Nanoscale Magnetic Materials and Applications

J. Ping Liu Eric Fullerton Oliver Gutfleisch David J. Sellmyer Editors

Nanoscale Magnetic Materials and Applications

Foreword by Peter Grünberg

Editors J. Ping Liu University of Texas, Arlington Department of Physics 502 Yates Street Arlington, TX 76019 USA pliu@uta.edu

Oliver Gutfleisch Leibniz Institute for Solid State and Materials Research (IFW Dresden) Institute of Metallic Materials Helmholtzstr. 20 D-01069 Dresden Germany o.gutfleisch@ifw-dresden.de Eric Fullerton University of California, San Diego Center for Magnetic Recording Research 9500 Gilman Drive La Jolla, CA 92093-0401 USA efullerton@ucsd.edu

David J. Sellmyer Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska Lincoln, NE 68588-0113 USA dsellmyer@unl.edu

ISBN 978-0-387-85598-1 e-ISBN 978-0-387-85600-1 DOI 10.1007/978-0-387-85600-1 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2008943510

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The appearance of materials with dimensions on the nanoscale has brought new stimulus also to magnetism. The discoveries of giant magnetoresistance and tunnel magnetoresistance can be seen as a result of this development.

Generally, magnetism tends to become weaker or even disappears when the geometrical dimensions of samples are decreased. In thin films used for data storage in magnetic recording, for example, this can lead to instability of stored information.

However, this trend is not always to the disadvantage of possible applications. In small nanoscale particles, for example, the occurrence of superparamagnetism leads to hysteresis-free magnetization curves with vanishing remanence. This is useful when the magnetic response should be given as much as possible by an external field rather than by the "magnetic history" of the material. There are numerous examples for this in medical applications as described in this volume. On the other hand – to dwell a little further on the mentioned problem in data storage – new interactions have also been discovered, which are operative on the nanoscale and can be used to solve a given problem. Such an interaction is the interlayer exchange coupling, which is employed in antiferromagnetically coupled (AFC) media to enhance the stability of stored information.

Magnetic surfaces and interfaces represent further special classes of nanoscale materials. Uncompensated spins at the surface of an antiferromagnet, for instance, give rise to a phenomenon called "exchange bias", which is applied in magnetic field sensors to tailor the response curve.

For magnetic structures on the nanoscale there is also a new possibility to affect their magnetic order by means of electrical currents. This phenomenon called "current-induced magnetization dynamics" is foreseen to be used for writing information. It is currently one of the most active fields of research on nanoscale magnetism and also offers a new method of microwave generation by the current-driven precession of the magnetization.

Hence, a variety of new phenomena operative on the nanoscale is available to render nanomagnetism an interesting research field and to generate the potential for new applications. What are the systems, in which these phenomena can occur? We mentioned already layered magnetic structures and nanoparticles. Other classes of materials are magnetic nanowires and dots, either lithographically defined or realized by assembling molecules and atoms such as fullerenes filled with magnetic materials.

The field of nanomagnetism is rich indeed both from a fundamental scientific viewpoint and with respect to applications and new devices.

Peter Grünberg 2007 Nobel Prize in Physics

Preface

This book has its genesis in the 2007 Materials Research Society (MRS) Fall Meeting where we organized the symposium "Nanoscale Magnetic Materials and Applications". This symposium, with more than 200 submissions of presentations and 30 invited talks, was one of the most successful meetings in magnetic materials research in recent years. Ms. Elaine Tham from Springer suggested us to edit a book based on the topics presented in this symposium. We invited a number of presenters in the symposium to be the authors of this book which shares the title of the symposium. Moreover, we have extended the scope of the book to other topics as well that were not covered in the symposium.

Magnetic materials have a long history. People have been using compasses for thousands of years. However, new magnetic materials and applications are emerging and are proving indispensable in our daily lives and modern industries. One example is that there are already over a billion giant magnetoresistance sensors produced for information technology and other related applications. Hard and soft magnetic materials are key for efficient energy conversion, especially for converting electric energy to mechanical energy so that they are important to meet the challenges of the depletion of fossil fuels, climate change, and global warming.

Nanotechnology is one of the most important developments in science and technology in our generation, and it has brought revolutionary progress in materials processing and characterization. Current magnetic nanotechnologies have their roots in the development of bulk materials, such as permanent magnets where the functionality is derived from a complex nanoscale multi-phase morphology. Nanotechnology has offered a coupling of synthesis, theory, and characterization of materials at the nanoscale that enables materials design to evolve beyond earlier Edisonian approaches. By its very nature, magnetic materials are a class of nanoscale materials. Although early researchers did not explicitly work on the nanoscale, theoretical research revealed some time ago that nanoscale correlations exist in magnetic materials and control their properties. Several important characteristic dimensions in magnetism are in the nanoscale range such as the magnetic domain wall thickness and the "exchange length" in hard magnetic phases. This highlights why the research and development of new nanoscale magnetic materials are important and will lead to enhanced performance and new functionality. Some recent examples highlighted in this book include patterned magnetic recording media and exchange-coupled nanocomposite magnets, where intense worldwide efforts are underway to significantly improve the areal density of data storage and the energy product of permanent magnets, respectively.

This book covers many of the exciting areas in nanoscale magnetic materials and applications. Readers will find topics in the book including theoretical work on novel magnetic structures, characterization of magnetic structures, singlephase materials and nanocomposite magnets, spintronic materials, domain structure and domain wall motion, magnetic nanoparticles and patterned magnetic recording media, magnetocaloric effect, and shape memory effect. The book also covers the most important emerging applications of advanced materials. The applications include new devices based on domain wall motion driven by current or fields, new magnetic sensors based on giant magnetoresistance and tunneling magnetoresistance, soft and hard magnetic materials for specific applications, thin-film applications in micro-electro-mechanical systems, and nanoparticle applications in biomedicine. We hope that this new book provides a comprehensive view of recent progress in all the related fields.

While attempting to present the most exciting developments in materials research and device applications, discussions in depth about the novel phenomena and emerging new materials are also presented in the book, such as the controllable exchange bias and inter-phase exchange interactions. Though more work is needed to understand the issues, we hope that this book gives a good introduction to future advancement.

We thank Prof. Peter Grünberg, the 2007 Nobel Laureate in Physics, for giving his insightful and visionary foreword to this book. We thank Ms. Elaine Tham and Ms. Lauren Danahy from Springer who initiated this book and did a great deal of work to bring it to completion. Mrs. Grace Liu has worked hard in collecting all the manuscripts, figures, and related paperwork. Finally, we thank all of our authors who contributed their very informative and in-depth chapters which made this new book a reality.

