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Preface

For a long time, educational testing has focused mainly on paper-and-pencil tests
and performance assessments. Since the late 1980s, when the rapid dissemination of
personal computers in education began, these testing formats have been extended to
formats suitable for delivery by computer. Such delivery of tests has several advan-
tages. For example, it offers the possibility of testing on demand, that is, whenever
and wherever an examinee is ready to take the test. Also, both the power of modern
PCs and their ability to integrate multiple media can be used to create innovative
item formats and more realistic testing environments. Furthermore, computers can
be used to increase the statistical accuracy of test scores using computerized adap-
tive testing (CAT). Instead of giving each examinee the same fixed test, in adaptive
testing after each new response the individual examinee’s ability estimate is updated
and the subsequent item is selected to have optimal properties at the new estimate.

The idea of adaptive item selection is certainly not new. In the Binet–Simon
(1905) intelligence test, the items were classified according to mental age, and the
classification was used to adapt the selection of the items to an estimate of the men-
tal age of the examinee derived from the responses to the earlier items until the
correct age could be identified with sufficient certainty. In fact, the idea of adaptive
testing is as old as the practice of oral examinations. Any sensitive oral examiner
knows how to tailor the questions to his or her impression of the examinee’s knowl-
edge level.

The development of item response theory (IRT) in the middle of the last century
has provided a sound psychometric footing for adaptive testing. The key feature of
IRT is its modeling of the response probabilities for an item with distinct parameters
for the examinee’s ability and the characteristics of the items. Due to this parameter
separation, the statistical question of optimal item parameter values for the estima-
tion of examinee ability could be addressed. The main answer to the question was
given by Birnbaum (1968), who, for Fisher’s information measure, showed that, un-
less guessing is possible, the optimal item is the one with the highest value for its
discrimination parameter and a value for the difficulty parameter equal to the ability
of the examinee.

The further development and fine-tuning of the psychometric techniques need-
ed to implement adaptive testing took several decades. Because the first computers
were slow and did not allow for statistically sound real-time ability estimation, early
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research was almost exclusively directed at finding approximate estimation methods
and alternative adaptive formats that could be implemented in a traditional paper-
and-pencil environment. Examples include the two-stage testing format (Cronbach
& Gleser, 1965), Bayesian item selection with an approximation to the posterior
distribution of the ability parameter (Owen, 1969), the up-and-down method of item
selection (Lord, 1970), the Robbins–Monro algorithm (Lord, 1971a), the flexilevel
test (Lord, 1971b), the stradaptive test (Weiss, 1973), and pyramidal adaptive testing
(Larkin & Weiss, 1975).

With the advent of more powerful computers, the use of adaptive testing in large-
scale, high-stakes testing programs became feasible. A pioneer in this field was the
U.S. Department of Defense, with its Armed Services Vocational Aptitude Battery
(ASVAB). After a developmental phase, which began in 1979, the first CAT version
of the ASVAB became operational in the mid-1980s. An informative account of the
development of the CAT-ASVAB is given in Sands, Waters, and McBride (1997).
However, the migration from paper-and-pencil testing to computerized adaptive test-
ing truly began when the National Council of State Boards of Nursing launched a
CAT version of its licensing exam (NCLEX/CAT) and was followed with a CAT ver-
sion of the Graduate Record Examination (GRE). Several other programs followed
suit. After a temporary setback due to security problems for the GRE, large numbers
of testing programs are now adaptive, not only in education but also in psychology
and, more recently, areas such as marketing and health-outcome research.

Some of the early reasons to switch to computerized test administration were
(1) the possibility for examinees to schedule tests at their convenience; (2) tests are
taken in a more comfortable setting and with fewer people around than in large-
scale paper-and-pencil administrations; (3) electronic processing of test data and
reporting of scores are faster; and (4) wider ranges of questions and test content
can be put to use (Educational Testing Service, 1994). In the current programs,
these advantages have certainly been realized and are appreciated by the examinees.
When offered the choice between a paper-and-pencil and a CAT version of the same
test, typically nearly all examinees choose the latter.

But the first experiences with real-world CAT programs have also given rise to a
host of new questions. For example, in programs with high-stakes tests, item secu-
rity quickly became a problem. The capability of examinees to memorize test items
as well as their tendency to share them with future examinees appeared to be much
higher than anticipated. As a consequence, the need arose for effective methods to
control the exposure of the items as well as to detect items that have been compro-
mised. Also, the question of how to align test content with the test specifications
and balance content across test administrations appeared to be more complicated
than anticipated. This question has led to a variety of new testing algorithms. Fur-
thermore, items can now be calibrated online during operational testing, and the
feasibility of efficient methods of item calibration, using collateral information
about the examinee and employing optimal design techniques, is currently being
investigated. These examples highlight only a few practical issues met when the
first CAT programs were implemented in practice. A more comprehensive review
of such issues is given in Mills and Stocking (1996).
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This volume is a completely revised and updated version of Computerized
Adaptive Testing: Theory and Practice edited by the same authors and published
by Kluwer, now part of the same company as Springer (van der Linden & Glas,
2000). Much has changed in the area of adaptive testing research and practice over
the nearly 10 years that have passed since the publication of this volume, and the ed-
itors have appreciated the opportunity to change the composition of the volume, add
new chapters, and update the chapters that have remained. The goal of the volume,
however, has remained the same—not to provide a textbook with a basic introduc-
tion to adaptive testing but to present a snapshot of the latest exciting results from
research and development efforts in the area. For a more comprehensive introduc-
tion to adaptive testing, the student or test specialist should therefore complement
the volume with other books, such as Parshall, Spray, Kalohn and Davey (1969),
Sands, Waters, and McBride (1997), Wainer (1990), and Weiss (1983). As the devel-
opments in adaptive testing are intricately related to those in computerized testing at
large, reference to volumes on this topic edited by Bartram and Hambleton (2006),
Drasgow and Olson-Buchanan (1999), and Mills, Potenza, Fremer and Ward (2002)
are also appropriate.

