

Green and Sustainable Chemistry and Engineering

A Practical Design Approach

Concepción Jiménez-González and David J. C. Constable

Second Edition

WILEY

GREEN AND SUSTAINABLE CHEMISTRY AND ENGINEERING

GREEN AND SUSTAINABLE CHEMISTRY AND ENGINEERING

A Practical Design Approach

SECOND EDITION

CONCEPCIÓN JIMÉNEZ-GONZÁLEZ

GSK Durham, NC, USA

DAVID J. C. CONSTABLE

American Chemical Society (Retired) Washington, USA

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial intelligence technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

The manufacturer's authorized representative according to the EU General Product Safety Regulation is Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/ or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for

Hardback ISBN: 9781394164127

Cover Design: Wiley

Cover Images: © Earth image created by Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC, © DNY3D/stock.adobe.com, © Alexander Mirokhin/Getty Images, © Arpad Nagy-Bagoly/stock.adobe.com, © RamCreativ/Getty Images, © is1003/Shutterstock, © tele52/Shutterstock

Set in 10/12pt TimesLTStd by Straive, Pondicherry, India

CONTENTS

LIS	ST OF	FIGURES	Xi
AB	OUT	THE AUTHORS	xix
PR	EFAC	Œ	xxi
AC	KNO	WLEDGMENTS	xxiii
AB	OUT	THE COMPANION WEBSITE	XXV
PA:	RT I	GREEN AND SUSTAINABLE CHEMISTRY AND ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY	1
1	Gre	en Chemistry and Engineering in the Context of Sustainability	3
	1.1	Why Green Chemistry?	3
	1.2	Green Chemistry, Green Engineering, and Sustainability	6
	1.3	Until Death Do Us Part: A Marriage of Disciplines	11
	Prob	olems	13
	Refe	erences	13
2	Gre	en Chemistry and Green Engineering Principles	15
	2.1	Green Chemistry Principles	15
	2.2	Twelve More Green Chemistry Principles	24
	2.3	Twelve Principles of Green Engineering	26
	2.4	The San Destin Declaration: Principles of Green Engineering	30
	2.5	Simplifying Green Chemistry and Engineering Principles	32
	2.6	Additional Principles	33
		lems	38
	Refe	erences	39

vi CONTENTS

3	Star	ting With The Basics: Integrating Environment, Health, and Safety	41
	3.1	Environmental Issues of Importance	42
		Health Issues of Importance	53
		Safety Issues of Importance	62
		Hazard and Risk	69
		Integrated Perspective on Environment, Health, and Safety	71
	Prob		71
		rences	74
	Ittic	Tenees	, -
4	How	Do We Know It's Green? a Metrics Primer	79
	4.1	General Considerations About Green Chemistry and Engineering Metrics	79
		Chemistry Metrics	81
		Process Metrics	91
		Cost Implications and Green Chemistry Metrics	104
		Thoughts on Circularity	104
		A Final Word on Green Metrics	107
	Prob		108
		rences	110
	11010		110
5	Syst	ems Thinking Essentials for More Sustainable Chemistry	
	and	Engineering	113
	5.1	Systems Thinking in Chemistry	113
		Where Systems Thinking Fits	113
	5.3	A Systems Thinking Example	114
	5.4	Systems and Life Cycle Thinking Background	118
		Application of Green and Sustainable Chemistry Thinking to the System	123
		• • • • • • • • • • • • • • • • • • • •	
	5.6 5.7	Some Thoughts About Sustainable Chemistry	123
		Glossary of Systems Thinking Terms	125
	Prob		131
	кете	rences	131
PΔ	RT II	THE BEGINNING: DESIGNING GREENER, SAFER, MORE	
171	XI II	SUSTAINABLE CHEMICAL SYNTHESES	133
6	Rou	te and Chemistry Selection	135
	6.1	The Challenge of Synthetic Chemistry	135
	6.2	Making Molecules	
	6.3	Using Different Chemistries	136 145
	6.4	Route Strategy	
	6.5	e:	148
		Protection—Deprotection Going From A Poyto to a Process	150
	6.6	Going From A Route to a Process	152
	6.7	Additional Tools for Greener Route and Process Design	153
	Prob		154
	Kere	rences	157

