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Preface

During the last 10 years there has been increasing interest in the study of plant polyphenols
and their innumerable roles in a variety of very different contexts. Plant polyphenols are
secondary metabolites and constitute one of the most common and widespread groups of
substances in plants. Their structural diversity is likely the result of plant adaptive responses
to natural selection.

Polyphenols express a large and diverse range of beneficial effects in plants and in humans
consuming plant-derived food and beverages. For example, polyphenols are well known for
their antioxidation activity, hormone-like behavior, and role as natural neurotransmitters,
among many other biological activities. They also provide antimicrobial activity for the
plant’s own defense against invading pathogens.

The diversity of structures and activities of plant polyphenolic compounds has resulted
in the emergence of numerous investigations in various and often interdisciplinary research
areas, encompassing scientific domains as diverse as chemistry, biochemistry, biotechnol-
ogy, ecology, physiology, nutrition and food chemistry, pharmacy and medicine, cosmetics,
and textile technology, as well as in quality and environment controls and assessments.

It is thus the aim of the International Conference on Polyphenols, which is a biennial
event that is organized under the auspices of Groupe Polyphénols, to provide scientists
across disciplines with a forum for sharing new findings and for exchanging views and
ideas on polyphenol research at large.

For the first time in its history, in 2012 the 26th International Conference on Polyphenols
was organized in Florence, Italy. The interest in polyphenol science at the University of
Florence involves many departments, including Pharmaceutical Sciences, Chemistry, Plant
Sciences and Ecology, Food Science, and Medicine, as well as The Multidisciplinary Cen-
tre of Research on Food Sciences (CeRA – MCRFS) and the laboratory of Commodity
Sciences and Quality Control, Environment Assessments and Certification. In these fields,
particular attention has been dedicated to functional-food, nutraceutical, and cosmeceutical
discoveries and applications.

At the 26th International Conference on Polyphenols, five different main topics were
selected for the scientific program:

(1) Phenols and Polyphenols Chemistry: Covering (i) isolation and structural elucidation,
and (ii) synthesis, reactivity, and physical-chemical properties.

(2) Biosynthesis, Genetics, and Metabolic Engineering: Dealing with biosynthesis and
genetic manipulation.
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(3) Roles in Plants and Ecosystems: Covering phenolic functions in plants and correlation
with biotic and abiotic stresses.

(4) Health and Nutrition: Focusing on polyphenol metabolism and bioavailability, as well
as cancer prevention and perspectives on gender-dependent human health effects.

(5) Polyphenols and Drug Discovery: Including new findings on sources of isolated and
standardized polyphenolic fractions and novel epigenetic polyphenol mechanisms.

More than 400 scientists from 42 countries attended the conference in July 2012, with
nearly 400 paper contributions, comprising 52 oral communications and 327 poster pre-
sentations (Fig. P.1).
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Fig. P.1 Contributions to the 26th International Conference on Polyphenols (number of papers presented) by
country.

The success of this 26th edition of the International Conference on Polyphenols would
not have been possible without the support of both public and private sponsors. The Sci-
entific and Technological Pole and the Social Pole of the University of Florence, PIN of
Prato, the National Council for Research, and several private-company sponsors (Agilent
Technologies, BioTech Power, Indena, ISR Ecoindustria, Domus Olea, Force A, Biokyma,
PhenoFarm, Dermaresia, Silva Team, Bioscen Future) are gratefully acknowledged.

All of the lectures, oral communications, and ensuing discussions and debates were broad-
cast live on RadioSpin, the University of Florence webradio, and through Ustation (the
Italian university radio stations network), on the other connected university radios of the net-
work. These radiophonic conference proceedings are available in podcasts on the RadioSpin
Web site: www.radiospin.it.