As always, the book is the result of contributions by many people whose roles
we gratefully acknowledge. First, we would like to express our gratitude to the
contributing authors. Their cooperation and willingness to report on their research
and developmental work in this volume are greatly appreciated. In spite of the
current tendency to use journals rather than books as a primary outlet for new
research, these contributors have allowed us to edit a volume with chapters that
are based on original work. We would also like to thank John Kimmel for his
support during the production of this volume. His way of asking us about our
progress was always subtle and timely. Our thanks are also due to Applied Mea-
surement in Education, Applied Psychological Measurement, Psychometrika, and
the Journal of Educational and Behavioral Statistics for their permission to repro-
duce portions of figures in Chapters 1 and 2 as well as the Defense Manpower
Data Center for the opportunity to use itsr data in one of the empirical examples
in Chapter 2. Finally, the Law School Admission Council generously supported
the research in Chapters 1, 2, 5, 6, 13, 20, and 21 of this volume. The research
in Chapter 15 was funded by Deutsche Forschungsgemeinschaft (DFG), Schw-
erpunktprogramm “Kompetenzmodelle zur Erfassung individueller Lernergebnisse
und zur Bilanzierung von Kompetenzsprozessen” (SP 1293), Project “Rule-Based
Item Generation of Statistical word Problems Based upon Linear Logistic Test Mod-
els for Item Cloning and Optimal Design.” Without this support, the volume would
not have been possible.

CTB/McGraw-Hill Wim J. van der Linden
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Chapter 1
Item Selection and Ability Estimation
in Adaptive Testing

Wim J. van der Linden and Peter J. Pashley

1.1 Introduction

The last century saw a tremendous progression in the refinement and use of
standardized linear tests. The first administered College Board exam occurred in
1901 and the first Scholastic Assessment Test (SAT) was given in 1926. Since then,
progressively more sophisticated standardized linear tests have been developed for
a multitude of assessment purposes, such as college placement, professional licen-
sure, higher-education admissions, and tracking educational standing or progress.
Standardized linear tests are now administered around the world. For example, the
Test of English as a Foreign Language (TOEFL) has been delivered in approxi-
mately 88 countries.

Seminal psychometric texts, such as those authored by Gulliksen (1950),
Lord (1980), Lord and Novick (1968), and Rasch (1960), have provided increas-
ingly sophisticated means for selecting items for linear test forms, evaluating them,
and deriving ability estimates using them. While there are still some unknowns
and controversies in the realm of assessment using linear test forms, tried-and-true
prescriptions for quality item selection and ability estimation abound. The same
cannot yet be said for adaptive testing. To the contrary, the theory and practice of
item selection and ability estimation for computerized adaptive testing (CAT) are
still evolving.

Why has the science of item selection and ability estimation for CAT environ-
ments lagged behind that for linear testing? First of all, the basic statistical theory
underlying adapting a test to an examinee’s ability was only developed relatively re-
cently. (Lord’s 1971 investigation of flexilevel testing is often credited as one of the
pioneering works in this field.) But more importantly, a CAT environment involves
many more delivery and measurement complexities as compared to a linear testing
format.

W.J. van der Linden (�)
CTB/McGraw-Hill, 20 Ryan Ranch Road, Monterey, CA 93940, USA

P.J. Pashley
Law School Admission Council, P.O. Box 40, Newtown, PA 18940–0040, USA
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4 W.J. van der Linden and P.J. Pashley

To illustrate these differences, consider the current development and scoring of
one paper-and-pencil Law School Admission Test (LSAT). To begin, newly writ-
ten items are subjectively rated for difficulty and placed on pretest sections by
test specialists. Items that statistically survive the pretest stage are eligible for final
form assembly. A preliminary test form is assembled using automated test assembly
algorithms, and is then checked and typically modified by test specialists. The form
is then pre-equated. Finally, the form is given operationally, to about 25,000 ex-
aminees on average, and most likely disclosed. Resulting number-right scores are
then placed on a common LSAT scale by psychometricians using IRT scaling and
true-score equating. The time lag between operational administrations and score re-
porting is usually about three weeks.

In contrast, within a CAT environment item selection and ability estimation oc-
cur in real time. As a result, computer algorithms must perform the roles of both
test specialists and psychometricians. Because the test adapts to the examinee, the
task of item selection and ability estimation is significantly harder. In other words,
procedures are needed to solve a very complex measurement problem. These pro-
cedures must at the same time be robust enough to be relied upon with little or no
human intervention.

Consider another, perhaps more subtle, difference between linear and CAT
formats. As indicated above with the LSAT example, item selection and ability
estimation associated with linear tests are usually conducted separately, though
sometimes using similar technology, such as item response theory. Within a CAT
format, item selection and ability estimation proceed hand in hand. Efficiencies in
ability estimation are heavily related to the selection of appropriate items for an indi-
vidual. In a circular fashion, the appropriateness of items for an individual depends
in large part on the quality of interim ability estimates.