			CONTENTS	vii
7	Mate	rial Selection: Solvents, Catalysts, and Reagents		159
	7.1	Solvents and Solvent Selection Strategies		159
	7.2	Catalysts and Catalyst Selection Strategies		180
	7.3	Other Reagents		194
	Proble	e e e e e e e e e e e e e e e e e e e		195
	Refer	ences		199
8	React	tion Conditions and Green Chemistry		203
	8.1	Stoichiometry		204
	8.2	Design of Experiments		206
	8.3	Temperature		208
	8.4	Solvent Use		210
	8.5	Solvents and Energy Use		212
	8.6	Reaction and Processing Time		215
	8.7	Order and Rate of Reagent Addition		216
	8.8	Mixing		217
	Proble	6		224
	Refer	ences		228
9	Biopi	rocesses		231
	9.1	How Biotechnology Has Been Used		231
	9.2	Are Bioprocesses Green?		232
	9.3	What Is Involved in Bioprocessing		233
	9.4	Examples of Products Obtained From Bioprocessing		243
	Proble			254
	Refer	ences		261
PA	RT III	FROM THE FLASK TO THE PLANT: DESIGNING GREENER, SAFER, MORE SUSTAINABLE		
		MANUFACTURING PROCESSES		265
10	Mass	and Energy Balances		267
	10.1	Why We Need Mass Balances, Energy Balances,		
		and Process Flow Diagrams		268
	10.2	Types of Processes		269
	10.3	Process Flow Diagrams		270
	10.4	Mass Balances		273
	10.5	Energy Balances		282
	10.6	Measuring Greenness of a Process Through Energy		
		and Mass Balances		294
	Proble	ems		297
	Refer	ences		304

viii CONTENTS

11	The Scale	e-Up Effect	305
	11.2 Fac 11.3 Sca	e Scale-Up Problem etors Affecting Scale-Up ale-Up Tools mbering-Up Vs. Scaling-Up	305 308 315 320 321 324
12	Reactors	and Separations	327
	12.2 Res 12.3 Sep 12.4 Bar	actors and Separations in Green Engineering actors parations and Other Unit Operations ach Vs. Continuous Processes access Intensification: Does Size Matter?	328 328 338 352 354 370 377
13	Process S	ynthesis	383
	13.2 Pro 13.3 Ev 13.4 He 13.5 Hie 13.6 Sup 13.7 Sys	ocess Synthesis Background ocess Synthesis Approaches and Green Engineering olutionary Techniques uristics Methods erarchical Decomposition ocerstructure and Multiobjective Optimization othesis of Subsystems ocess Synthesis Applied to Circular Economy	383 385 386 395 397 400 405 406 407 411
14	Mass and	Energy Integration	415
	14.2 En	ocess Integration: Synthesis, Analysis, and Optimization ergy Integration lass Integration	415 417 425 433 440
15	Inherent	Safety	443
	15.2 Inh 15.3 Inh	erent Safety Vs. Traditional Process Safety erent Safety and Inherently Safer Design erent Safety in Route Strategy and Process Design nclusions on Inherent Safety	443 446 450 458 458 463

			CONTENTS	ix
PA	RT IV	EXPANDING THE BOUNDARIES		465
16	Life (Cycle Inventory and Assessment Concepts		467
		ems		468 470 494 506 509 514
17	Impa	cts of Materials and Procurement		519
	17.1 17.2 17.3 17.4 Proble Refere	Where Chemical Trees and Supply Chains Come From Green (Sustainable) Procurement Transportation Impacts ems		519 521 529 536 541 542
18	Impa	cts of Energy Requirements		545
	18.1 18.2 18.3 18.4 Proble Refere	Energy Requirements for Waste Treatment		545 551 563 565 565 567
19	Impa	cts of Waste and Waste Treatment		569
	19.1 19.2 19.3	Environmental Fate and Effects Data Environmental Fate Information: Physical Properties Environmental Fate Information: Transformation		569 574

	16.2 LCI/A Methodology	4/0
	16.3 Interpretation: Making Decisions With LCI/A	494
	16.4 Streamlined Life Cycle Assessment	506
	Problems	509
	References	514
17	Impacts of Materials and Procurement	519
	17.1 Life Cycle Management	519
	17.2 Where Chemical Trees and Supply Chains Come From	521
	17.3 Green (Sustainable) Procurement	529
	17.4 Transportation Impacts	536
	Problems	541
	References	542
18	Impacts of Energy Requirements	545
	10.1 Whore France Comes From	545
	18.1 Where Energy Comes From	343
	18.2 Environmental Life Cycle Emissions and Impacts	551
	of Energy Generation	551
	18.3 From Emissions to Impacts	563
	18.4 Energy Requirements for Waste Treatment	565
	Problems	565
	References	567
19	Impacts of Waste and Waste Treatment	569
	19.1 Environmental Fate and Effects Data	569
	19.2 Environmental Fate Information: Physical Properties	574
	19.3 Environmental Fate Information: Transformation	
	and Depletion Mechanisms	581
	19.4 Environmental Effects Information	583
	19.5 Environmental Risk Assessment	586
	19.6 Environmental Life Cycle Impacts of Waste Treatment	589
	Problems	598
	References	601
20	Evaluating Technologies	603
	20.1 Why We Need to Evaluate Technologies	
	and Processes Comprehensively	603
	20.2 Comparing Technologies and Processes	604
	20.3 One Way to Compare Technologies	605
	20.4 Trade-Offs	612