Annalisa Romani
Vincenzo Lattanzio
Stéphane Quideau

http://www.radiospin.it
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Chapter 1

Monolignol Biosynthesis and its Genetic
Manipulation: The Good, the Bad, and
the Ugly

Richard A. Dixon1, M.S. Srinivasa Reddy2, and Lina Gallego-Giraldo1

1Department of Biological Sciences, University of North Texas, Denton, TX, USA
2Forage Genetics International, West Salem, WI, USA

Abstract: Economic and environmental factors favor the adoption of lignocel-
lulosic bioenergy crops for production of liquid transportation fuels. However,
lignocellulosic biomass is recalcitrant to saccharification (sugar release from cell
walls), and this is, at least in part, due to the presence of the phenylpropanoid-derived
cell-wall polymer lignin. A large body of evidence exists documenting the impacts
of lignin modification in plants. This technology can lead to improved forage quality
and enhanced processing properties for trees (paper pulping) and lignocellulosic
energy crops. We here provide a comprehensive review of the literature on lignin
modification in plants. The pathway has been targeted through down-regulation of
the expression of the enzymes of the monolignol pathway and down-regulation or
over-expression of the transcription factors that control lignin biosynthesis and/or
programs of secondary cell-wall development. Targeting lignin modification at
some steps in the monolignol pathway can result in impairment of plant growth
and development, often associated with the triggering of endogenous host-defense
mechanisms. Recent studies suggest that it may be possible to decouple negative
growth impacts from lignin reduction.

Keywords: monolignol biosynthesis, genetic modification, transcription factor, gene
silencing, saccharification
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1.1 Introduction

Lignin is a major component of plant secondary cell walls, and the second most abun-
dant plant polymer on the planet. It constitutes about 15–35% of the dry mass of vascular
plants (Adler, 1977). Considerable attention has been given over the past several years
to the reduction of lignin content in model plant species, forages, trees, and dedicated
bioenergy feedstocks. This is because forage digestibility, paper pulping, and liquid fuel
production from biomass through fermentation are all affected by recalcitrance of ligno-
cellulose, primarily due to the presence of lignin, which blocks access to the sugar-rich
cell-wall polysaccharides cellulose and hemicellulose for enzymes and microorganisms
(Pilate et al., 2002; Reddy et al., 2005; Chen & Dixon, 2007).

Much is now known of the biosynthesis of lignin and its control at the transcriptional
level. This informs the targets that have been selected for genetic modification of lignin
content and composition in transgenic plants. Which gene is down- or up-regulated has
a considerable effect on lignin content and composition. Equally, lignin modification can
have profound impacts on plant growth and development, ranging from good through bad to
“downright ugly,” but these impacts are again strongly target-dependent. Understanding the
mechanisms that can impact plant growth – which equate to agronomic performance – in
crop species “improved” through lignin modification is critical for economic advancement
of the forage and biofuels industries. Although still poorly understood, these mechanisms
may also throw light on basic plant developmental and defense processes.

1.2 Function and distribution of lignin in plants

Lignin is an aromatic heteropolymer derived primarily from three hydroxycinnamyl
alcohols: 4-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which give rise,
respectively, to the 4-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) subunits of lignin
(Freudenberg & Neish, 1968; Ralph et al., 2004). G units are mono-methoxylated, S units
are di-methoxylated, and H units are not methoxylated (Fig. 1.1). These monomers are
linked through oxidative coupling catalyzed by both peroxidases and laccases (Boudet
et al., 1995). Unlike cellulose and other polymers that have labile linkages (e.g. glycosidic
or peptide) between their building blocks, the units of lignin are linked by strong ether and
carbon–carbon bonds (Sarkanen, 1971). Lignin is present in the secondarily thickened
cell walls of plants, where it is critical to cell-wall structural integrity and gives strength to
stems (Chabannes et al., 2001b; Jones et al., 2001). Lignin also imparts hydrophobicity to
vascular elements for water transport. The lignin content of the mature internodes of stems
of alfalfa (Medicago sativa), the world’s major forage legume and a target of much of the
work to be described in this article, is about 17% of the dry weight (Guo et al., 2001a).