To start the exposition of these interrelated technologies, this chapter discusses
what could be thought of as baseline procedures for the selection of items and the
estimation of abilities within a CAT environment. In other words, it discusses basic
procedures appropriate for unconstrained, unidimensional CATs that adapt to an ex-
aminee’s ability level one item at a time for the purposes of efficiently obtaining an
accurate ability estimate. Constrained, multidimensional, and testlet-based CATs,
and CATs appropriate for mastery testing, are discussed in other chapters in this
volume (Eggen, chap. 19; Glas & Vos, chap. 21; Mulder & van der Linden, chap. 4;
Segall, chap.3; van der Linden, chap. 2; Vos & Glas, chap,. 20). Also, the focus
in this chapter is on adaptive testing with dichotomously scored items. But adap-
tive testing with polytomous models has already been explored for such models as
the nominal response model (e.g., De Ayala, 1992), graded response model (e.g.,
De Ayala, Dodd & Koch, 1992), partial credit model (Chen, Hou & Dodd, 1998),
generalized partial credit model (van Rijn, Eggen, Hemker & Sanders, 2002), and
an unfolding model (Roberts, Lin & Laughlin, 2001). Finally, in the current chapter,
item parameters are assumed to have been estimated, with or without significant
estimation error. A discussion of item parameter estimation for adaptive testing is
given elsewhere in this volume (Glas, chap. 14; Glas, van der Linden & Geerlings,
chap. 15).
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Classical procedures are covered first. Often these procedures were strongly
influenced by a common assumption or a specific circumstance. The common as-
sumption was that what works well for linear tests probably works well for CATs.
Selecting items based on maximal information is an example of this early thinking.
The specific circumstance was that these procedures were developed during a
time when fast PCs were not available. For example, approximations, such as
Owen’s (1969) approximate Bayes procedure, were often advocated to make CATs
feasible to administer with slow PCs.

More modern procedures, better suited to adaptive testing using fast PCs, are
then discussed. Most of these procedures have a Bayesian flavor to them. Indeed,
adaptive testing seems to naturally fit into an empirical or sequential Bayesian
framework. For example, the posterior distribution of � estimated from k � 1 items
can readily be used both to select the kth item and as the prior for the derivation of
the next posterior distribution.

When designing a CAT, a test developer must decide how initial and interim abil-
ity estimates will be calculated, how items will be selected based on those estimates,
and how the final ability estimate will be derived. This chapter provides state-of-
the-art alternatives that could guide the development of these core procedures for
efficient and robust item selection and ability estimation.

1.2 Classical Procedures

1.2.1 Notation and Some Statistical Concepts

The following notation and concepts are needed. The items in the pool are denoted
by i D 1; :::; I , whereas the rank of the items in the adaptive test is denoted by
k D 1; : : : ; K . Thus, ik is the index of the item in the pool administered as the kth
item in the test. The theory in this chapter will be presented for the case of selecting
the kth item in the test. The previous k � 1 items form the set Sk D fii ; : : : ; ik�1g;
they have responses that are represented by realizations of the response variables
Ui1 D ui1 ; : : : ; Uik�1

D uik�1
. The set of items in the pool remaining after k � 1

items have been selected is Rk D f1; : : : ; I gnSk�1. Item k is selected from this set.
For the sake of generality, the item pool is assumed to be calibrated by the three-

parameter logistic (3PL) model. That is, the probability of a correct response on
item i is given as

pi .�/ � Pr.Ui D 1 j �/ � ci C .1 � ci /
expŒai .� � bi /�

1 C expŒai .� � bi /�
; (1.1)

where � 2 .�1; 1/ is the parameter representing the ability of the examinee
and bi 2 .�1; 1/, ai 2 Œo; 1/, and ci 2 Œ0; 1� represent the difficulty, dis-
criminating power, and the guessing probability on item i , respectively. One of
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the classical item-selection criteria discussed below is based on the three-parameter
normal-ogive model,

pi .�/ � ci C .1 � ci /ˆŒai .� � bi /�; (1.2)

where ˆ is the normal cumulative distribution function.
The likelihood function associated with the responses on the first k � 1 items is

L.� j ui1 : : : uik�1
/ �

k�1Y

j D1

fexpŒaij .� � bij /�guij

1 C expŒaij .� � bij /�
: (1.3)

The second-order derivative of the loglikelihood reflects the curvature of the ob-
served likelihood function at � relative to the scale chosen for this parameter. The
negative of this derivative is generally known as the observed information measure:

Jui1
:::uik�1

.�/ � � @

@�2
ln L.� j ui1 ; : : : ; uik�1

/: (1.4)

The expected value of the observed information measure over the response variables
is Fisher’s expected information measure:

IUi1
:::Uik�1

.�/ � EŒJUi1
:::Uik�1

.�/�: (1.5)

For the response model in (1.1), the expected information measure reduces to

IUi1
:::Uik�1

.�/ D
k�1X

j D1

Œp0
ij

.�/�2

pij .�/Œ1 � pij .�/�
; (1.6)

with
p0

ij
.�/ � @

@�
pij .�/: (1.7)

In a Bayesian approach, a prior for the unknown value of the ability parameter,
g.�/, is assumed. Together, the likelihood and prior yield the posterior distribution
of � :

g.� j ui1 : : : uik�1
/ D L.� j ui1 : : : uik�1

/g.�/R
L.� j ui1 : : : uik�1

/g.�/d�
: (1.8)

Typically, this density is assumed to be uniform or, if the examinees can be taken
to be exchangeable, to be an empirical estimate of the ability distribution in the
population of examinees. The population distribution is often modeled to be normal.
For the response models in (1.1) and (1.2), a normal prior distribution does not
yield a normal small-sample posterior distribution, but the distribution is known to
converge to normality (Chang & Stout, 1993).