x CONTENTS

		Advantages and Limitations of Comparing Technologies	613
	Probl		613
	Refe	rences	616
PA]	RT V	WHAT LIES AHEAD	619
21	Desig	gn for Circularity	621
	21.1 21.2	Industrial Ecology Background Principles and Concepts of Industrial Ecology,	622
	21.2	Circularity, and Design	626
	21.3	Industrial Ecology and Circularity by Design	629
	21.4	Industrial Ecology and Circularity in Practice	634
	Probl	· · · · · · · · · · · · · · · · · · ·	636
	Refe	rences	637
22	Rene	ewable Resources	639
	22.1	Why We Need Renewable Resources	639
	22.2	Renewable Materials	642
	22.3	The Biorefinery	646
	22.4	Renewable Energy	654
	Probl	ems	661
	Refe	rences	662
23	Tyin	g It All Together: Is Sustainability Possible?	665
	23.1	How Might Green and Sustainable Chemistry	
		and Engineering Enable Sustainability?	666
	23.2	Sustainability: Culture and Policy	667
	23.3	Influencing Sustainability	668
	23.4	Moving to Action	670
	Probl		671
	кете	rences	671
INI	DEX		673

LIST OF FIGURES

Chapter 1		
Figure 1.1	Simplified vision of some of the challenges and realities	
	of designing a chemical synthesis and process.	4
Figure1.2	Spheres of action of sustainability.	10
Chapter 2		
Figure 2.1	Chronological representation of environmental laws.	17
Figure 2.2	Some of the many products in use.	19
Figure 2.3	Fate and effects of a common household detergent.	22
Figure P2.9	Atmospheric distillation followed by vapor permeation.	38
Chapter 3		
Figure 3.1	Factors in setting occupational exposure limits.	58
Figure 3.2	Nodes analyzed in a HAZOP of a pilot plant hydrogenation system.	
	Boldface type indicates deviations that are applicable to the	
	hydrogenation reactor node.	65
Figure 3.3	Screenshot of a HAZOP study showing the outcome of one	
	deviation (high temperature) in the hydrogenation reactor node	
	of Figure 3.2.	65
Figure P3.3		71
Chapter 4		
Figure 4.1	Interrelationships between process metrics categories.	92
Figure 4.2	Generic example of hazard scoring for process materials.	94
Chapter 5		
Figure 5.1	Where systems thinking fits in green chemistry and engineering	
	and life cycle thinking. Adapted from Ginzburg, et. al.	115
Figure 5.2	Process for defining a chemistry-specific system from Constable et. al.	116
Figure 5.3	Systems-oriented concept map extension (SOCME) for a tire system.	119

