions, and
critical applications of microsystem dynamics are introduced in these chapters. Chapter 1 intro-
duces the whole book. Chapter 2 provides a comprehensive introduction to the analysis of vibra-
tions and dynamics, from vibrations of linear systems, and random excited systems to nonlinear
systems and rigid-body dynamics by covering most required areas and applications. Chapter 3
describes the principles of surface forces and interface interactions in macro- and microscales.
In Chapter 4, the concepts and methods are extended to the most critical engineering applica-
tions of microsystems in the IT industry. It presents the microsystem dynamics of microscale
air-bearing slider systems and nanoscale MEMS slider systems, which are widely used computer
hard disk drive. Chapter 5 presents the microdynamics of lithium-ion batteries in the context of
multiphysics, which has been widely investigated in science and engineering communities for
extensive applications recently. In Chapter 6, the microsystem dynamics of varied MEMS actu-
ators are presented.

Complete references given in the book provide a comprehensive perspective on the developments
in microsystem dynamics, as well as covering various applications. For didactical reasons, the text
is not interrupted by the inclusion of references. However, at the end of each chapter, the relevant
literatures published are cited.

References

1 Senturia, S.D., MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering.
Springer, 2000.
2 Menz, W., Mohr, J., and Paul, O., Microsystem Technology. Wiley, 2001.
3 Hsu, T.R., MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering. Wiley, 2008.
4 Madou, M.J., Fundamentals of Microfabrication: The Science of Miniaturization. Wiley, 2011.
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Vibrations and Dynamics

2.1 Introduction

We present the vibrations and advanced dynamics in this chapter. After the introduction, Section 2.2
is devoted to the analysis of linear deterministic vibration systems, and the Section 2.3 describes
the random vibrations. Section 2.4 is dedicated to the fundamentals of nonlinear vibrations, and
Section 2.5 presents advanced dynamics [1-9].

2.2 Vibration of Linear System Under Deterministic Excitations

2.2.1 Vibration of Linear Discrete and Continuous Systems

Vibration is the oscillatory motion of a body or structure. Vibration takes places when a body is
displaced from its stable equilibrium position by a restoring force.

A vibration system having a finite number of unknown variables is said to be discrete, while a
system whose variables are functions of location and time is called continuous. Real systems are
continuous, and their parameters are distributed. In many situations, it is possible to approximate
the continuous system by discrete ones.

The analytical description of the vibrations of the discrete case is a set of ordinary differential
equations, while for the continuous case, it is a set of partial differential equations. If the dependent
variables in the differential equation are to the first power, then the system is linear. If there are
fractional or higher powers, then the system is nonlinear. The superposition principle holds only
for linear systems.

The independent coordinates required to quantify the configuration of a vibration system are
called generalized coordinates. The number of generalized coordinates is defined as the number of
degrees of freedom of the system. A discrete model of a dynamic system possesses a finite number
of degrees of freedom, whereas a continuous model has an infinite number of degrees of freedom.

The excitation of a vibration system is usually a function of time. The vibratory motion of the
system caused by excitations is referred to as the response. If the vibratory motion is periodic, the
system repeats its motion at equal time intervals. The minimum time required for the system to
repeat its motion is called a period; this is the time to complete one cycle of motion. Frequency
is defined as the number of times that the motion repeats itself per unit time. Free vibrations
describe the natural behavior of vibration of a system. Many systems need to be treated as damped
systems due to the dissipation of motion energy.

Microsystem Dynamics: Principles and Applications, First Edition. Gang S. Chen, Jianfeng Xu and Wei Hua.
© 2025 John Wiley & Sons Ltd. Published 2025 by John Wiley & Sons Ltd.
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2 Vibrations and Dynamics

The excitation may be either deterministic or a random function of time. In deterministic
vibrations, the response at any designated future time can be completely predicted from past
history; random forced vibrations are defined statistically, and only the probability of occurrence
of designated magnitudes and frequencies can be predicted.

2.2.2 Vibration of Linear Discrete Systems: Single-degree-of-freedom System

Consider a sinusoidal periodic motion
x() = X sin(2zfyt + 6) (2.1)

where X is amplitude, f; is cyclical frequency in cycles per unit time, 8 is initial phase angle with
respect to the time origin in radians, and x(¢) is the instantaneous value at time ¢.
The time interval required for one full cycle of sinusoidal motion is called period Tp. The number
of cycles per unit time is called the frequency f;. The frequency and period are related by T, = 1/f;.
Complex periodic motion can be defined mathematically by a time-varying function whose
waveform exactly repeats itself at regular intervals such that

xO=x(t+nTp) n=1,2,3,...