Lignin composition varies among major phyla of vascular plants (Boerjan et al., 2003).
Dicotyledonous and monocotyledonous angiosperm lignins contain G and S units as the
two major monomer species, with low levels of H units. Monocotyledonous lignins have
more H units than dicotyledonous lignins (Baucher et al., 1998), but care must be taken
not to attribute other components to H units, as often happens (Boerjan et al., 2003). Fern
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Fig. 1.1 Scheme for monolignol biosynthesis in dicotyledonous angiosperms, including revisions encompassing
the different biochemical activities of cinnamoyl-CoA reductase (CCR) forms in Medicago truncatula (Zhou et al.,
2010). See text for enzyme abbreviations.

and gymnosperm lignins have primarily G units and low levels of H units, but S units have
been found in cuplet fern, yew plum pine, sandarac-cypress, and a few genera in the Gneto-
phyta (Weng et al., 2008b). Some lower plants, like Selaginella moellendorfii (Weng et al.,
2008a,b) and Marchantia polymorpha, have both G and S units in their lignins (Espineira
et al., 2011), despite predating hardwoods/dicots and even softwoods. The apparent pres-
ence of H, G, and S units in the lignin from the seaweed Calliarthron cheilosporioides
(Martone et al., 2009) may indicate convergent evolution of lignin.

The presence of each methoxyl group on a monolignol unit results in one less reactive site,
and therefore fewer available potential coupling combinations during polymerization. Thus,
S lignin is more linear and less crosslinked than G/S lignin, and provides a strong yet flexible
polymer that is especially advantageous to herbaceous angiosperms (Bonavitz & Chapple,
2010). A correlation has been shown between the degradability of the cell walls in forages
and the amount of G lignin, as lignin rich in G units is more highly condensed, making it less
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amenable to degradation (Jung & Deetz, 1993). Thus, transgenic poplar plants with lignin
rich in G units are, like softwoods, more difficult to pulp because of their more condensed
lignin (Lapierre et al., 1999).

Lignin content increases with progressive maturity of stems; this relationship has been
studied in detail in alfalfa (Jung et al., 1997; Chen et al., 2006), ryegrass (Tu et al., 2010),
tall fescue (Buxton & Redfearn, 1997; Chen et al., 2002), and switchgrass (Mann et al.,
2009; Shen et al., 2009). Decreasing the lignin content increases the digestibility of alfalfa
for ruminant animals (Baucher et al., 1999; Guo et al., 2001a,b; Reddy et al., 2005) and
improves processing efficiency for the production of liquid biofuels through saccharifica-
tion and fermentation (Chen & Dixon, 2007). Lignin composition has also been linked with
reduced cell-wall digestibility (Jung & Deetz, 1993). However, the importance of lignin
composition for digestibility has been questioned based on the results of studies with syn-
thetic lignins, which show lignin composition per se to have no effect (Grabber et al., 1997).

Plants have primary and secondary cell walls, which differ in both function and composi-
tion. Primary walls allow cells to expand and divide, while providing mechanical strength.
Once cell growth stops, a much thicker secondary cell wall is deposited in some specialized
cell types. These include vessels and fibers in the stem, sclereid cells, endodermal tissue of
roots, some cells of anthers and pods important for dehiscence (Zhong & Ye, 2009), and
seed coats (Marles et al., 2008; Chen et al., 2012). Generally, secondary cell walls consist
of three layers, named S1 (outer), S2 (middle), and S3 (inner). Lignin deposition starts at
the cell corners in the region of the middle lamella and the primary wall when S1 formation
has started. Most of the lignin is deposited in the S2 layer and impregnates the cellulose and
hemicelluloses there (Donaldson, 2001; Boerjan et al., 2003). Based on UV microscopy,
the density of lignin is higher in the middle lamella and primary walls than in the secondary
walls of secondarily thickened cells, but the secondary walls have more lignin content as
they constitute the largest proportion of the total cell wall (Fergus et al., 1969). Usually H
units are deposited first during cell-wall formation, followed by G units and then S units
(Terashima et al., 1993, 1998; Donaldson, 2001). However, S units have been identified in
lignin from corn coleoptiles, indicating that S lignin deposition may also start early in devel-
opment (Musel et al., 1997). H lignin is believed to determine the shape of the cells by acting
as a matrix for deposition of G and S units (Terashima et al., 1998). Vascular cells without
H units may be free to expand and assume a round shape. In general, a higher amount of G
units is present in vessels than in fibers, which are rich in S units (Saka & Goring, 1985).