Arlington, TX, USA La Jolla, CA, USA Dresden, Germany Lincoln, NE, USA J. Ping Liu Eric Fullerton Oliver Gutfleisch David J. Sellmyer

Contents

1	Spin	Dynami	ics: Fast Switching of Macro-spins	1
	X.R.	Wang, Z	Z.Z. Sun, and J. Lu	
	1.1	Introdu	uction	1
	1.2	Spin a	nd Its Kinetics and Dynamics	3
		1.2.1	Basic Concepts of Spin	3
		1.2.2	Kinetics of Spin: Spin Current	4
		1.2.3	Dynamics of Spin: Bloch Equation,	
			Landau–Lifshitz Equation, and Landau–	
			Lifshitz–Gilbert Equation	5
	1.3	Macro	-spin Reversal with a Static Magnetic Field	9
		1.3.1	A Nonlinear Dynamics Picture of	
			Magnetization Reversal	9
		1.3.2	The Exactness of SW-Limit at Infinitely Large	
			Dissipation	11
		1.3.3	Critical Value of Damping Constant	13
		1.3.4	Ballistic Reversal	15
	1.4	Macro	-spin Reversal with a Time-Dependent Magnetic	
		Field .		17
		1.4.1	Strategy I: Field Following the Magnetization	
			Motion	18
		1.4.2	Strategy II: Synchronizing the Magnetization	
			Motion with a Circularly Polarized Microwave	21
		1.4.3	Theoretical Limits of Switching Field/Current	
			and Optimal Reversal Pulses	25
	1.5	Summ	ary	32
	Refe	rences .		32
2	Core	–Shell N	Aagnetic Nanoclusters	35
_	Jinla	1 Wang a	and X.C. Zeng	
	2.1	Introdu	uction	35
	2.2	Experi	mental Studies of Core–Shell Magnetic Clusters	37
		2.2.1	Iron-Based (Fe@Au) Core–Shell Nanoclusters	38
		2.2.2	Cobalt-Based Core–Shell Nanoclusters	44
		2.2.3	Ni-Based Core–Shell Nanoclusters	50

	2.3	Theoretical Studies of Bimetallic Magnetic Core–Shell	- 1
		Nanoclusters) • 1
		2.3.1 Iron-Based (Fe@Au) Core-Shell Nanoclusters 5) I
		2.3.2 Cobalt-Based Core–Shell Nanoclusters	13
		2.3.3 Mn-Based Core–Shell Nanoclusters:	
		$[\mathrm{Mn}_{13} @ \mathrm{Au}_{20}]^{-} \dots \dots$,9 ,9
	2.4	Summary	0
	Refer	rences	»2
3	Desig	gned Magnetic Nanostructures	57
	A. Er	nders, R. Skomski, and D.J. Sellmyer	
	3.1	Introduction	57
	3.2	Structure, Chemistry, and Geometry	0
		3.2.1 Synthesis of Supported Nanostructures	1
		3.2.2 Case Study: Fe Clusters on Pt Surfaces	13
		3.2.3 Structure of Embedded Clusters	!5
		3.2.4 Case Study: FePt Clusters in a Carbon Matrix 7	18
	3.3	Anisotropy and Hysteresis	19
		3.3.1 Surface and Interface Anisotropies	30
		3.3.2 Hysteresis of Fe Clusters on Pt	31
		3.3.3 Role of Heavy Transition Metals	33
		3.3.4 Proteresis	35
	3.4	Ouantum-Mechanical Effects	36
	611	3.4.1 Embedding from a Quantum-Mechanical	
		Point of View 8	86
		3.4.2 Exchange Interactions	27
		3.4.3 Preasymptotic Coupling	,, 90
		3.4.4 Kondo Effect	22
		3.4.5 Entanglement)2)2
	35	Concluding Remarks)5
	J.J Dofor		, J 15
	Kelei	ences	5
4	Supe	rconductivity and Magnetism in Silicon	
	and (Germanium Clathrates)5
	Josep	h H. Ross Jr. and Yang Li	
	4.1	Introduction)6
	4.2	Superconductivity in Si ₄₆ Clathrates)8
	4.3	Rattler Atoms and Narrow Bands)9
	4.4	Superconducting Mechanism	1
	4.5	Zintl Concept and Vacancies	5
	4.6	Superconductivity in Other Clathrates	7
	4.7	Magnetism	7
	4.8	Conclusions	9
	Refer	rences	9

5	Neuti	ron Sca	ttering of Magnetic Materials	123
	Olivie	r Isnard		
	5.1	Introdu	uction	123
	5.2	Interac	ction of Neutrons and Materials: A Brief	
		Presen	tation	124
	5.3	Crysta	l Structure Investigation	126
		5.3.1	Powder Diffraction	126
		5.3.2	Single Crystal Diffraction	126
	5.4	In Situ	Neutron Diffraction	128
		5.4.1	Thermodiffractometry: Crystallization	
			of Amorphous Materials	128
		5.4.2	In Situ Investigation of the Synthesis and	
			Ordering of nanocrystalline FePt Allovs	129
		5.4.3	Time-Resolved Neutron Diffraction Studies	130
	5.5	Magne	etic Structure Determination	133
	5.6	Magne	etic Phase Transition	135
		5.6.1	Magnetic Phase Transitions Studied by	
			Powder Diffraction	135
		5.6.2	Magnetic Phase Transitions Studied by Single	
			Crystal Diffraction	137
	5.7	Polariz	zed Neutron Techniques	138
		5.7.1	Uniaxial Polarization Analysis	138
		5.7.2	Spherical Neutron Polarimetry	141
	5.8	Small-	Angle Neutron Scattering	141
	5.9	Neutro	on Scattering on Magnetic Surfaces	144
	5.10	Magne	etic Excitations	146
	5 11	Neutro	on Scattering Under Extreme Conditions	148
	5.12	Conclu	usions	150
	Refer	ences		150
	iterer	enees		100
6	Tuna	ble Exc	hange Bias Effects	159
	Ch. B	inek		
	6.1	Introdu	uction	160
	6.2	Electri	cally Tuned Exchange Bias	165
		6.2.1	Electrically Tuned Exchange Bias with	
			Magnetoelectrics	165
		6.2.2	Electrically Tuned Exchange Bias with	
			Multiferroics	168
		6.2.3	Piezomagnetically and Piezoelectrically	
			Tuned Exchange Bias	169
	6.3	Magne	etic Field Control of Exchange Bias	170
	6.4	Trainiı	ng Effect in Exchange-Coupled Bilayers	174
		6.4.1	Physical Background of Training Effects in	
			Various Systems	174