The complex periodic motion can be expanded into a Fourier series as
x(®) = % + i (aycos2anfit + sin2znfit) (2.2)
n=1

where f; = 1/Tp

_2 (T _
a"_Tp/o rx(Dcos2zanfitdt n=0,1,2, ...

-2 T ; -
b, = Tp/o rx(Dsin2znfitdt n=0,1,2,...
Another way of expressing the Fourier series for complex periodic data is

XD =X+ 3 X,sin(2anfit - 6,) 2.3)
n=1

where X = ao/2, X, = \/a?+b?, 6,=tan"'(a,/b,), n=0, 1, 2, .... Equation (2.3) implies that
complex periodic data consist of a static component, X, and an infinite number of sinusoidal
components called harmonics, which have amplitudes X,, and phase 6,. The frequencies of the
harmonic components are all integral multiples of f;. The phase angles are often ignored when
periodic data is analyzed in practice. For this case, Eq. (2.3) can be characterized by a discrete
spectrum.

Transient motion is defined as all nonperiodic motion other than the almost-periodic data
discussed above. Transient motions include all motion which can be described by some suitable
time-varying function. Physical phenomena which produce transient data are numerous and
diverse. The important characteristic of transient motion is its continuous spectral representa-
tion, which can be obtained in most cases from a Fourier integral given by

X(f) = [2xe™™ dt (2.4)

The Fourier spectrum X( f) is generally a complex number, which can be expressed in complex polar

notation as X(f) = |X(f)| ¢ /™) where |X(f)| is the magnitude of X(f) and 6(f) is the argument.



2.2 Vibration of Linear System Under Deterministic Excitations

Next, we discuss the vibration of a single-degree-of- |_.x(t)
freedom (SDOF) model, as shown in Figure 2.1. From k
Newton'’s law, we obtain

m ——F(1)

F(t) — FD — F () = miH) (2.5)

=

oo
where F(t), F{(t), and F,(#) are the exciting, spring, and
damping forces, respectively; m denotes the mass of the
body and %(?) its acceleration. Because F(¢) = kx(t) and
F4 1 = cx(t), Eq. (2.5) becomes

mx(t) + cx(® + kx(® = F(® (2.6)

Figure 2.1 Single-degree-of-freedom
system.

where c and k are the viscous damping and stiffness coefficients, respectively.

Equation (2.6) is the equation of motion of the linear SDOF system and is a second-order linear
differential equation with constant coefficients.

In the case of the free vibration of an SDOF system, the exciting force F(#) = 0 and the equation
of motion is

mx(®) + cx(®) + kx(H =0 2.7
If we define w2 = k/m and & = c¢/2mw,,, Eq. (2.7) can be written as

KO 4 2E0, %D + w2x(D =0 (2.8)
To solve Eq. (2.8), we assume

x(t) = Ae (2.9)
where A is a constant and s is a parameter to be determined. By substituting (2.9) into (2.8), one obtains

(4 2ewps + w2)Ae =0 (2.10)
Since A €* # 0, then

24 2bw,5 + w2 =0 (2.11)

Equation (2.11) is known as the characteristic equation of the system. This equation has the
following two roots

su5y = (—Ex /& - 1)wn (2.12)

For case a, £ < 1 (underdamped condition)

81,82 = (_éi i \% 1- éz)wn

x(t) = A exp(—iw, D)cos(w, /1 — &1 — (f)) (2.13)

x(H) = A exp(—iw, t)cos(wyt — ¢) (2.14)

where w,, is the natural circular frequency, & the damping factor, and wy = w, V1 — £, the damped
frequency of the system. Constants A and ¢ are determined from the initial conditions.
For case b, £ > 1 (overdamped condition)

S5 = (=62 VE-1)w,
x(=A, exp(—E+ VE—1)wnt + Ay exp(— — VE —1)w,t (2.15)

9
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The motion is aperiodic and decays exponentially with time. Constants A; and A, are determined
from the initial conditions.
For case c, £ = 1 (critically damped condition)

$1 =8, =—wy,
x(1) = (A; + Ayexp(—w, t) (2.16)
Equation (2.16) represents an exponentially decaying response. The constants A; and A,

depend on the initial conditions. For this case, the coefficient of viscous damping has the value
c.=2mw, =2Vkim.