There is considerable variation in lignin content and composition not only between dif-
ferent plant species but also in different tissues of the same plant, between various develop-
mental stages of the plant, and in response to environmental conditions (Terashima et al.,
1993; Musel et al., 1997; Vermerris & Boon, 2001; Donaldson, 2002; Chen et al., 2006). For
example, the S/G ratio increases to alter the cell-wall mechanical properties in poplar plants
grown under simulated wind influence compared to plants grown in non-windy conditions
(Koehler & Telewski, 2006).

Two examples, one for a bioenergy crop (switchgrass, Panicum virgatum), the other for a
forage crop (alfalfa), are given to demonstrate the extent of variation in lignin encountered in
wild-type, non-genetically-modified plant biomass. The lignin contents and compositions
of switchgrass cv. Alamo grown in the field, in greenhouses, and in growth chambers
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were compared using different techniques (Mann et al., 2009). Lignin content was not
different in leaves from different parts of the tiller, but stem tissues had increasing lignin
content from the top to the bottom of the tiller. Younger stem tissue from the field had
slightly higher lignin content compared to the greenhouse- and growth chamber-grown
plants. The S/G ratio of leaf and stem tissues varied between different environments (Mann
et al., 2009). Similar observations have been made in tall fescue (Chen et al., 2002) and
perennial ryegrass (Tu et al., 2010), where lignin content increases moderately during the
stem-elongation stage and then dramatically on progression from the elongation to the
reproductive stage.

In a study with alfalfa, the lignin content of young internodes (internodes 1–2) was
93 mg/g CWR (cell-wall residue), increasing towards a value of 250 mg/g CWR in the
mature eighth internode (Chen et al., 2006). This was accompanied by an increase in
S/G ratio from 0.087 to 0.640. The lignin contents (thioacidolysis yields) and lignin
monomer compositions of individual cell types (vascular elements, phloem fibers, and
vascular parenchyma) from the fifth internode were quite different (Nakashima et al.,
2008). Thioacidolysis yields were higher in vascular cells than in parenchyma and fiber
cells (430, 267, and 76 μmol/g dry weight, respectively), with fiber and parenchyma cells
enriched in S lignin units with an S/G ratio of 0.60 and 0.72 respectively, and vascular
cells enriched in G lignin units with an S/G ratio of 0.17 (Nakashima et al., 2008). The
H/total lignin ratios were 0.06, <0.01, and 0.03, respectively, in vascular elements, fiber,
and parenchyma cells from the fifth internodes of greenhouse-grown alfalfa.

Coherent anti-Stokes Raman scattering microscopy (CARS) has been used to determine
the spatial distribution of lignin across secondary cell walls from the stems of alfalfa plants
(Zeng et al., 2010). At the tissue level, CARS intensity decreased in the order fiber > xylem
> epidermis > phloem > parenchyma. In general, the CARS signal at the cellular level was
highest in the cell corner compared to the compound middle lamella (middle lamella and
primary walls from adjacent cells), and the signal in the middle lamella was higher than
that in the secondary walls (Zeng et al., 2010).

1.3 Targets for modification of lignin biosynthesis

Fig. 1.1 shows a current view of the pathways for monolignol biosynthesis, and Fig. 1.2
outlines the transcriptional control mechanisms that regulate lignin deposition during sec-
ondary cell-wall formation. Both biosynthetic enzymes and transcription factors (TFs) have
been targeted to reduce (or occasionally increase) lignin levels. In the following sections
we briefly describe the gene targets and then describe the effects of their down-regulation
on lignin content and composition and plant phenotype in model systems, forages, and
industrial pulp or bioenergy species.

1.3.1 Gene targets 1. Biosynthetic enzymes

The reader is referred to Fig. 1.1, which illustrates the positions of the various enzymes in
the monolignol pathway.
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Fig. 1.2 Transcriptional controls for the biosynthesis of monolignols in the context of secondary cell-wall
biosynthesis (based on Arabidopsis and Medicago truncatula). Both NAC and MYB genes can activate the entire
secondary cell-wall biosynthesis pathway. In M. truncatula, F5H (ferulate 5-hydroxylase) is regulated by the
NAC master switch (which is also under autoregulatory control), whereas other lignin genes are regulated by
MYB58/63/85 through AC elements in their promoters. MYB 4 is a lignin/phenylpropanoid pathway repressor.