		6.4.2	Tuning the Training Effect	178
	6.5	Conclu	usion	179
	Refe	rences .		179
7	Dvna	amics of	Domain Wall Motion in Wires	
-	with	Perpend	dicular Anisotropy	185
	Dafin	é Ravelo	usona	
	7.1	Introdu	action	185
	7.2	Basics	of Field-Induced DW Motion in Pt/Co/Pt	
		Ultra-7	Thin Films	187
		7.2.1	Mechanisms of Magnetization Reversal in	
			Pt/Co/Pt Trilavers	188
		7.2.2	Different Regimes of DW Motion: The Role	
			of Defects	189
	7.3	Contro	and Detection of Single DW Motion	
		in Mag	enetic Wires	192
		7.3.1	Wires Nanofabrication and Injection of a	
			Single Domain Wall	193
		7.3.2	Electrical Methods to Detect DW Motion	
			Along Tracks	194
	7.4	Field-I	Induced DW Motion Along Wires: Role of	
		Structu		196
		7.4.1	The Role of Edge Roughness on the Creep	
			Regime in Co/Pt Films	196
		7.4.2	The Role of Intrinsic Defects in Co/Ni Films	201
	7.5	Contro	ol of the Pinning Potential	203
		7.5.1	Ion Irradiation of Co/Pt Films: A Way to	
			Reduce Intrinsic Structural Defects	204
		7.5.2	A DW Propagating in a Hall Cross: An	
			Artificial Pinning Potential	207
	7.6	Curren	It Induced DW Depinning	208
	7.7	Conclu	usion	213
	Refe	rences .		214
0	Mag	notio No	nowing for Domain Wall Lagis and Illtrahigh	
0	Dong	ity Doto	Storage	210
		Towburn	Storage	219
	R.F. C	Domai	n Wall Propagation and Nucleation	210
	8.1	Domai	in Wall Conduits	219
	0.2 8 3	The M	OT Gate and Shift Degister Element	221
	0.5 8 /	Doto Ir	of Oate and Shift Register Element	225
	0.4 8 5	Using	the Chirality of the Transverse Domain Wall	220
	0.J 8.6	Dotent	ial Applications of Domain Wall Logic	220
	0.0 8 7	Conclu	ision	233
	0./ Rafa	conces	131011	∠34 225
	Refer	chees .		255

9	Bit-P	tterned Magnetic Recording: Nanoscale Magnetic	
	Islan	Is for Data Storage	37
	Thon	as R. Albrecht, Olav Hellwing, Ricardo Ruiz,	
	Manf	ed E. Schabes, Bruce D. Terris, and Xiao Z. Wu	
	9.1	Introduction	38
	9.2	Theoretical Perspective of Bit-Patterned Recording 24	40
		9.2.1 Island Addressability in Bit-Patterned Recording 24	10
		9.2.2 Fabrication Tolerances of BPM	12
		9.2.3 Thermal Constraints	13
		9.2.4 Magnetostatic Interaction Fields Between Islands 24	15
		9.2.5 BPM Designs for Tb/in ² Densities $\ldots \ldots \ldots 24$	16
	9.3	Optimization of the Magnetic Materials	18
		9.3.1 Magnetic Characterization	19
		9.3.2 Magnetic Switching-Field Distribution	52
		9.3.3 Laminated Magnetic Media	54
		9.3.4 Magnetic Trench Noise Reduction	55
	9.4	Fabrication of Bit-Patterned Media	56
	9.5	Generation of Master Patterns Beyond 1Tbit/in ² via	
		Guided Self-Assembly of Block Copolymer Domain	
		Arrays	59
		9.5.1 Ordering, Size Distribution, and Scalability:	
		Patterned Media Requirements vs. Block	
		Copolymer Fundamental Limitations	50
		9.5.2 Approaches to Long-Range Orientational	
		and Translational Order in Block Copolymer	
		Templates	52
	9.6	Write Synchronization	55
		9.6.1 Requirements for Write Synchronization	55
		9.6.2 Options to Achieve Write Synchronization 26	55
		9.6.3 Timing Variations Observed in a Conventional	
		Drive	56
		9.6.4 Implementation of a Sector Synchronization	
		System	58
	9.7	Conclusion	70
	Refe	ences	71
10	The	Iagnetic Microstructure of Nanostructured Materials 27	75
	Rudo	f Schäfer	
	10.1	Overview	15
	10.2	Coarse-Grained Material and Amorphous Ribbons 27	17
	10.3	Domains in Nanocrystalline Ribbons	32
		10.3.1 Random Anisotropy Model	33
		10.3.2 Interplay of Random and Uniaxial Anisotropies 28	37
		10.3.3 Magnetization Process) 2
	10.4	Domains in Nanocrystalline Magnetic Films) 6

	10.5	Domains in	n Fine- and Nanostructured Permanent Magnets .	. 301
	10.6	Summary		. 304
	Refer	ences		. 304
11	Exch	ange-Coupl	ed Nanocomposite Permanent Magnets	. 309
	J.P. L	iu		
	11.1	Introductio	m	. 309
	11.2	Fundamen	tal Aspects	. 311
		11.2.1 Th	he Early Models	. 311
		11.2.2 Th	he Soft Phase Effects	. 313
		11.2.3 Th	he Interface Effects	. 314
		11.2.4 Co	oercivity Mechanisms	. 316
		11.2.5 Cl	haracterization of Inter-phase Exchange	
		Co	oupling	. 316
	11.3	Experimen	tal Approaches	. 321
		11.3.1 TI	ne Early Approaches	. 321
		11.3.2 N	anoparticle Approaches	. 322
		11.3.3 Fa	abrication of Nanocomposite Bulk Magnets	. 327
	11.4	Work Towa	ard Anisotropic Nanocomposite Magnets	. 331
	Refer	ences		. 332
12	High	Temperatu	re Samarium Cobalt Permanent Magnets	. 337
	Olive	r Gutfleisch		
	12.1	Introductio	m	. 337
	12.2	Physical M	Ietallurgy and Crystal Structures	. 339
	12.3	Coercivity	Mechanism and the Development of	
		High-Tem	perature 2:17-Type Magnets	. 343
		12.3.1 TI	he Sm(CoCu) ₅ Cell Boundary Phase	. 343
		12.3.2 A	lloy Optimization	. 344
		12.3.3 St	ability at Operating Temperature	. 348
	12.4	Microchen	nistry and Pinning Behavior in	
		Sm ₂ Co ₁₇ -7	Type Magnets	. 349
		12.4.1 Re	edistribution of Cu and Slow Cooling	. 349
		12.4.2 St	ability of Microchemistry	. 352
		12.4.3 "A	Anomalous" Coercivity Behavior	. 355
	12.5	Magnetic I	Domains and Coercivity	. 357
		12.5.1 A	nalysis of Magnetic Microstructure	. 357
		12.5.2 D	omains and Processing Parameters	. 358
	12.6	Non-equili	brium Processing Routes	. 362
		12.6.1 Ra	apidly Quenched SmCo ₅ /Sm ₂ Co ₁₇ Magnets	. 362
		12.6.2 M	echanically Alloyed SmCo ₅ /Sm ₂ Co ₁₇ Magnets	. 363
		12.6.3 H	ydrogen Disproportionated SmCo ₅ and	
		St	n_2Co_{17} Alloys	. 364
	Refer	ences		. 367