xii LIST OF FIGURES

Figure 5.4	Life cycle inventory/assessment for acetone production. Box (a): Synthetic pathway for acetone manufacturing separated into production stages (gate-to-gate). Box (b): Schematic of a generic gate-to-gate mass and energy (input/output) balance for each unit process within each stage. Box (c): Schematic of the life cycle assessment phase based on the cumulative life cycle inventory for all stages, cradle-to-gate.	121
Chapter 6		
Figure 6.1	Example of chemistry types ranked by their relative greenness.	147
Figure 6.2	Process flow diagram for a single reaction step.	153
Figure 6.3	Venn diagram for the American Chemical Society's Green	
	Chemistry Institute Pharmaceutical Roundtable Reagent Guides	
	(https://reagents.acsgcipr.org).	154
Chapter 7		
Figure 7.1	Some solvent uses and examples of applications.	160
Figure 7.2	The goal is to select a solvent that promotes chemical reactivity	
	and efficient downstream processing with minimal EHS impacts.	
	TPB, toxic, persistent, bioaccumulative; RME, reaction	
F: 7.2	mass efficiency.	161
Figure 7.3	Chemical tree of ethyl ether. Each block in the tree represents	
	a manufacturing process, and the numbers denote mass of material	
	(in kilograms) to produce 1,000 kg of the solvent. The tree is read from left (final product) to right (cradle material).	164
Figure 7.4	General iterative solvent selection process.	167
Figure 7.5	Solvent properties and their role in solvent selection.	167
Figure 7.6	PCA used for solvent selection. Each dot represents a solvent	10,
8	in tri-dimensional solvent space. Solvents that are located near	
	each other have similar characteristics given the	
	statistical assessment.	171
Figure 7.7	Mechanism-based solvent selection procedure (Britest Ltd.,	
	http://www.britest.co. uk).	173
Figure 7.8	GlaxoSmithKline's solvent selection guide (http://www.gsk.com).	174
Figure 7.9	Methodology to select green solvents for organic reactions using	
F: 7.10	computer-aided molecular design to perform the search.	175
Figure 7.10	Screen shot of a CAMD search using ProCAMD software.	177
Figure 7.11	Catalyst effect on activation energy of a reaction. Note that the	
	enthalpy of reaction (energy of products minus energy	181
Figure 7.12	or reactants) remains unchanged. General classification of catalysts.	185
Figure 7.12	Industrial processes using acid–base catalysts.	187
Figure 7.14	Type of catalysts used in industrial processes.	187
•	1, p. 0.1 chail job abou in mandatal processes.	107
Chapter 8	() 6: 1 21 16 (:11 : 6	
Figure 8.1	(a) Simple 2-level factorial design of experiment;	207
Eigure 0 2	(b) response surface for 2-level factorial design.	207 214
Figure 8.2	Figure for example 8.4. Holding a reaction at reflux.	∠14

Chapter 9		
Figure 9.1	Simplified graphic representation of a bioprocess.	233
Figure 9.2	Chemical (a) and biocatalytic (b) routes for 7-ACA.	246
Figure 9.3	Petrochemical process for polylactic acid.	248
Figure 9.4	Polylactic acid production.	249
Figure 9.5	Solvent use of the chemical (a) and biocatalytic	
	(b) routes to Pfizer's Lyrica (pregabalin).	252
Figure 9.6	Comparison of chemical and biocatalytic routes to Molnupiravir.	254
Figure P9.8		257
Figure P9.10		260
Chapter 10		
Figure 10.1	Block diagram (a) and process flow diagram (b) for Example 10.1.	271
Figure 10.2	Common symbols used in process flow diagrams.	272
Figure 10.3	Block diagram for Example 10.2.	274
Figure 10.4	Two different system boundaries for the same 3-pentanone	
8	process.	275
Figure 10.5	Process flow diagram for hypochlorous acid, Example 10.5.	280
Figure 10.6	Changes in temperature at a constant volume.	287
Figure 10.7	Changes in temperature at a constant volume Example 10.8.	289
Figure 10.8	Heats of reaction.	292
Figure 10.9	Block flow diagram for the chemical synthesis of 7-ACA.	295
Figure P10.10	Distillation column.	299
Figure P10.17	Process flow diagram for Problem 10.17.	302
Chapter 11		
Figure 11.1	Activated carbon adsorption process.	307
Figure 11.2	Scale-up process and how the various tools interact to provide	
8	the right information for the process at the right development stage.	318
Figure 11.3	Scaling-up (a) vs. numbering-up (b).	321
Chapter 12		
Figure 12.1	Reactor configurations.	330
Figure 12.2	Some characteristics of fluid processing reactors in relationship	330
118410 12.2	with hourly spatial velocity, production, and residence time.	331
Figure 12.3	Examples of separations and size reduction/augmentation	331
118410 12.5	unit operations.	339
Figure 12.4	Mass balance for azeoptropic distillation of Example 12.5.	343
Figure 12.5	Mass balance for extractive distillation of Example 12.5.	346
Figure 12.6	Mass balance for pervaporation of Example 12.5.	350
Figure 12.7	Some areas of process intensification.	356
Figure 12.8	Illustrative schemes for static (a), y-shaped jet (b), and vortex	
8	(c) mixers.	357
Figure 12.9	Microchannel reactor. The reaction zones are darker than the	
C	heat transfer zones. This is also typically known	
	as a HEX reactor.	359
Figure 12.10	Spinning disk reactor.	362
Figure 12.11	Spinning tube-in-tube reactor.	364