It is common practice in adaptive testing to assume that the values of the item
parameters have been estimated with enough precision to treat the estimates as the
true parameter values. Under this assumption, the two-parameter logistic (2PL) and
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one-parameter logistic (1PL) or Rasch models, obtained from (1.1) by setting ci D 1

and ai D 0, subsequently, belong to the exponential family. Because for this fam-
ily the information measures in (1.4) and (1.5) are identical (e.g., Andersen, 1980,
sect. 3.3), the distinction between the two measures has only practical meaning for
the 3PL model. This fact will be relevant for some of the Bayesian criteria later in
this chapter.

1.2.2 Ability Estimators

The ability estimator after the responses to the first k � 1 items is denoted as
b�ui1

;:::;uik�1
, but for brevity we will sometimes use b�k�1. Several ability estima-

tors have been used in CAT. In the past, the maximum-likelihood (ML) estimator
was the most popular choice. The estimator is defined as the maximizer of the like-
lihood function in (1.3) over the range of possible � values:

b�ML
ui1

:::uik�1
� arg max

�

˚
L.� j ui1 : : : uik�1

/ W � 2 .�1; 1/
�

: (1.9)

An alternative is Warm’s (1989) weighted likelihood estimator (WLE), which is
the maximizer of the likelihood in (1.3) weighted by a function wk�1.�/:

b�WLE
ui1

:::uik�1
� arg max

�

˚
wk�1.�/L.� j ui1 : : : uik�1

/ W � 2 .�1; 1/
�

; (1.10)

where the weight function wk�1.�/ is defined to satisfy

@wk�1.�/

@�2
� Hk�1.�/

2Ik�1.�/
; (1.11)

with

Hk�1.�/ �
k�1X

j D1

Œp0
ij

.�/�Œp00
ij

.�/�

pij .�/Œ1 � pij .�/�
; (1.12)

p00
ij

.�/ � @2pij .�/

@�2
; (1.13)

and Ik�1.�/ � IUi1
:::Uik�1

.�/ as defined in (1.5). For a linear test, the WLE is

attractive because it has been shown to be unbiased to order n�1 (Warm, 1989).
In a more Bayesian fashion, a point estimator of � can be based on its poste-

rior distribution in (1.8). Posterior-based estimators used in adaptive testing are the
Bayes modal (BM) or maximum a posteriori (MAP) estimator and the expected a
posteriori (EAP) estimator. The former is defined as the maximizer of the posterior
of � ,

b�MAP
ui1

:::uik�1
� arg max

�

˚
g.� j ui1 : : : uik�1

/ W � 2 .�1; 1/
� I (1.14)
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the latter as its expected value:

b�EAP
ui1

:::uik�1
�
Z

�g.� j ui1 : : : uik�1
/d�: (1.15)

The MAP estimator was introduced in IRT in Lord (1986) and Mislevy (1986).
Use of the EAP estimator in adaptive testing is discussed extensively in Bock and
Mislevy (1988).

A more principled Bayesian approach is to refrain from point estimates at all, and
use the full posterior of � as the ability estimator for the examinee. This estimator
not only reveals the most plausible value of � but shows the plausibility of any other
value as well. It is common to summarize this uncertainty about � in the form of the
variance of the posterior distribution of � :

Var.� j ui1 : : : uik�1
/ �

Z
Œ��E.� j ui1 : : : uik�1

/�2g.� j ui1 : : : uik�1
/d�: (1.16)

For the 3PL model, a unique maximum for the likelihood function in (1.3) does
not always exist (Samejima, 1973). Also, for response patterns with all items cor-
rect or all incorrect, no finite ML estimates exist. However, for linear tests, the ML
estimator is consistent and asymptotically efficient. For adaptive tests, the small-
sample properties of the ML estimator depend on such factors as the distribution
of the items in the pool and the item-selection criterion used. Large-sample theory
for the ML estimator for an infinite item pool and one of the popular item-selection
criteria will be reviewed later in this chapter.

For a uniform prior, the posterior distribution in (1.8) becomes proportional to
the likelihood function over the support of the prior, and the maximizers in (1.9)
and (1.14) are equal. Hence, for this case, the MAP estimator shares all the above
properties of the ML estimator. For nonuniform prior distributions, the small-sample
properties of the MAP estimator depend not only on the likelihood but also on
the shape of the prior distribution. Depending on the choice of prior distribution,
the posterior distribution may be multimodal. If so, unless precaution is taken, MAP
estimation may result in a local maximum.

For a proper prior distribution, the EAP estimator always exists. Also, unlike the
previous estimators, it is easy to calculate. No iterative procedures are required; one
round of numerical integration generally suffices. This feature used to be important
in the early days of computerized adaptive testing but has become less critical now
that the typical adaptive testing platform has become much more powerful.

1.2.3 Choice of Estimator

The practice of ability estimation in linear testing has been molded by the availabil-
ity of a popular computer program (e.g., BILOG, see Zimoski, Muraki, Mislevy &
Bock, 2006; MULTILOG, see Thissen, Chen & Bock, 2002). In adaptive testing,
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such a de facto standard is missing. Most testing programs run their operations
using their own software. In developing their software, most of them have taken
an eclectic approach to ability estimation. The reason for this practice is that, un-
like linear testing, in adaptive testing three different stages of ability estimation
can be distinguished: (1) ability estimation to start the item-selection procedure;
(2) ability estimation during the test to adapt the selection of the items to the
examinee’s ability; and (3) ability estimation at the end of the test to report a
score for the examinee. Each of these stages involves its own requirements and
problems.