13	Nanos	structured Soft Magnetic Materials	373						
	Matth	ew A. Willard and Maria Daniil							
	13.1	Introduction	373						
	13.2	Materials Development	376						
		13.2.1 Alloy Processing and Design	377						
		13.2.2 Phase Transformations	378						
		13.2.3 Annealing Techniques	381						
	13.3	Magnetic Performance	382						
		13.3.1 Exchange-Averaged Anisotropy	383						
		13.3.2 Intrinsic Magnetic Properties	384						
		13.3.3 Domain Structure	385						
		13.3.4 Hysteretic Losses	386						
		13.3.5 AC Properties	388						
		13.3.6 Thermomagnetics	389						
	13.4	Applications	390						
		13.4.1 Power Applications	391						
		13.4.2 Electromagnetic Interference Applications	392						
		13.4.3 Sensor Applications	393						
	13.5	Summary	393						
	Refere	ences	394						
14	Маст	et's Shane Mensen Dhenemene	200						
14		Magnetic Shape Memory Phenomena							
	14 1	Introduction	200						
	14.1	Martansitia Transformation and Twinning	399 401						
	14.2	Mades of Magnetic Field Induced Strain	401						
	14.5	Modes of Magnetic Fleid-Induced Strain	403						
		14.3.1 Magnetostriction	403						
	144	14.5.2 Magnetic Field-Induced Phase Transformation	404						
	14.4	The Ni Mr. Co Southern	403						
	14.5	14.5.1 Compositional Dependence of Structure	408						
		14.5.1 Compositional Dependence of Structure	100						
		14.5.2 Martanaitia Dhagag in Ni Mn Ca	408						
		14.5.2 Magnetic Properties of Ni Mr. Co.	410						
	146	14.5.5 Magnetic Properties of NI-MII-Ga	412						
	14.0		410						
	14./		418						
	14.8	Angular Dependence	421						
	14.9		422						
	14.10		426						
	14.11	MIK in Polycrystals, Composites, and Films	427						
	14.12	Other Applications Based on MSM Alloys	430						
	14.13		430						
	Furthe	er Reading	431						
	Refere	ences	431						

15	Magı	netocaloric Effect and Materials	41				
	J.R. 5	Sun, B.G. Shen, and F.X. Hu					
	15.1	Introduction	41				
	15.2	Theoretical Description of Magnetocaloric Effect 4	43				
	15.3	Experimental Determination of Magnetocaloric Effect 4	46				
		15.3.1 Direct Measurement of Adiabatic Temperature					
		Change	46				
		15.3.2 Indirect Measurement of Entropy and					
		Adiabatic Temperature Changes 4	46				
	15.4	Magnetocaloric Effect Associated with First-Order					
		Phase Transition	47				
		15.4.1 MCE Due to an Idealized First-Order Phase					
		Transition	47				
		15.4.2 MCE Due to a Non-Idealized First-Order					
		Phase Transition	48				
	15.5	Typical Materials with Giant Magnetocaloric Effect 4	51				
		15.5.1 LaFe _{3-x} M_x (M = Al, Si) Intermetallics 4	52				
		15.5.2 $Gd_5(Ge,Si)_4$ and Related Compounds 4	72				
		15.5.3 Mn-Based Heusler Alloys	76				
		15.5.4 Mn–As-Based Compounds 4	78				
	15.6	Concluding Remarks	79				
	Refer	ences	79				
16	Spint	ronics and Novel Magnetic Materials for Advanced					
	Spint	ronics	85				
	Jiwei	Lu, Kevin G.West, Jiani Yu, Wenjing Yin,					
	David M. Kirkwood, Li He, Robert Hull. Stuart A. Wolf.						
	and D	Daryl M. Treger					
	16.1	Introduction to Spintronics	85				
	16.2	Novel Magnetic Oxide Thin Films by Reactive Bias					
		Target Ion Beam Deposition	89				
		16.2.1 Reactive Bias Target Ion Beam Deposition					
		(RBTIBD)	90				
		16.2.2 $\operatorname{Cr}_x \operatorname{V}_{1-x} \operatorname{O}_2$ Thin Films	91				
		16.2.3 $\operatorname{Co}_x \operatorname{Ti}_{1-x} \operatorname{O}_2$ Thin Films	96				
	16.3	Diluted Ferromagnetic Ge_{1-x} Mn _x by Ion Implantation 5	00				
	Addit	tional Reading on Spintronics	07				
	Refer	ences	07				
17	Grov	with and Properties of Epitaxial Chromium Dioxide					
- '	(C.) Thin Films and Hatarastructures 5	11				
	(UrU		- A - A -				
	Guo-	Xing Miao and Arunava Gupta	11				
	(CrO Guo-1 17.1	Xing Miao and Arunava Gupta Density of States (DOS) of Half-Metallic CrO ₂					
	(Cro Guo-1 17.1	Xing Miao and Arunava Gupta Density of States (DOS) of Half-Metallic CrO ₂ and the Double Exchange Mechanism	11				

	17.3	Influen	ce of Strain on the Magnetic Properties		
		of CrO	$_2$ Thin Films \ldots \ldots \ldots \ldots \ldots \ldots		517
		17.3.1	Film Growth on Atomically Smooth TiO ₂		
			Substrates		517
		17.3.2	Films Grown on As-Polished TiO ₂ Substrates		521
	17.4	CrO ₂ -E	Based Heterostructures		523
		17.4.1	Epitaxial SnO ₂ Barrier Layer		525
		17.4.2	Epitaxial RuO ₂ Barrier Layer		528
		17.4.3	VO_2 Barrier Layer		530
		17.4.4	TiO_2 Barrier Layer		531
		17.4.5	Cr_2O_3 Barrier Layer		532
	Refere	ences .			535
18	FePt a	and Rela	ated Nanoparticles		537
	J.W. F	Harrell, S	Shishou Kang, David E. Nikles,		
	Grego	ry B. Th	nompson, Shifan Shi, and Chandan Srivastava		
	18.1	Introdu	ction		538
	18.2	Therma	al Effects in Magnetic Nanoparticles		538
	18.3	Magnet	tic Recording and the Superparamagnetic Limit		541
	18.4	Chemic	cal Synthesis and Shape Control of FePt and		
		Related	Nanoparticles		541
		18.4.1	Synthesis		541
		18.4.2	Shape Control		544
	18.5	Prevent	tion of Sintered Grain Growth During Annealing		545
		18.5.1	FePt/MnO Core/Shell Nanoparticles		546
		18.5.2	FePt/SiO ₂ Core/Shell Nanoparticles		547
		18.5.3	Salt Matrix Annealing		548
		18.5.4	Flash Annealing		549
	18.6	Effect of	of Metal Additives on Chemical Ordering		
		and Sin	tered Grain Growth		550
	18.7	Easy-A	xis Orientation		552
		18.7.1	Model of Easy-Axis Orientation		552
		18.7.2	Easy-Axis Orientation Measurements		553
	18.8	Compo	sition Distribution		554
	18.9	Anisotr	opy Distribution		556
	18.10	Size Ef	fect on Chemical Ordering		556
	18.11	Summa	ary and Conclusions		557
	Refere	ences .	· · · · · · · · · · · · · · · · · · ·		558
19	Magn	etic Ma	nipulation of Colloidal Particles		563
	Randa	all M. Er	b and Benjamin B. Yellen		
	19.1	Introdu	ction		563
	19.2	Magnet	tic Manipulation of Particles		565
		19.2.1	Deterministic and Brownian-Dominated		
			Particle Systems		565
		19.2.2	Material Properties		565