xiv LIST OF FIGURES

Figure 12.12	Oscillatory flow reactor.	365
Figure 12.13	Rotating packing bed.	366
Figure 12.14	Carbon dioxide emissions for Example 12.8, estimated using a	
	streamlined life cycle assessment approach	
	(see chapters 16, 17, and 18).	369
Figure P12.21		376
Figure P12.23		377
Chapter 13		
Figure 13.1	(a) Ideal reaction situation, where there is no waste and thus no	
118410 13.1	need to separate or purify the product. (b) Typical reaction situation,	
	where the output is a mixture of the desired product and undesired	
	by-products, unreacted species, and impurities in need of separation	
	and purification steps.	384
Figure 13.2	Separation sequences for the simple hypothetical example	
8	of Figure 13.1.	385
Figure 13.3	Process synthesis approaches.	386
Figure 13.4	Flowsheet decomposition for a continuous process and a batch	
U	process, identifying closed paths, open paths, and accumulation	
	paths according to the methodology developed by carvalho et al.	
	A, B, and C denote continuous unit operations; OP1, OP2, and	
	OP3 denote batch unit operations.	388
Figure 13.5	Operational variables for best improvement during the	
	generation of alternatives.	389
Figure 13.6	Representation of the vinyl chloride monomer process and output	
	of the indicator sensitivity analysis, showing the indicator values	
	calculated for the most sensitive closed paths (a) and open paths (b).	391
Figure 13.7	Fermentation section of the insulin production process.	393
Figure 13.8	Insulin fermentation process used for the flowsheet decomposition	
	of a batch process.	394
Figure 13.9	Proposed separation sequence.	397
Figure 13.10	Linnhoff's onion diagram used to decompose the design process.	398
Figure 13.11	Example of a superstructure generated to represent two alternative	
	reactors. If $y1 = \text{true}$, then $y2 = \text{false}$ and reactor 1 is used. If $y2 = \text{tru}$	
	then $y1 = false$ and reactor 2 is used.	401
Figure 13.12	Simplified representation of the reduced superstructure	
	for Example 13.6.	404
Figure P13.2	Source: From Carvalho et al. ref. 7. Copyright © 2006, with permissi	
E' D12.2	from Elsevier.	407
Figure P13.3		408
Chapter 14		
Figure 14.1	Pinch diagram with hot and cold composite curves, ΔQH is external	
	heating, ΔQC is the external cooling, and ΔT is the temperature	
	approach in the pinch.	419
Figure 14.2	Grid diagram representing hot streams, cold streams, heat	
	exchanges (numbered pairs), and external utilities such	
	as heating (H) or cooling (C).	419
Figure 14.3	Simple reaction system for Example 14.1.	420

Figure 14.4 Figure 14.5	Building hot composite curves. Pinch diagram for Example 14.1: (a) thermal pinch,	420
	(b) the graph once the cold composite curve has moved toward the right to allow for the minimum temperature approach of 25°C.	421
Figure 14.6	Cascade Example diagrams for 14.2. All amounts in kJ/h.	423
Figure 14.7	Equilibrium in a mass exchange unit using a mass	123
8	separating agent.	427
Figure 14.8	Phenol recovery using polymeric resins.	428
Figure 14.9	Cascade diagram for mass integration in Example 14.3.	
	Amounts in kmol/h.	430
Figure 14.10	Recycle/reuse pinch diagram for Example 14.4.	433
Figure P14.4		434
Figure P14.8		436
Chapter 15		
Figure 15.1	Layers of protection in classic chemical plant safety.	444
Figure 15.2	Traditional vs. inherent safety approach.	445
Figure 15.3	(a) Pollution prevention hierarchy; (b) inherent safety hierarchy.	447
Figure 15.4	Flowchart for integrating IS into route strategy and process design.	451
Figure 15.5	Material-centric methodology for integrating pollution	
	prevention and inherent safety.	452
Figure 15.6	Flowchart for process design decision making.	455
Figure 15.7	Interaction matrix: example of all interactions safe.	456
Figure P15.1	(a) Batch reactor; (b) continuous tank reactor.	458
Figure P15.4 Figure P15.8	(a) Batch emulsion process; (b) loop reactor.	460 462
		402
Chapter 16		
Figure 16.1	Life cycle inventory and assessment. Including all the phases	4.60
F' 16.0	in the life cycle of an activity aims at cradle-to-grave evaluation.	469
Figure 16.2	Phases of an LCI/A.	470
Figure 16.3	Chemical tree for the production of 3-pentanone. All figures in kilograms	477
Figure 16.4	in kilograms. Process flow diagram, 3-pentanone manufacture, for Example 16.3.	477
Figure 16.5	Representation of a chain/network of effects (a) and an example (b).	486
Figure 16.6	Examples of an industrial application of most of the elements	700
118010 1010	of a life cycle impact assessment. In addition, sensitivity analysis	
	was performed.	490
Figure 16.7	Examples of a quality analysis. Sensitivity analysis on the effects	
	of changes in electricity (a) and transportation (b) values in a	
	cradle-to-gate LCIA. (From jiménez-gonzález, ref. Reproduced	
	with kind permission from Springer Science and Business Media.	
	Copyright © 2004, Springer Science and Business Media).	491
Figure 16.8	System boundaries for the life cycle assessment of an API.	492
Figure 16.9	Comparison of selected life cycle inventory results for the five	
	processes to produce the chiral pharmaceutical product (route 5,	
	route 6, EtOH, THF, and TOL). NM-VOCs, nonmethane volatile	
	organic compounds; COD, chemical oxygen demand; BOD,	402
	biochemical oxygen demand.	493