Initial Ability Estimation

As already noted, the method of ML estimation does not produce finite estimates for
response patterns with all items correct or all incorrect. Because such patterns are
likely for the first few items, ML estimation cannot be used for ability estimation
at the beginning of the test. Several measures have been proposed to resolve this
problem. First, it has been proposed to fix the ability estimate at a small (incorrect
items) or large value (correct items) until finite estimates are obtained. Second, abil-
ity estimation is sometimes postponed until a larger set of items has been answered.
Third, the problem has been an important motive to use Bayesian methods such as
the EAP estimator. Fourth, if relevant empirical information on the examinees is
available, such as scores on earlier related tests, initial ability estimates can be in-
ferred from this collateral information. A method for calculating such estimates is
discussed later in this chapter.

None of these solutions is entirely satisfactory, though. The first two solutions
involve an arbitrary choice of ability values and items, respectively. The third so-
lution involves the choice of a prior distribution, which, in the absence of response
data, completely dominates the choice of the first item. If the prior distribution is
located away from the true ability of the examinee, it becomes counterproductive
and can easily produce a longer initial string of correct or incorrect responses than
necessary. (Bayesian methods are often said to produce a smaller posterior variance
after each new datum, but this statement is not true; see Gelman, Carlin, Stern &
Rubin, 1995, sect. 2.2. Initial ability estimation in adaptive testing with a prior at the
wrong location is a good counterexample.) As for the fourth solution, although there
are no technical objections to using empirical priors (see the discussion later in this
chapter), the choice of them should be careful. For example, the use of general back-
ground variables easily leads to social bias and should be avoided.

Fortunately, the problem of inferring an initial ability estimate is only acute for
short tests, for example, 10-item tests in a battery. For longer tests, of more than 20
to 30 items, say, the ability estimator generally does have enough time to recover
from a bad start.
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Interim Ability Estimation

Ideally, the next estimates should converge quickly to the true value of the ability
parameter. In principle, any combination of ability estimator and item-selection cri-
terion that does this job for the item pool could be used. Although some of these
combinations look more “natural” than others (e.g., ML estimation with maximum-
information item selection and Bayesian estimation with item selection based on
the posterior distribution), practice of CAT has not been impressed by this argument
and has often taken a more eclectic approach. For example, a popular choice has
been the EAP estimator in combination with maximum-information item selection.

As already noted, in the early days of adaptive testing, the numerical aspects
of these estimators used to be important. For example, in the 1970s, Owen’s
item-selection procedure was an important practical alternative to a fully Bayesian
procedure because it did not involve any time-consuming, iterative calculations.
However, for modern PCs, computational limitations to CAT no longer exist.

Final Ability Estimation

Although final ability estimates should have optimal statistical properties, their pri-
mary function is no longer to guide item selection but to provide the examinee with
a meaningful summary of his or her performance in the form of the best possi-
ble score. For this reason, final estimates are sometimes transformed to an equated
number-correct score on a reference test, that is, a released linear version of the test.
The equations typically used for this procedure are the test characteristic function
(e.g., Lord, 1980, sect. 4.4) and the equipercentile transformation that equates the
ability estimates on the CAT into number-correct scores on a paper-and-pencil ver-
sion of the test (Segall, 1997). The former is known once the items are calibrated;
the latter has to be estimated in a separate empirical study. To avoid the necessity
of explaining complicated ML scoring methods to examinees, Stocking (1966) pro-
posed a modification to the likelihood equation such that its solution is a monotonic
function of the number-correct score. However, the necessity to adjust the scores
afterward can be entirely prevented by imposing appropriate constraints on the item
selection that automatically equate the number-correct scores on an adaptive test to
reference test (van der Linden, this volume, chap. 2).

The answer to the question of what method of ability estimation is best is
intricately related to other aspects of the CAT. First of all, the choice of item-
selection criterion is critical. Other aspects that have an impact on ability estimates
are the composition of the item pool, whether or not the estimation procedure uses
collateral information on the examinees, the choice of the method to control the ex-
posure rates of items, and the presence of content constraints on item selection. The
issue will be returned to at the end of this chapter where some of these aspects are
discussed in more detail.
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1.2.4 Classical Item-Selection Criteria

Maximum-Information Criterion

Birnbaum (1968) introduced the test information function as the main criterion for
linear test assembly. The test information function is the expected information mea-
sure in (1.5) taken as a function of the ability parameter. Birnbaum’s motivation
for this function was the fact that, for increasing test length, the variance of the
ML estimator is known to converge to the reciprocal of (1.5). In addition, the mea-
sure in (1.5) is easy to calculate and additive in the items. In adaptive testing, the
maximum-information criterion was immediately adopted as a popular choice. The
criterion selects the kth item to maximize (1.5) at � Db�ui1

;:::;uik�1
. Formally, it can

be presented as

ik � arg max
j

n
IU1

; : : : ;Uk�1;Uj
.b�ui1

;:::;uik�1
/ W j 2 Rk

o
: (1.17)

Because of the additivity of the information function, the criterion boils down to

ik � arg max
j

n
IUj

.b�ui1
;:::;uik�1

/ W j 2 Rk

o
: (1.18)

Observe that, though the ML estimator is often advocated as the natural choice,
the choice of estimator of � in (1.18) is open. Also, the maximum-information crite-
rion is often used in the form of a previously calculated information table for a fine
grid of � values (for an example, see Thissen & Mislevy, 1990, Table 5.2).

For a long time, the use of ML estimation of � in combination with (1.19)
as item-selection criterion in CAT missed the asymptotic motivation that existed
for linear tests. Recently, such a motivation has been provided by Chang and
Ying (2009). These authors show that, for this criterion, the ML estimator of �

converges to the true value with a sampling variance approaching the reciprocal of
(1.5). The result holds only for an (infinite) item pool with all possible values for
the discrimination parameter in the item pool bounded away from 0 and 1, and
values for the guessing parameter bounded away from 1. Also, for the 3PL model,
a slight modification of the likelihood equation is necessary to prevent multiple
roots. Because these conditions are mild, the results are believed to provide a useful
approximation to adaptive testing from a well-designed item pool. As shown in
Warm (1989), the WLE in (1.10) outperforms the ML estimator in adaptive testing.
The results by Chang and Ying are therefore expected to hold for the combination
of (1.18) with the WLE as well.