		19.2.3 Magnetic Force	568
	19.3	Deterministic Particle Manipulation	570
		19.3.1 Substrate-Based Self-Assembly of Particles	570
		19.3.2 Substrate-Based Transport and Separation	571
	19.4	Brownian-Influenced Particle Manipulation	573
		19.4.1 Magnetic and Nonmagnetic Particle Chains	573
		19.4.2 Magnetic and Nonmagnetic Mixed	
		Assemblies in Ferrofluid	576
		19.4.3 Anisotropic Particle Alignment	576
	19.5	Brownian-Dominated Manipulation of Particle Populations	579
		19.5.1 Modeling Thermal Diffusion	579
		19.5.2 Magnetic Particle Concentration	581
		19.5.3 Nonmagnetic Particle Concentrations	584
		19.5.4 Applications of Concentration Gradients	586
	19.6	Conclusions and Outlook	587
	Refer	rences	588
•			501
20	Appl	ications of Magnetic Nanoparticles in Biomedicine	591
	Carlo	is Barcena, Amandeep K. Sra, and Jinming Gao	501
	20.1		591
	20.2		592
	20.3	Syntheses of SPIO Nanoparticles	593
		20.3.1 Co-precipitation	593
		20.3.2 Microemulsion	594
		20.3.3 Thermal Decomposition	595
	• • •	20.3.4 Alternative Methods	596
	20.4	Surface Modifications of Magnetic Nanoparticles	596
		20.4.1 Organic and Polymeric Stabilizers	597
		20.4.2 Inorganic Molecules	598
	20.5	Pharmacokinetics and Toxicology	600
	20.6	Biomedical Applications of Magnetic Nanoparticles	603
		20.6.1 Magnetic Resonance Imaging	603
		20.6.2 Therapeutic Applications	612
	20.7	Conclusion	616
	Abbr	eviations	616
	Refer	rences	618
21	Nano)-Magnetophotonics	627
	Mitsu	uteru Inoue, Alexander Khanikaev, and Alexander Barvshev	
	21.1	Introduction	627
	21.2	Magnetophotonic Crystals	628
		21.2.1 1D MPCs Composed of Alternating Magnetic	
		and Dielectric Lavers	629
		21.2.2 Microcavity-Type 1D MPCs	633
		21.2.2 Photonic Band Structure and Figenmodes of	055
		2D MPCs	635
			055

Contents

		21.2.4	Faraday Rotation of Three-Dimensional	
			Magnetophotonic Crystals	637
		21.2.5	Nonlinear Optical and Magneto-Optical Properties	640
		21.2.6	Conclusion	641
	21.3	Magnet	torefractive Effect in Nanostructures	641
		21.3.1	Magnetorefractive Effect in	
			Nanostructures and Manganites	642
		21.3.2	Enhancement of the MRE in Magnetophotonic	
			Crystals	644
		21.3.3	Conclusion	647
	21.4	Plasmo	n-Enhanced Magneto-Optical Responses	647
		21.4.1	Garnet–Noble Metal Nanocomposites	648
		21.4.2	Metal–Garnet Structures Supporting	
			Transmission Resonances	651
		21.4.3	Conclusion	653
	Refer	ences .		653
22			(* N.C. (* 1. 0. NATINACI A. 1* 4*	((1
22	Hard	Magnet	tic Materials for MEMS Applications	001
	Nora	M. Dem	psey	((1
	22.1	An Intr		001
		22.1.1		661
	22.2	22.1.2	How Are MEMS Made?	662
	22.2	Magnet		662
		22.2.1	Downscaling Magnetic Systems	663
		22.2.2	Prototype Magnetic MEMS	665
	22.3	Perman	ient Magnets	666
	22.4	Fabrica	tion of μ -Magnets: Top-Down Routes	667
		22.4.1	Bulk Processed Magnets	668
		22.4.2	Bulk Processed Hard Magnetic Powders	669
	22.5	Fabrica	tion of Thick Hard Magnetic Films	671
		22.5.1	Electrodeposition	672
		22.5.2	Sputtering	672
		22.5.3	Pulsed Laser Deposition (PLD)	675
	22.6	Micro-l	Patterning of Thick Hard Magnetic Films	676
		22.6.1	Topographically Patterned Films	676
		22.6.2	Crystallographically Patterned Films	679
	22.7	Conclu	sions and Perspectives	680
	Refer	ences .		680
23	Solid	-State M	lagnetic Sensors for Bioapplications	685
	Gora	n Mihailo	ović and Stephan von Molnár	200
	23.1	Introdu	ction	685
	23.2	Magnet	tic Sensors Based on GMR Effect	687
		23.2.1	GMR Sensors	689
		23.2.1	Spin Valve Sensors	693
		23.2.2		075

	23.2.3 GMR and Spin Valve Sensors for Detection of
	Nanoparticles 69
23.3	MTJ Sensors 69
23.4	Sensors Based on AMR Effect
	23.4.1 AMR Ring Sensors
	23.4.2 Planar Hall Effect Sensors
23.5	Hall Effect Sensors 70
23.6	GMI Sensors
23.7	Conclusions
Refer	ences
Index	

Contributors

Thomas R. Albrecht Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA 95123, USA, Thomas.Albrecht@hitachigst.com

Carlos Bárcena Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390; Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, USA

Alexander Baryshev Toyohashi University of Technology, Toyohashi, Aichi, Japan; Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

Ch. Binek Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA, cbinek2@unlnotes.unl.edu

R.P. Cowburn Blackett Physics Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW, UK, r.cowburn@imperial.ac.uk

Maria Daniil US Naval Research Laboratory, Washington, DC, USA

Nora M. Dempsey Institut Néel, CNRS-UJF, 25 rue des Martyrs, 38042, Grenoble, France, nora.dempsey@grenoble.cnrs.fr

A. Enders Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68508, USA, axel@unl.edu

Randall M. Erb Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC 27708, USA, randall.erb@duke.edu

Jinming Gao Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390; Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, USA, Jinming.Gao@UTSouthwestern.edu

Arunava Gupta Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, USA, agupta@mint.ua.edu