&=cle, (2.17)

We consider the undamped condition in which ¢; and ¢, denote the times corresponding to the
consecutive displacements x; and x,, measured one cycle apart. By using Eq. (2.16), we can write

% _ Aexp(-iw,h)cos(@at; - ¢)

X2~ Aexp(—iw,t)cos(wgty — P) (2.18)

Sincet, = t; + T =t, + 2n/wy, then cos(wgyt; — @) = cos(wyt, — ¢). Equation (2.18) then reduces to
x1/%, = exp(éw, T)

We define logarithmic decrement as

8 = In(x,/x,) = Ew, T = 27&/\/1 — & (2.19)

To determine the amount of damping in the system, it is sufficient to measure any two consecutive
displacements x; and x, and obtain ¢ from the equation

E=5/VQP + & (2.20)

We now consider the response of an SDOF system to a harmonic excitation, for which the equation
of motion is

mx(t) + cx(t) + kx(t) = F,cos wt (2.21)
where F, is the amplitude and w the frequency of the excitation. Equation (2.21) can be simplified as
D + 2w0,%0) + ol x(®) = (Fo/k)w? cos ot (2.22)

The solution of Eq. (2.22) consists of two parts, the complementary function, which is the solution
of the homogeneous equation, and the particular integral. The complementary function dies out
with time for £ > 0 and is often called the transient solution, whereas the particular solution does
not vanish for a large ¢ and is referred to as the steady-state solution to the harmonic excitation.
We assume a solution of the form

x(1) = X cos(wt — ¢) (2.23)

where X and ¢ are the amplitude and phase angle of response, respectively.
By substituting Eq. (2.23) into Eq. (2.22), we obtain

X[(a),f — w?)cos(wt — ¢) — 2éw, @ sin(wt — ¢)] = (Fy/k)w} coswt (2.24)



2.2 Vibration of Linear System Under Deterministic Excitations

By developing the terms in Eq. (2.24), and equating the coefficients of cos wt and sin wt on both
sides of the equation, we obtain

X|(w? = w?)cos ¢ + 2w, @ sing| = (Fy/k)w? (2.253)

X|[(w? - 0?)sing + 2w, cosp| =0 (2.25b)
By solving Egs. (2.25), we get

XI(E/K) = {1 = (@l + 260 P} (2:26)
and

¢ = tan”{[2&(w/w,)|/[1 = (w/w, )|} @.27)

Equations (2.26) and (2.27) indicate that the nondimensional amplitude X/(F,/k) and the phase
angle ¢ are functions of the frequency ratio w/w, and the damping ratio £. For w/w, much less
than one, both the inertia and damping forces are small, and this results in a small phase angle ¢,
with X/(Fy/k) = 1. However, for w/w, much greater than one, the phase angle ¢ — 180° and
X/(Fy/k) - 0. For w/w, =1, the phase angle ¢ =90° and X/(Fy/k)=1/2¢. In summary, the
complete solution of Eq. (2.22) is given as

X = Ay exp(—iw, )cos(wgt + ) + % COS(Z‘” ) (2.28)
VI = @) P + [20lo,)P
where the constants A, and ¢, are determined by the initial conditions.
Let us reconsider Eq. (2.22) and represent the excitation by the complex form
(Fo/k)wie ™™ = X2 e ™" (2.29)
where X; = Fy/k and is referred to as a static response. We assume a solution in the form
x(H) = Xe~ (2.30)
By substituting Eq. (2.30) into Eq. (2.22), we get
[0 — @? = 2itw, 0] Xe ™ = X;w2e ™ (2.31)
XIX; = [1 - (0w, = 2i&(wlw,)]™" = Hw) (2.32)

where H(w) is known as the complex frequency response function. Its magnitude |H(w)| refers to
a magnification factor and is given as

-1/2

|H)| = {[1 - (@/0,)]* + [2&(w/w,) P} (2.33)
The phase angle ¢ will be
| 2ewle,)
¢ = tan [71 — (w/wn)z] (2.34)

The excitation considered thus far has been a simple harmonic force. We can generalize the results
when the exciting force is periodic, because periodic force can be expanded in the terms of the
Fourier series, as follows