Owen’s Approximate Bayes Procedure

Owen (1969; see also 1975) was the first to use a Bayesian approach to adaptive
testing. His method had the format of a sequential Bayes procedure in which at each
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stage the previous posterior distribution of the unknown parameter serves as its new
prior distribution.

Owen’s method was formulated for the three-parameter normal-ogive model in
(1.2) rather than its logistic counterpart. His criterion was to choose the kth item
such that ˇ̌

bik � E.� j ui1 : : : uik�1
/
ˇ̌

< ı (1.19)

for a small value of ı � 0; where E.� j ui1 : : : uik�1
/ is the EAP estimator defined

in (1.15). After the item is administered, the likelihood is updated and combined
with the previous posterior to calculate a new posterior. The same criterion is then
applied to select a new item. The procedure is repeated until the posterior variance
in (1.16) reaches the level of uncertainty about � the test administrator is willing
to tolerate. The last posterior mean is reported to the examinee as his or her final
ability estimate.

In Owen’s procedure, the selection of the first item is guided by the choice of a
normal density for the prior, g.�/. However, the class of normal priors is not the
conjugate for the normal-ogive model in (1.2); that is, they do not yield a normal
posterior distribution. Because it was impossible to calculate the true posterior in
real time, Owen provided closed-form approximations to the posterior mean and
variance and suggested using these to normalize the posterior distribution. The ap-
proximation for the mean was motivated by its convergence to the true value of � in
mean square for k ! 1 (Owen, 1975, Theorem 2).

Note that in (1.19), bi is the only item parameter that determines the selection of
the kth item. No further attempt is made to optimize item selection. However, Owen
did make a reference to the criterion of minimal preposterior risk (see below) but
refrained from pursuing this option because of its computational complexity.

1.3 Modern Procedures

Ideally, item-selection criteria in adaptive testing should allow for two different
types of possible errors: (1) errors in the ability estimates and (2) errors in the esti-
mates of the item parameter.

Because the errors in the first ability estimates in the test are generally large,
item-selection criteria ignoring them tend to favor items with optimal measurement
properties at the wrong value of � . This problem, which was documented as the at-
tenuation paradox in test theory a long time ago (Lord and Novick, 1968, sect. 16.5),
has been largely ignored in adaptive testing. For the maximum-information criterion
in (1.18), the “paradox” is illustrated in Figure 1.1, where the item that performs best
at the current ability estimate,b� , does worse at the true ability, ��. The classical so-
lution for a linear test was to maintain high values for the discrimination parameter
but space the values for the difficulty parameter (Birnbaum, 1968, sect. 20.5). This
solution goes against the nature of adaptive testing.
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Fig. 1.1 Attenuation paradox in item selection in CAT

Ignoring errors in the estimates of the item parameter values is a strategy without
serious consequences as long as the calibration sample is large. However, the first
large-scale CAT applications showed that to maintain item pool integrity, the pools
had to be replaced much more often than anticipated. Because the costs of replace-
ment are high, the current trend is to minimize the size of the calibration sample.
A potential problem for CAT from a pool of items with errors in their parameter
values, however, is capitalization on chance. Because the items are selected to be
optimal according to a criterion, the test will tend to have both items with optimal
true values and less than optimal values with compensating errors in their parameter
estimates. Figure 1.2 illustrates the effect of capitalization on chance on ability esti-
mation for a simulation study of a 20-item adaptive test from item pools of varying
sizes calibrated with samples of different sizes. For the smaller calibration samples,
the error in the ability estimates at the lower-end scale goes up if the item pool
becomes larger. This counterintuitive result is due only to capitalization on chance;
for other examples of this phenomenon, see van der Linden and Glas (2000).

Recently, new item-selection criteria have been introduced to fix the above prob-
lems. These criteria have shown to have favorable statistical properties in extended
computer simulation studies. Also, as for their numerical aspects, they can now eas-
ily be used in real time on the current generation of PCs.

1.3.1 Maximum Global-Information Criterion

To deal with large estimation error in the beginning of the test, Chang and
Ying (1996) suggested replacing Fisher’s information in (1.17) by a measure based
on Kullback-Leibler information. The Kullback–Leibler information is a general
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Fig. 1.2 Mean absolute error (MAE) in ability estimation from item pools with k D 40, 80, 400,
and 1200 items (size of calibration samples: 250: solid; 500: dashed; 1200: dotted; 2500: dashed-
dotted)

measure for the “distance” between two distributions. The larger the Kullback–
Leibler information, the easier it is to discriminate between two distributions, or
equivalently, between the values of the parameters that index them (Lehmann &
Casella, 1998, sect. 1.7).