Oliver Gutfleisch Leibniz Institute for Solid State and Materials Research (IFW Dresden), Institute for Metallic Materials, Helmholtzstr. 20, 01069 Dresden, Germany, o.gutfleisch@ifw-dresden.de

J.W. Harrell Department of Physics, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, AL 35487-0209, USA, jharrell@bama.ua.edu

Li He Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

Oleg Heczko Leibniz Institute for Solid State and Materials Research (IFW Dresden), Institute for Metallic Materials, Helmholtzstr. 20, 01069 Dresden, Germany, Institute of Physics, Academy of Sciences, Czech Republic Na Slovance 2, CZ-182 21 Praha 8, Czech Rep., heczko@fzu.cz

Olav Hellwig Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA 95123, USA

F.X. Hu State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, Peoples' Republic of China

Robert Hull Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

Mitsuteru Inoue Toyohashi University of Technology, Toyohashi, Aichi, Japan, inoue_mitsuteru@eee.tut.ac.jp

Olivier Isnard Institut Néel, CNRS, Boîte F, BP166, F-38042 Grenoble, Cédex 9, France, olivier.isnard@grenoble.cnrs.fr

Shishou Kang Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487-0209, USA, skang@mint.ua.edu

Alexander Khanikaev Toyohashi University of Technology, Toyohashi, Aichi, Japan

David M. Kirkwood Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

Yang Li Department of Engineering Science and Materials, University of Puerto Rico at Mayaguez, Mayaguez, PR 00681-9044

J.P. Liu Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA, pliu@uta.edu

Jiwei Lu Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

J. Lu Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China

Guo-Xing Miao Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, USA

Goran Mihajlović Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, mihajlovic@anl.gov

David E. Nikles Department of Chemistry, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487-0209, USA, dnikles@mint.ua.edu

Dafiné Ravelosona Institut d'Electronique Fondamentale, UMR CNRS 8622, Université Paris Sud, 91405 Orsay, France, dafine.ravelosona@u-psud.fr

Joseph H. Ross, Jr Department of Physics, Texas A&M University, College Station, TX 77843-4242, USA, ross@physics.tamu.edu

Ricardo Ruiz Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA 95123, USA

Manfred E. Schabes Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA 95123, USA

Rudolf Schäfer Leibniz Institute for Solid State and Materials Research (IFW Dresden), Institute for Metallic Materials, Helmholtzstr. 20, 01069 Dresden, Germany, r.schaefer@ifw-dresden.de

Nils Scheerbaum Leibniz Institute for Solid State and Materials Research (IFW Dresden), Institute for Metallic Materials, Helmholtzstr. 20, 01069 Dresden, Germany

David. J. Sellmyer Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68508, USA

B.G. Shen State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, Peoples' Republic of China

Shifan Shi Department of Physics, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487-0209, USA, shi004@bama.ua.edu

R. Skomski Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68508, USA, rskomski@neb.rr.com

Amandeep K. Sra Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA

Chandan Srivastava Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487-0209, USA, sriva001@bama.ua.edu

Z.Z. Sun Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China

J.R. Sun State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, Peoples' Republic of China, jrsun@g203.iphy.ac.cn

Bruce D. Terris Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA 95123, USA

Gregory B. Thompson Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487-0209, USA, gthompson@coe.eng.ua.edu

Daryl M. Treger Strategic Analysis, Arlington, VA 22203, USA

Stephan von Molnár MARTECH and Department of Physics, Florida State University, Tallahassee, FL 32306, USA

Jinlan Wang Department of Physics, Southeast University, Nanjing, 211189, P. R. China

X.R. Wang Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China, phxwan@ust.hk

Kevin G. West Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

Matthew A. Willard US Naval Research Laboratory, Washington, DC, USA, willard@anvil.nrl.navy.mil

Stuart A. Wolf Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA, saw6b@Virginia.EDU

Xiao Z. Wu Hitachi Global Storage Technologies, San Jose Research Center, San Jose, CA 95123, USA

Benjamin B. Yellen Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC 27708, USA, yellen@duke.edu

Wenjing Yin Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

Jiani Yu Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA

X.C. Zeng Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, USA, xzengl@unl.edu

Chapter 1 Spin Dynamics: Fast Switching of Macro-spins

X.R. Wang, Z.Z. Sun, and J. Lu

Abstract Recent progress on the theoretical studies of fast magnetization reversal of Stoner particles is reviewed. The following results are discussed: (1) The Stoner–Wohlfarth (SW) limit becomes exact when the damping constant is infinitely large. Under the limit, magnetization moves along the steepest energy descent path. (2) For a given magnetic anisotropy, there is a critical damping constant, above which the minimal switching field is the same as that of the SW-limit. (3) The field of a ballistic magnetization reversal should be along a certain direction window in the presence of energy dissipation. (4) Since a time-dependent magnetic field can be an energy source, two new reversal strategies are possible. One is to use a field following magnetization motion, and the other is to use a circularly polarized microwave near the ferromagnetic resonance frequency. The critical switching fields of both strategies are substantially lower than that of precessional reversal for realistic materials. (5) The theoretical limits for both field-induced and current-induced magnetization reversal are presented for uniaxial Stoner particles.

1.1 Introduction

Spin dynamics is an old and important subject rooted in magnetism and the nuclear/electron-spin/ferromagnetic resonances that have wide applications in physics, information processing, chemistry, biology, and medicine [1–5]. In the field of magnetic data storage [4], magnetization reversal has received a lot of attention because data input and output involve switching the magnetization of magnetic storage cells that are important components of modern computers. The typical switching time with currently used technology is of the order of nanoseconds. If one wants to have a faster computer (modern electronic computers are working at a clock speed

X.R.Wang (⊠)

Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China e-mail: phxwan@ust.hk

of the order of GHz) with magnetic random access memory (MRAM), the conventional magnetization reversal method shall be a bottleneck. Thus, fast magnetization switching shall be of great importance for future development of high-speed information industry.

Magnetization reversal is a very complicated problem in bulk material [5] because it can be achieved in many different ways. For example, magnetization reversal can go through bucking and curling modes, coherent rotation, and/or domain nucleation and domain wall propagation. Recent technological advances allow us to fabricate magnetic nano-particles [6] that are believed to be useful for high-density information storage [7–10]. For a magnetic nano-particle, strong exchange interactions keep the magnetic moments of atoms rigid, creating just a single magnetic domain, such that the constituent spins rotate in unison. Such a nano-particle is often called a Stoner–Wohlfarth (SW) or Stoner particle. The understanding of magnetization reversal of a Stoner particle should be relatively simple in comparison with that of a bulk system, yet important in nano-technologies [4] as a consequence of the miniaturization into the nano-meter scale.