F(t) = a;sinwt + b;coswt + a,sin 2wt + b,cos 2wt + --- + a, sinnwt + b, cos nwt (2.35)

11
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where a, and b,, are the coefficients of the Fourier series expansion and it has been assumed that
the constant b, = 0. Because

a, sinnwt + b, cosnwt = f, sin(nwt + a,) (2.36)

where f, = Va2 + b? and a,, = tan"(b,/a,,), it follows that
F® = fisin(wt + ay) + f,sinRwt + a;) + -+ + f,sin(nwt + a,) (2.37)

Because superposition is valid, we can consider each term on the right-hand side of Eq. (2.37) as a
separate forcing function and obtain the steady-state response by adding individual responses due
to each forcing function acting separately. Hence, it follows that

x(®) = X cos(wt + a; — ¢y) + X,cos(2wt + ay — ¢,) + - + X, cos(nwt + a, — ¢,) (2.38)
in which
X fi/k
{ [1 - (nw/w,Y|*+ [Zf(na)/wn)]z}

172

and

2é(nwl/w
Bo=tan—t 20D
1 - (nwl/w,)
Hence, the steady-state response is also periodic, with the same period as the forcing function but
with a different amplitude and an associated phase lag.
For transient excitation F(#), the response is

1

x(H) = My

/O 'F(ryexp[—Ew,(t — D]sinw(t — Ddr (2.39)

2.2.3 Vibrations of Linear Discrete Systems: Multiple-degree-of-freedom System

Next, we consider the multiple-degree-of-freedom (MDOF) discrete system shown in Figure 2.2.
Its general equations of motion are written as

(MO} + [cl{e®} + [kl{x®} = {F(O} (2.40)

where {F(O)} denotes the externally applied force. In Eq. (2.40), [m], [c], and [k] are n X n mass,
damping, and stiffness matrices, respectively. For linear systems, these matrices are constant,
whereas, for nonlinear systems, the elements of these matrices are functions of generalized
displacements and velocities that are time-dependent.

The response {x(£)} of Eq. (2.40) consists of two parts: first, {x,()}, the homogeneous solution
which is the transient response; and second, {xp(t)}, the particular solution which is the steady

state or forced response.

kl ki ki+1 kn+l
l—_«i\{gf: WA WA~
my - m; cen m,
c Ci Cit1 Cn+l

Figure 2.2 Linear multiple-degree-of-freedom system.
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2.2.3.1 Eigenvalues and Eigenvectors

Next, we discuss the simplest case, the equations of motion for the free vibration of an undamped
MDOF system, focusing on its eigenvalues and eigenvectors. By setting [c] and {F(#)} in Eq. (2.40)
to zero, it follows that

[mI{x®} + [kl{x(®} = {0} (2.41)
We use a linear transformation to replace {x}
o3 = [} (2.42)

where [¢] is a constant nonsingular square matrix to be specified in the following analysis. It is
referred to as a transformation matrix

X0} = [¢]{y®} (2.43)
Substituting Egs. (2.42) and (2.43) into Eq. (2.41), we obtain

[ml[1F (O} + [kl[p1y®)} = {0} (2.44)
Premultiply both sides of Eq. (2.44) by [¢]” to yield

[ Tm1[$]0} + [#] k][ $]{y0)} = (0} (2.45)
From Eq. (2.45), it follows that

[m*]§®o} + [k} = {03 (2.46)

where [m*], [k*] are diagonal matrices known as the generalized mass and the stiffness matrix,
respectively. Equation (2.46) refers to the uncoupled homogeneous equations of motion of the
system. It follows that the uncoupled equation of motion for the ith degree of freedom is

Ji+wiy=0 (2.47)

where w; is the frequency corresponding to the ith mode of vibration. The solution of Eq. (2.47) is
given as

yi®) = A; sinw;t + A cosw; t (2.48)

where arbitrary constants A; and A;* are determined by the initial conditions x;(0) and x; (0).
We now consider Eq. (2.41) and pre-multiply both sides by [m]™! to yield

[mI MmO} + (m] ' [kl{x®} = {0} (2.49)
Equation (2.49) can be written as
[TI{x(O} + [DIx(®} = {0} (2.50)

where [I] is the unit matrix and [D] = [m]~'[k], which is known as the dynamic matrix.
Let us assume a harmonic motion so that

o} = {A}el (2.51)
Equation (2.51) yields

(O} = —wHAYe™ = —Ax(D} (2.52)
where 1 = @ Substituting Egs. (2.51) and (2.52) into Eq. (2.49) results in