For the response model in (1.1), the Kullback–Leibler measure for the response
distributions on the kth item in the test associated with the true ability value (�0) of
the examinee and the current ability estimate (b�k�1) is

Kik

�
b�k�1; �0

�
� E

"
log

L.�0 j Uik /

L.b�k�1 j Uik /

#
; (1.20)

where the expectation is taken over response variable Uik . The measure can there-
fore be calculated as

Kik

�
b�k�1; �0

�
D pik .�0/ log

pik .�0/

pik

�
b�k�1

�

C Œ1 � pik .�0/� log
1 � pik .�0/

1 � pik .b�k�1/
: (1.21)
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Because of conditional independence between the responses, information in the
responses for the first k items in the test can be written as

Kk

�
b�k�1; �0

�
� E

"
log

L.�0 j Ui1 ; : : : ; Uik /

L.b�k�1 j Ui1 ; : : : ; Uik /

#
D

kX

hD1

Kih

�
b�k�1; �0

�
:

(1.22)
Kullback–Leibler information tells us how well the response variable discriminates
between the current ability estimate,b�k�1, and the true ability value, �0. Because the
true value �0 is unknown, Chang and Ying propose replacing (1.20) by its integral
over an interval about the current ability estimate, [b�k�1 � ık;b�k�1 C ık], with ık

a decreasing function of the rank number of the item in the adaptive test. The kth
item in the test is then selected according to

ik � arg max
j

8
<

:

Z b�k�1Cık

b�k�1�ık

Kj .b�k�1; �/d� W j 2 Rk

9
=

; : (1.23)

Evaluation of the criterion will be postponed until all further criteria in this section
have been reviewed.

1.3.2 Likelihood-Weighted Information Criterion

Rather than integrating the unknown parameter � out, as in (1.23), the integral could
have been taken over a measure of the plausibility of the possible values of � . This
idea has been advocated by Veerkamp and Berger (1997). Although they presented
it for the Fisher information measure, it can easily be extended to the Kullback–
Leibler measure.

In a frequentistic framework, the likelihood function associated with the re-
sponses Ui1Dui1 ; : : : ; Uik�1

D uik�1
expresses the plausibility of the various values

of � given the data. Veerkamp and Berger proposed weighing Fisher’s information
with the likelihood function and selecting the kth item according to

ik � arg max
j

�Z 1

�1
L.� j ui1 ; : : : ; uik�1

/Iik .�/d� W j 2 Rk

�
: (1.24)

If maximum-likelihood estimation of ability is used, the criterion in (1.24) places
most weight on � values close to the current ability estimate. In the beginning of the
test, the likelihood function is flat, and values away fromb�k�1 receive substantial
weight. Toward the end of the test the likelihood function tends to become peaked,
and nearly all of the weight will go to values close tob�k�1.

Veerkamp and Berger (1997) also specified an interval information criterion that,
like (1.23), assumes integration over a finite interval of � values about the current
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ability estimate. However, rather than defining an interval with the size of ık , they
suggested using a confidence interval for �: The same suggestion would be possible
for the criterion in (1.23).

1.3.3 Fully Bayesian Criteria

All Bayesian criteria for item selection involve the use of a posterior distribution of
� . Because a posterior distribution is a combination of a likelihood function and a
prior distribution, the basic difference with the previous criterion is the assumption
of the latter. Generally, unless reliable collateral information about the examinee
is available, the prior distribution of � should be chosen to be low informative.
The question of how to estimate an empirical prior from collateral information is
answered in the next section. The purpose of the current section is to review several
of the Bayesian criteria for item selection proposed in van der Linden (1998). For a
more technical review, see van der Linden and Glas (2007).

Analogous to (1.24), a posterior-weighted information criterion can be defined as

ik � arg max
j

�Z
IUj

.�/g.� j ui1 ; : : : ; uik�1
/d� W j 2 Rk

�
: (1.25)

Generally, the criterion puts more weight on items with their information near the
location of the posterior distribution. However, the specific shape of the posterior
distribution determines precisely how the criterion discriminates between the infor-
mation functions of the candidate items.

Note that the criterion in (1.25) is still based on Fisher’s expected information
in (1.5). Though the distinction between expected and observed information makes
practical sense only for the 3PL model, a more Bayesian choice would be to use
observed information in (1.4). Also, note that it is possible to combine (1.25) with
the earlier Kullback–Leibler measure.

All of the next criteria are based on preposterior analysis. They predict the re-
sponse distributions on the remaining items in the pool, i 2 Rk , after k � 1 items
have been administered and then choose the kth item according to the update of
a posterior quantity for these distributions. A key element in this analysis is the
predictive posterior distribution for the response on item i , which has probability
function

p.ui j ui1 ; : : : ; uik�1
/ D

Z
p.ui j �/g.� j ui1 ; : : : ; uik�1

/d�: (1.26)

Suppose item i 2 Rk were selected. The examinee would respond correctly to this
item with probability pi .1 j ui1 ; : : : ; uik�1

/. A correct response would enable us to
update any of the following quantities:

1. the full posterior distribution of � ;
2. any point estimate of the ability value of the examinee,b�k ;
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3. the observed information atb�k; and
4. the posterior variance of � .

An incorrect response has probability pi .0 j ui1 ; : : : ; uik�1
/ and could be used

for similar updates. It should be noticed that the update of the observed information
atb�k involves an update fromb�k�1 tob�k . Because of this, the information measure
must be reevaluated at the latter not only for the predicted response to candidate
item k but for all previous k � 1 responses as well.

The first item-selection criterion based on preposterior analysis is the maximum
expected information criterion. The criterion maximizes observed information over
the predicted responses on the kth item. Formally, it can be represented as

ik � arg max
j

n
pj .0 j ui1 ; : : : ; uik�1

/Jui1
;:::;uik�1

;Uj D0.b� ui1
;:::;uik�1

;Uj D0/

Cpj .1 j ui1 ; : : : ; uik�1
/Jui1

;:::;uik�1
;Uj D1.b�ui1

;:::;uik�1
;Uj D1/

W j 2 Rk

o
: (1.27)

If in (1.27) observed information is replaced by the posterior variance of � , the
minimum expected posterior variance criterion is obtained:

ik � arg min
j

n
pj .0 j ui1 ; : : : ; uik�1

/Var.� j ui1 ; : : : ; uik�1
; Uj D 0/

Cpj .1 j ui1 ; : : : ; uik�1
/Var.� j ui1 ; : : : ; uik�1

; Uj D 1/

W j 2 Rk

o
: (1.28)

The expression in (1.28) is known as the preposterior risk associated with a quadratic
loss function for the estimator. Owen (1975) referred to this criterion as a numeri-
cally more complicated alternative to his criterion in (1.19).