Magnetization reversal of macro-spins (of Stoner particles) is known as the SW problem because it was first studied by Stoner and Wohlfarth in 1948 [11]. One current topic in nanomagnetism is the control and manipulation of the magnetization of Stoner particles, and magnetization reversal is one of the basic operations. Magnetization state can be manipulated by a magnetic field [11–22], or by a spin-polarized electric current [23–28] through so-called spin-transfer torque (STT), or by a laser light [30]. In terms of applications, manipulation by a magnetic field and/or a spin-polarized electric current dominates and will continue to dominate the information storage industry. Examples are field-driven and current-driven MRAM. Important issues in applications are scalability, power consumption, and speed. These issues relate to the problems of lowering the critical field/current required to reverse a magnetization [4], as well as to the problems of designing a field/current pulse such that the magnetization can be switched from one state to another extremely quickly [21, 29].

Regarding the issue of minimal switching field, Stoner and Wohlfarth [11] showed that a static field larger than the so-called SW-limit can switch a magnetization from its initial state to the target one. The idea is to make the target state to be the only energy minimum. Thus the system rolls down to the target state. However, the system can only gradually dissipate its energy during a precessional motion so that the magnetization moves around the precession axis many times (ringing phenomenon or ringing mode) [12–16, 21, 22] before reaching the target state. As a result, it takes typically nanoseconds to switch a magnetization at a field of teslas. Subsequent theoretical and experimental studies [14, 15] have shown that the minimal switching field can be smaller than the SW-limit. The energy consideration alone in the SW theory is not adequate, and one has to take into account magnetization dynamics. The magnetization dynamics of a nano-structure is governed by the so-called Landau–Lifshitz–Gilbert (LLG) equation that does not have a general analytical solution. Most theoretical work in the field has relied on numerical calculations, and most reversal schemes [21, 27, 28] have been proposed on a hunch. Ideas include thermal assistance [27] and sample designs [28].

Regarding the issue of switching time, picoseconds magnetization switching has been observed recently in experiments [14, 15] by using pulsed magnetic fields. This approach has received much theoretical attention [12, 17–19]. Numerical investigations [12] showed that the switching time can be substantially reduced because ringing effect is avoided so that the magnetization moves along a so-called ballistic trajectory [19]. The precessional magnetization reversal provides not only a shorter time but also a lower switching field (well below the SW-limit), as found in the early numerical calculations [12]. In the absence of energy dissipation, precessional magnetization switching can also be investigated analytically. Analytical results for the minimal field were obtained by Porter [20].

There are already many nice reviews and books on the general subject of spin dynamics, and we shall not try to make a thorough review on the subject. Instead, we concentrate on the recent theoretical progress on two issues of the SW problem. One is how to make magnetization reversal fast, and the other is how to lower the switching field/current. For those readers who want to know more about many other aspects of spin dynamics, they may read several nice books [1–4] on the subject. The outline of this chapter is as follows. A brief introduction of spin and its kinetics and dynamics subjected to different interactions are given in Section 1.2. These include the dynamics of an isolated spin (without damping) and the dynamics of a macro-spin in contact with the environments (with damping through spin relaxation and spin decoherence). Spin current as a result of spin kinetics is also discussed. Section 1.3 is about magnetization reversal by a static magnetic field. The existence of a critical damping constant, above which the SW theory predicts correctly the switching field, is discussed, and a direction window for ballistic reversal is explained. Section 1.4 is about the macro-spin reversal by a time-dependent magnetic field. The fundamental difference between a static magnetic field and a time-dependent magnetic field is revealed. Based on the fact that a time-dependent magnetic field can be an energy source, two strategies with substantial lower (than the precessional one) critical switching field are discussed. The theoretical limits of the critical switching field or current out of all possible designs, together with the optimal reversal trajectory, are also given. Section 1.5 is a short summary.

1.2 Spin and Its Kinetics and Dynamics

1.2.1 Basic Concepts of Spin

Like electric charge, spin and the associated magnetic moment are fundamental properties (intrinsic quantum numbers) of elementary particles. The spin quantum number relates to many phenomena in elementary particle physics as well as in nuclear, atomic, solid state, and statistical physics. Spin is one type of angular momentum which does not have a classical analogy, but one may tentatively view a spin coming from a spinning motion of a particle. From the symmetry transformation viewpoint, spin is one class of generators of spatial rotation transformations, while electric charge is the generator of so-called U(1) gauge symmetry transformations. Spin has three components, s_1 , s_2 , and s_3 that generate rotations around x-, y-, and z-axis. Unlike electric charge being a scalar, the expectation value of a spin operator \vec{s} is a vector. According to quantum mechanics, spin operators \vec{s} satisfies the following fundamental commutation relations

$$[s_i, s_k] = i\hbar\varepsilon_{ikl}s_l, \tag{1.1}$$

where ε_{jkl} is an antisymmetric tensor on three indices, for which $\varepsilon_{jkl} = 0$ except for $\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$ and $\varepsilon_{321} = \varepsilon_{213} = \varepsilon_{132} = -1$. This symmetry viewpoint explains well why spin is a good quantum number of an elementary particle that has an intrinsic rotational symmetry. From quantum mechanics, it is known that a spin can take only integers or half-integers values of \hbar .

Following classical electrodynamics, the magnetic moment of a charged particle moving in a circular orbit is given by

$$\vec{M} = \frac{q}{2m_e}\vec{L}, \qquad \vec{L} = \vec{r} \times \vec{p}, \qquad (1.2)$$

where q and m_e are the charge and the mass of the particle, respectively. \vec{L} is the orbital angular momentum of a particle at position \vec{r} with momentum \vec{p} . Although the magnetic moments of elementary particles and their spins do not follow exactly the above equation, they are related to each other by

$$\vec{M} = g \frac{q}{2m_e} \vec{s} \tag{1.3}$$

with g a fundamental parameter for a given particle.

1.2.2 Kinetics of Spin: Spin Current

Just as the flow of charge generates electric current, so the flow of spin in space creates a spin current. Different from the electric current density which is a vector, spin current density is a rank-2 tensor because of the vector nature of spin. As mentioned earlier, spin is only one type of angular momenta. All particles can have orbital angular momentums besides spins. An electron can exchange its spin with its orbital angular momentum through spin–orbit interaction or exchange its spin angular momentum with the angular momenta of other electrons and/or particles through particle–particle interactions. As a result, spin current is very fragile, not continuous, and does not even conserve because the spin state of an electron is seldom stationary. To see why the spin current behaves like this, it may be helpful to understand why an electric current reaches easily the continuity condition. The

reason is not only due to the charge conservation (otherwise, the spin current should also be very robust) but also because of both charge quantization and large Coulomb interaction. Each type of particle carries only a fixed number of charges. For example, all electrons have one negative charge. Large Coulomb interaction prevents any real material from either absorbing or releasing excessive charges. In comparison, an electron can be in any innumerable number of possible spin states, and there is no interaction to prevent angular momentum accumulation and transformation from one object to another.