[[D] — Al]{x} = {0} (2.53)

13
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The characteristic equation of the system is then, with the determinant being zero
[[D] —Allll =0 (2.54)

The roots 4; of the characteristic equation are called eigenvalues. The natural frequencies of the
system are determined from

A =w? (2.55)

By substituting /; into the matrix, Eq. (2.53), we obtain the corresponding mode shapes, which
are called the eigenvectors. Thus, for an n-degree-of-freedom system, there are n eigenvalues and
n eigenvectors.

Let us consider two distinct solutions corresponding to the rth and the sth modes, respectively,

o2, {¢(r)} and w2, {¢(S)} of the eigenvalue problem. Because these solutions satisfy Eq. (2.41), it
follows that

[k]{qﬁ(r)} = wrz[m]{(p(r)} (2.56)
And
{4} = wlimi{¢®} (2.57)

We premultiply both sides of Eq. (2.56) by {¢(S)}T and both sides of Eq. (2.57) by {¢(’)}T to obtain

{69V 11{¢} = 02 {6} tm1{g”} (2.58a)

{62V 11{$)} = w2 {7} 1m1{g®) (2.58b)
Now we take the transposition of Eq. (2.58b) to get

(Y 1 {g"} = 02 (¢} 11 {g”) (2.59)
By subtracting Eq. (2.59) from Eq. (2.58a), we obtain

(02 — o) {$°Y tm1{¢”} = 0 (2.60)
Because w, # @, we conclude that

{¢(s)}T[m]{¢(r)} —0r#s (2.61)

Equation (2.61) represents the orthogonality condition of modal vectors. It can also be shown
that

{¢(s)}T[k]{¢(r)} —0r#s (2.62)

Thus, [¢] is composed of {¢®},i=1, 2, ..., n. If each column of the modal matrix [¢] is divided
by the square root of the generalized mass M;*, the new matrix [¢] is called the weighted modal
matrix. It can be seen that

[#]"1m1[#] = [N (2.63)
and

[k1[#] = tm1[@]][w?] (2.64)
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Premultiplying (2.64) by [¢]” results in
[3]71k1[#] = [#]"1m1[#]][?] = [0?] (2.65)

2.2.3.2 Forced Vibration Solution of an MDOF System
We consider Eq. (2.40) and first solve the undamped free-vibration problem to obtain the eigenvalues
and eigenvectors, which describe the normal modes of the system and the weighted modal matrix

[#]. Let

=8l (2.66)
Substituting Eq. (2.66) into Eq. (2.40) yields

[(m]1[@] 7} + [c1[@] ) + [kl [@] (v} = (F®D} (2.67)
Pre-multiply both sides of Eq. (2.67) by [#] to obtain

(817 1m11B] G} + 61711 [$] 0} + (B k] [F] vy = [B]"(F) (2.68)

Notice that the matrices [#]"[m][@] and [#]"[k][@] on the left side of Eq. (2.68) are diagonal
matrices that correspond to the matrices [I] and [@?], respectively. However, the matrix [¢] [c][¢]
is not a diagonal matrix. If [c] is proportional to [m] or [k] or both, the [¢]7[c][@] becomes diagonal,
in which case we can say that the system has proportional damping. The equations of motion are
then completely uncoupled, and the ith equation will be

Vi + 250y + ol =f® i=12,..,n (2.69)

where f(O) = {q_ﬁ(i)}{F(t)}. Thus, instead of n-coupled equations, we will have n uncoupled equations.
Let [c] = a [m] + B [k], in which a and f are proportionality constants. Then we have

[8]71c1[$] = [#]"(alm1 + BlK1)[F] = alll + plw?] (2.70)
This will yield the uncoupled ith equation of motion as

i+ (@ + podly; + ofy =Fi® (2.71)
and the modal damping can be defined as

20, = a + poi (2.72)

The solution of Eq. (2.69) is obtained by using Eq. (2.39) with initial conditions y;(0) and y;,(0)

yid = —a}d (‘] Fimexp[—& ot — D]sinw gt — Ddr
YORXP(=E018) it =y 4 LOXPCE@D) G (2.73)
(1 _ 5_2)1/2 ( ) @ g;
1

where wg; = (1 — £2)"2w; and y; = tan~! [£/(1 — £2)2].