It is possible to combine the best elements of the ideas underlying the criteria in
(1.25) and (1.28) by first weighting observed information using the posterior distri-
bution of � and then taking the expectation over the predicted responses. The new
criterion is

ik � arg max
j

�
pj .0 j ui1 ; : : : ; uik�1

/

�
Z

Jui1
;:::;uik�1

;Uj D0.�/g.� j ui1 ; : : : ; uik�1
; Uj D 0/d�

�
Z

Jui1
;:::;uik�1

;Uj D1.�/g.� j ui1 ; : : : ; uik�1
; Uj D 1/d� W j 2 Rk

�
: (1.29)

It is also possible to generalize the criteria in (1.26)–(1.28) to a larger span of pre-
diction. For example, when predicting the responses for the next two items, (ik; ik0),
the generalization involves the replacement of the posterior predictive probability
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function in the above criteria by

p.uik j ui1 ; : : : ; uik�1
/p.uik0

j ui1 ; : : : ; uik /; (1.30)

as well as a similar modification of the other posterior updates. Although the op-
timization is over pairs of candidates for items k and k C 1, better adaptation is
obtained if the candidate for item k is actually administered but the other item is re-
turned to the pool, whereupon the procedure is repeated. Combinatorial problems
inherent in the application of the procedure with larger item pools and spans of
prediction can be avoided by using a trimmed version of the pool with unlikely
candidate items left out.

1.3.4 Bayesian Criteria with Collateral Information

As indicated earlier, an informative prior located at the true value of � would give
Bayesian ability estimation its edge. For a large variety of item-selection criteria,
such a prior would not only yield finite initial ability estimates but also improve
item selection and speed up convergence of the estimates during the test. If useful
collateral information on the examinee exists, for example, in the form of previous
achievements or performances on a recent related test, an obvious idea is to infer
the initial prior from this information. An attractive source of collateral information
during the test is the response times (RTs) on the items. They can be used for a
more effective update of the posterior distribution of � during the rest of the test.
This section deals with the use of both types of collateral information.

Statistically, no objections whatsoever exist against this idea; when the interest
is only in ML or Bayesian estimation of � , item-selection criteria based on collat-
eral information are known to be ignorable (Mislevy & Wu, 1988). Nevertheless,
if policy considerations preclude the use of collateral information in test scores, a
practical strategy is to still use the information to improve the design of the test but
to calculate the final ability estimate only from the last likelihood function for the
examinee.

Initial Empirical Prior Distribution

Procedures for adaptive testing with the 2PL model with the initial prior distribution
regressed on predictor variables are described in van der Linden (1999). Let the
predictor variables be denoted by Xp, p D 0; : : : ; P . The regression of � on the
predictor variables can be modeled as

� D ˇ0 C ˇ1X1 C � � � C ˇP XP C "; (1.31)

with
" � N.0; �2/: (1.32)
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Substitution of (1.30) into the response model gives

pi .�/ D expŒai .ˇ0 C ˇ1X1 C � � � C ˇP XP C " � bi /�

1 C expŒai .ˇ0 C ˇ1X1 C � � � C ˇP XP C " � bi /�
: (1.33)

For known values for the item parameters, the model amounts to logistic regres-
sion with examinees’ values of " missing. The values of the parameters ˇ1; : : : ; ˇP

and � can be estimated from data using the EM algorithm. The estimation
procedure boils down to iteratively solving two recursive relationships given in
van der Linden (1999, Eqs. 16–17). These equations are easily solved for a set
of pretest data. They also allow for an easy periodical update of the parameter
estimates from response data when the adaptive test is operational.

If the item selection is based on point estimates of ability, the regressed value of
� on the predictor variables,

b�0 D ˇ0 C ˇ1x1 C � � � C ˇP xP ; (1.34)

can be used as the prior ability estimate for which the initial item is selected. If the
items are selected using a full prior distribution for � , the choice of prior following
(1.32)–(1.33) is

g.�/ � N
�
b�0; �

�
: (1.35)

Observe that both (1.34) and (1.35) provide an individualized initialization for
the adaptive test: Different examinees will start at different initial ability estimates.
The procedure therefore offers more than statistical advantages. Initialization at the
same ability estimate for all examinees leads to first items in the test that are always
chosen from the same subset in the pool. Hence, they become quickly overexposed,
and the testing program becomes vulnerable to security breaches. On the other hand,
the empirical initialization of the test above entails a variable entry point to the pool,
and hence offers a more even exposure of its items.

Item Selection with RTs as Collateral Information

RTs on test items are recorded automatically during adaptive testing, They are also
a potentially rich source of collateral information about the examinee’s ability. One
possible use of RTs is as an additional source of information for the update of the
posterior distribution of � during testing. This procedure becomes possible as soon
as we have a model for the RT distributions on the items in the pool that is statisti-
cally linked to the response model.

The modeling framework used in this demonstration of the procedure is a hi-
erarchical framework with (i) the 3PL model and a lognormal model for the RT
distribution as distinct first-level models and (ii) a bivariate normal model for the
distribution of the person parameters in these models as a second-level model. The
lognormal model is a normal model for the log of the RTs with £j 2 .�1; 1/ as