The differences in the electric current and spin current make the study of spin current much more challenging than that of electric current. In fact, even the issue of a proper definition of the spin current has been an active issue of debate recently in the spintronics community [31–33]. Interested readers are referred to the literature [31–33] for a full discussion.

1.2.3 Dynamics of Spin: Bloch Equation, Landau–Lifshitz Equation, and Landau–Lifshitz–Gilbert Equation

Consider a spin \vec{s} under the influence of its Hamiltonian $W(\vec{s})$. The dynamics of \vec{s} is governed by the Heisenberg equation if \vec{s} can be regarded as a closed system

$$\frac{d\vec{s}}{dt} = \frac{1}{i\hbar} \left[\vec{s}, W(\vec{s}) \right]. \tag{1.4}$$

It is straightforward to evaluate the commutator, and Eq. (1.4) becomes

$$\frac{d\vec{s}}{dt} = \gamma \vec{s} \times \vec{H}_t, \tag{1.5}$$

where $\gamma = 2.21 \times 10^5 (rad/s)/(A/m)$ is the gyromagnetic ratio, and the effective field $\vec{H}_t = -\nabla_{\vec{s}} W(\vec{s})/\gamma$ comes from external magnetic fields and from various magnetic anisotropy energies [5]. If one takes the expectation value of the above equation with respect to the spin state, and assumes $\langle -\gamma \vec{s} \times \vec{H}_t \rangle = -\gamma \langle \vec{s} \rangle \times \langle \vec{H}_t \rangle$, then the magnetization of an isolated spin, $\vec{M} \equiv \gamma \langle \vec{s} \rangle$, satisfies the following dynamic equation

$$\frac{d\vec{M}}{dt} = -\gamma \vec{M} \times \vec{H}_t. \tag{1.6}$$

Classically, $\vec{H}_t = -\nabla_{\vec{M}} W(\vec{M})/\mu_0$, where $\mu_0 = 4\pi \times 10^{-7} N/A^2$ is the vacuum magnetic permeability, and $W(\vec{M})$ is the classical magnetic energy density.

1.2.3.1 Bloch Equation

Equation (1.6) is called the Bloch equation of an isolated spin by the nuclear magnetic resonance (NMR) and quantum optics scientific community because of the critical contributions of F. Bloch on these subjects. It is also known as the Landau-Lifshitz equation without dissipation in magnetism. Equation (1.6) is correct only for isolated spins, which is not the case for most realistic systems. Spins in a sample made up by condensed matter experience various interactions with other dynamical degree of freedoms of the sample and its environment. These interactions create internal magnetic fields. Due to the dynamical nature of the environments, these internal fields not only contribute an averaged field to the total magnetic field H_t but also exert residual fluctuating fields on the spins. These fluctuating fields, originated in the infinite number of degrees of freedom of the environment as well as their thermal and the quantum fluctuations, can lead to both spin relaxation and spin decoherence, meaning that the spin magnetization will approach to a preferred equilibrium value M_{z0} along the z-axis which is selected by either external magnetic field or sample anisotropy. The physics is as what was explicitly demonstrated in Reference [34]: A random field perpendicular to the z-axis, which produces an off-diagonal term in the Hamiltonian, can induce transitions between different spin states. The randomness in the transitions and the spontaneous decay of quantum fluctuations leads the spin magnetization to take an equilibrium statistical value. The fluctuating field along the z-direction makes the spin precession random, which gives rise to spin decoherence.

If one takes into account spin relaxation and spin decoherence in the spin dynamics, the proper way to describe the magnetization dynamics is the so-called Bloch equation with spin relaxation and spin decoherence.

$$\frac{dM_z}{dt} = -\gamma (M_x H_{ty} - M_y H_{tx}) - \frac{M_z - M_{z0}}{T_1}$$

$$\frac{dM_x}{dt} = -\gamma (M_y H_{tz} - M_z H_{ty}) - \frac{M_x}{T_2}$$

$$\frac{dM_y}{dt} = -\gamma (M_z H_{tx} - M_x H_{tz}) - \frac{M_y}{T_2}$$
(1.7)

where T_1 and T_2 are called spin relaxation time and spin decoherence time, respectively. T_1 is the typical time for an initial non-equilibrium M_z to reach the equilibrium value M_{z0} , and T_2 is the typical time for a magnetization to lose the memory of its initial precession position. The above equation is the starting point of usual NMR analysis because the NMR signal is related to the average magnetization \vec{M} of an ensemble of spins.

1.2.3.2 Landau–Lifshitz Equation and Landau–Lifshitz–Gilbert Equation

The Bloch equation describes well the magnetization dynamics of an ensemble of non-interacting or weakly interacting spins, but it does not capture the proper physics of a strongly interacting spin system such as a piece of magnet. This is because the magnetization magnitude of a magnet shall not change with time, and Eq. (1.7) does not preserve the magnitude of the magnetization. To take into account the dissipative effect of the environment, Landau and Lifshitz [35] introduced a phenomenological term, $\alpha \gamma \vec{m} \times (\vec{M} \times \vec{H}_t)$, where α is a dimensionless phenomenological parameter measuring the damping strength, and \vec{m} is the unit vector of \vec{M} . Equation (1.6) with this damping term becomes

$$\frac{dM}{dt} = -\gamma \vec{M} \times \vec{H}_t - \alpha \gamma \vec{m} \times (\vec{M} \times \vec{H}_t).$$
(1.8)

Equation (1.8) is called the Landau–Lifshitz (LL) equation.

Later Gilbert [36] proposed an alternative way to include dissipation. Similar to Ohm's law in electron transport, Gilbert assumed a friction field of $-\alpha(d\vec{m}/dt)$ on a moving magnetization due to the dissipation. This friction field generates a torque on the magnetization. Thus Eq. (1.6) should be modified as

$$\frac{d\vec{M}}{dt} = -\gamma \vec{M} \times \vec{H}_t + \alpha \vec{M} \times \frac{d\vec{m}}{dt}.$$
(1.9)

This equation is called the Landau–Lifshitz–Gilbert (LLG) equation that can also be written as

$$(1+\alpha^2)\frac{d\dot{M}}{dt} = -\gamma \vec{M} \times \vec{H}_t - \alpha \gamma \vec{m} \times (\vec{M} \times \vec{H}_t).$$
(1.10)

Although Eqs. (1.10) and (1.8) have the same mathematical form, the two approaches to the dissipation are fundamentally different. According to Eq. (1.10), the change rate of the magnetization goes to zero as $\alpha \to \infty$, and the magnetization shall move along the dissipation direction of $-\vec{m} \times (\vec{M} \times \vec{H}_t)$ when $\alpha \to \infty$. However, Eq. (1.8) says that the rate change of the magnetization becomes infinity at infinite damping, and it does not make any sense. Thus LL's approach to dissipation is not physical! It is generally accepted that LLG equation is the right description of magnetization dynamics for a magnet, and it is the starting point in our discussion of magnetization reversal of Stoner particles.