Similarly, the contribution from each normal mode is calculated and substituted in Eq. (2.66)
to obtain the complete response of the system. This is known as the normal mode summation
method. The contributions of the higher vibration modes to the system response are often quite
small, and for all practical purposes, they may be ignored in the summation procedure by consid-
ering fewer modes of vibration.

15
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2.2.4 Vibrations of Continuous Systems

So far we have discussed discrete systems where elasticity and mass are modeled as discrete prop-
erties. Discrete systems have a finite number of degrees of freedom specifying the system finite
configuration. Continuous systems are distributed systems, such as strings, cables, rods (bars),
and beams, as well as plates where elasticity and mass are distributed parameters. We consider the
continuous distribution of elasticity, mass, and damping and assume each of the infinite number
of elements of the system can vibrate.

The displacement of these elements is described by a continuous function of position and
time. The governing equations of motion for discrete systems are ordinary differential equations,
whereas the governing equations are partial differential equations for the continuous systems, and
exact solutions can be obtained for only a few special configurations. For the vibration analysis of
systems with distributed elasticity and mass, it is necessary to assume that the material is homoge-
neous, isotropic, and follows Hooke’s law.

2.2.4.1 Transverse Vibrations of String and Wave Equation

Consider a stretched flexible string of mass p per unit length having its end points attached to
fixed surfaces. The string is free to vibrate in a vertical (x — y) plane, as shown in Figure 2.3a. The
coordinate of y is a function of both positions along the string x and time ¢, or

Y=y 1) (2.74)

The equilibrium position of the string is shown by the thick black line in Figure 2.3a, and its
differential element in any possible position of motion is shown in Figure 2.3b. To develop the
governing equation of motion for the string, the following assumptions are made: resistances of
air and internal friction and gravitational forces are neglected in comparison with the tension in
the string, which is quite large. The displacement of any point in the string is very small and occurs
only in the x — y plane.

oy
ox*

motion of the differential element in Figure 2.3b, we can write the Newton’s second law as
oy

dx) = pdxy (2.75)

Denote the tension in the string as T and the change in slope as dx. Considering the vertical

ay oy

dy
ox top

—Tsin=—+ Tsin<
ox

Ty Figure 2.3 Schematic of a string and the
differential element.

AT
=

(@)
dx —» F 2
dy 0
‘/ ?—y+—ydx
/ oo

(b)
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Since the slopes are very small, we use the approximation sin 6 ~ 8 and Eq. (2.75) becomes

0 ay & &
_Ta_;yc + T(a—i + %dx) = pdxa—t); (2.76)
dy_ Py

Equation (2.77) is a linear, second-order, partial differential equation with constant coefficients
and represents the governing equation for transverse motion of the string. Rewrite Eq. (2.77) as

02y 62y
2 —
= (2.78)

where ¢ = /T/p. Equation (2.78) is called the one-dimensional wave equation, and the constant ¢
is called the wave speed. We assume the solution as

y(x, t) = FOOG() (2.79)

Then substituting the above equation into Eq. (2.78), we have

20F p_ G
O Lir=2216=p (2.80)

in which p is a constant. The initial conditions are

Y(x, 0) = FOG(0) = FO)G, (2.81a)
W ((;Ct’ 9_ FoG(0) = Fx)G,y (2.81b)

The boundary conditions are
¥0, ) =FO)G®H =0 (2.82)
¥, =FDG®H =0 (2.83)

The solution of Eq. (2.80) depends on the value of p. It can easily be verified that u < 0 is the only
possibility which satisfies both the differential equations and the boundary conditions. Hence for
u < 0, we assume u = —w?, Eq. (2.80) can be rewritten as

G+ w’G=0 (2.84)

F' + (@/cPF=0 (2.85)
which have the solutions

G() = A sinwt + B coswt (2.86)

Fx) = C sin(w/c)x + D cos(w/c)x (2.87)
The displacements are then given by

y(x, £) = (A sinwt + B cos wt)C sin(w/c)x + D cos(w/c)x (2.88)
Now applying the boundary conditions given by Egs. (2.82) and (2.83) will give us

sin(w/Al =0 (2.89)
or (w/l=r,2n, ... nx, ... (2.90)
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