1.3.1.1 L-phenylalanine ammonia-lyase (PAL)

PAL has been characterized biochemically from many plant species since its discovery in
1961 (Koukol & Conn, 1961). PAL genes were first cloned from French bean (Phaseo-
lus vulgaris) (Edwards et al., 1985). The enzyme is tetrameric, and contains an unusual
methylidene imidazolone residue at the active site that is formed post-translationally (Cal-
abrese et al., 2004). PAL is usually encoded by a multigene family, and it is possible that
expression of different members can lead to formation of heterotetramers, the functional
significance of which is not clear (Reichert et al., 2009).

1.3.1.2 Cinnamate 4-hydroxylase (C4H)

C4H catalyzes 4-hydroxylation of cinnamic acid to 4-coumaric acid (Russell & Conn, 1967;
Russell, 1971). C4H is the most abundant plant cytochrome P450 enzyme. The cloning
of the C4H gene was described almost simultaneously from alfalfa (Fahrendorf & Dixon,
1993), artichoke (Teutsch et al., 1993), and mung bean (Mizutani et al., 1993).

1.3.1.3 4-coumarate: coenzyme-A ligase (4CL)

4CL has been studied extensively since the 1970s (Hahlbrock & Grisebach, 1970;
Knobloch & Hahlbrock 1975, 1977). The enzyme converts hydroxycinnamic acids,
preferably 4-coumaric acid, to the corresponding coenzyme-A thioesters. 4CL exists as
a multigene family in those species studied to date (Hu et al., 1998; Ehlting et al., 1999;
Lindermayr et al., 2002; Dixon & Reddy, 2003; Xu et al., 2009). Only four of the eleven
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putative 4CLs in Arabidopsis appear to encode catalytically active 4CL enzymes, and the
knock-out mutant of At4CL5 does not show any changes in lignin content or monomer
composition (Costa et al., 2005), suggesting functional redundancy.

1.3.1.4 Enzymes of the coumaroyl shikimate shunt

Even though the biochemical formation of 4-coumaroyl shikimate and 4-coumaroyl
quinate had been known for many years (Rhodes & Wooltorton, 1976; Ulbrich &
Zenk, 1980), it was not originally appreciated that these reactions might be involved in
lignin biosynthesis. Discovery of the Arabidopsis thaliana cytochrome P450-dependent
monooxygenase enzyme CYP98A3 (4-coumaroyl shikimate 3′-hydroxylase, C3′H),
which hydroxylates the shikimate and quinate esters of 4-coumarate, prompted a revision
of the monolignol pathway with the suggestion of a new route for 3-hydroxylation of
the 4-hydroxyphenyl moiety (Schoch et al., 2001; Franke et al., 2002a). Soon after,
tobacco hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) was
characterized (Hoffmann et al., 2003). The monolignol pathway was then revised to
involve HCT utilizing 4-coumaroyl-CoA as the acyl donor and shikimate or quinate as
the acceptor, followed by 3-hydroxylation of the 4-coumaroyl moiety by C3′H, leading
to a caffeoyl ester and its subsequent conversion to caffeoyl-CoA by HCT acting in
the reverse direction (Fig. 1.1). Identification of a separate hydroxycinnamoyl-CoA:
quinate hydroxycinnamoyl transferase (HQT) involved in the synthesis of chlorogenic
acid (caffeoyl quinate) (Niggeweg et al., 2004) suggested that the 4-coumaroyl ester of
shikimate was likely the preferred intermediate in lignin biosynthesis. In tomato, HQT
down-regulation or over-expression did not change lignin content but led, respectively, to
a decrease or an increase in chlorogenic acid content (Niggeweg et al., 2004).

There is good genetic evidence for the operation of the “shikimate shunt” in lignin biosyn-
thesis in several plant species (Franke et al., 2002a; Hoffmann et al, 2004; Reddy et al.,
2005; Shadle et al., 2007; Wagner et al., 2007; Coleman et al., 2008a). However, it is still
not clear whether this pathway operates universally (e.g. in monocots). Other enzyme sys-
tems are known to exist for the conversion of a coumaroyl moiety to a caffeoyl moiety (e.g.
Kneusel et al., 1989), although most have yet to be analyzed beyond the level of protein
biochemistry.

1.3.1.5 Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT)

CCoAOMT is an S-adenosyl L-methionine and divalent cation-dependent O-methyltrans-
ferase that preferentially converts caffeoyl-CoA to feruloyl-CoA (Kuhnl et al., 1989; Ye
et al., 1994; Inoue et al., 1998; Parvathi et al., 2001). Demonstration of the involvement
of CCoAOMT in lignin biosynthesis first came from studies on xylogenesis in Zinnia
(Ye et al., 1994), and this resulted in the first major revision of the monolignol pathway.
Previously, caffeic acid 3-O-methyltransferase (COMT) was believed to be involved in
methylation at both the C3 and C5 positions of monolignols (Finkle & Nelson, 1963;
Davin & Lewis, 1992). The alfalfa CCoAOMT crystal structure has been obtained, and the
enzyme forms a homodimer in solution, although the dimer is not necessary for substrate
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recognition and transmethylation as the substrate and cofactor interact with the monomer
(Ferrer et al., 2005).

1.3.1.6 Ferulate 5-hydroxylase (F5H)

F5H is the third cytochrome P450-dependent monooxygenase enzyme in the monolig-
nol pathway. The F5H gene was cloned from the fah1 mutant of Arabidopsis using a
forward-genetics approach (Chapple et al., 1992). The F5H enzyme has a higher affinity for
coniferaldehyde and coniferyl alcohol compared to ferulate and is therefore more correctly
referred to as coniferaldehyde 5-hydroxylase or Cald5H (Humphreys et al., 1999; Osakabe
et al., 1999). This discovery led to a reappraisal of the monolignol pathway that no longer
supported involvement of ferulate and sinapate in lignin biosynthesis.

1.3.1.7 Caffeic acid 3-O-methyltransferase (COMT)

COMT has been studied for many years (Finkle & Nelson, 1963). However, the common
name of the enzyme appears to be a misnomer; caffeic acid may not be a substrate for
COMT during monolignol biosynthesis, as COMT from many species, including Arabidop-
sis, aspen, and alfalfa, has a significantly higher affinity for 5-hydroxyconiferaldehyde than
for caffeic acid (Li et al., 2000; Parvathi et al., 2001). In Arabidopsis, O-methylation of
5-hydroxyconiferyl alcohol is inhibited in the presence of 5-hydroxyconiferaldehyde such
that, when both substrates are present, AtCOMT preferentially catalyzes O-methylation
of 5-hydroxyconiferaldehyde (Nakatsubo et al., 2008). Alfalfa COMT can efficiently
methylate caffealdehyde and caffeyl alcohol (Parvathi et al., 2001). COMT from tall fescue
(Chen et al., 2004) and wheat (Ma & Xu, 2008) efficiently utilizes both caffealdehyde
and 5-hydroxyconiferaldehyde. Further studies are needed to determine unequivocally the
preferred routes for monolignol O-methylation in vivo.

1.3.1.8 Cinnamoyl-CoA reductase

Cinnamoyl-CoA reductases (CCRs) are involved in the reduction of hydroxycinnamoyl-
CoA thioesters to the corresponding aldehydes, and have been studied for many years
(Gross et al., 1973). There are two well-characterized CCRs in Arabidopsis: AtCCR1
is five times more efficient with feruloyl-CoA and sinapoyl-CoA than is AtCCR2, and
is involved in developmentally regulated lignification, whereas AtCCR2 is expressed
in response to pathogen infection and hence may be involved in disease resistance
(Lauvergeat et al., 2001). Feruloyl-CoA and caffeoyl-CoA are the most and least preferred
substrates, respectively, for CCRs from Arabidopsis (Patten et al., 2005). Feruloyl-CoA
and sinapoyl-CoA are the preferred substrates for M. truncatula MtCCR1, whereas
caffeoyl-CoA and 4-coumaroyl-CoA are the preferred substrates for MtCCR2 (Zhou et al.,
2010). MtCCR2 may be involved in a route to lignin biosynthesis whereby caffeoyl-CoA
is converted to caffealdehyde, which is then 3-O-methylated to coniferaldehyde by COMT
(Zhou et al., 2010) (Fig. 1.1), a pathway previously suggested to occur in Arabidopsis (Do
et al., 2007).