xvi LIST OF FIGURES

Figure 16.10	Results of the life cycle impact assessment for Example 16.3 using the CML method for global warming potential (a), eutrophication	
	potential (b), acidification potential (c), and ozone depletion potential (d).	493
Figure 16.11	Cradle-to-gate LCA pretreatment contributions of solvent manufacturing, production of nonsolvent chemicals, and internal	493
	active pharmaceutical ingredient manufacturing.	497
Figure 16.12	Cradle-to-gate LCA posttreatment contributions of energy,	
	production processes, transportation, and treatment systems for pharmaceutical active ingredient manufacturing.	498
Figure 16.13	Impact of X compared to Y. The hatched portion of the emission air segment represents the combustion gases (CO ₂ , NO ₂ , SO ₂) from	470
	energy production.	498
Figure 16.14	Break-even analysis of an LCA score that shows the environmental profile of a chemical process (Chem) and a biocatalytic process	
	(Bio) at different theoretical scenarios for solvent recovery.	499
Figure 16.15	Ecoefficiency and footprint comparisons for the BASF example.	500
Figure 16.16	Some of the results of the life cycle assessment for the	
	ibuprofen comparisons during the production, use,	501
Figure 16.17	and disposal phase. Output of a streamlined life cycle assessment tool used to compare	301
riguic 10.17	the impacts of materials of synthetic chemical routes. The scores	
	shown are on a 1 to 5 scale (1, lowest impact; 5, highest impact). The	
	percentages over the bar charts show the relative average	
	improvement on the environmental life cycle impacts of the materials.	508
Chapter 17		
Figure 17.1	Life cycle management as building the operational side of life	
	cycle thinking.	520
Figure 17.2	Chemical tree of tetrahydrofuran derived from natural sources.	522
Figure 17.3	Chemical tree of tetrahydrofuran derived from a synthetic route.	522
Figure 17.4	One route to producing a fine chemical product used in the	
	manufacture of active pharmaceutical ingredients. Each shaded	
	dot represents a manufacturing or extraction process.	523
Figure 17.5	Potential pathways for a simple supply chain.	524
Figure 17.6	High-level output of the streamlined LCA for Example 17.2	
	(FLASC score). The score provides a benchmark of the LCA impacts	
	of the materials used for a chemical synthesis (1, bad; 10, good).	528
Figure 17.7	Some environmental labels.	532
Figure 17.8	Contribution of total GHG emissions for food consumption in	
	an average American house. The average annual GHG emission	
	was estimated to be 8.1 tons of CO ₂ -eq./household. The contribution	520
E' 17.0	of transport will vary depending on the type of product.	539
Figure 17.9	Relative pretreatment contributions of process-, energy-, and	
	transport-related environmental cradle-to-gate life cycle assessment	E 40
Eigung D17 11	impacts for the production of an active pharmaceutical ingredient.	540
Figure P17.11	Symbol in the container.	542

Chapter 18		
Figure 18.1	Potential energy paths in a chemical process. Primary energy carriers are shaded.	546
Figure 18.2	Contributions to the U.S. electricity grid for 2021 by geographical zone. US: U.S. Average. ASCC: Alaska System Coordination Counc. HICC: Hawaiian Islands Coordination Council; MRO: Midwest Reliability Organization; NPCC: Northeast Power Coordination Council; PR: Puerto Rico; RFC: Reliability First Corporation; SERC: SERC Reliability Corporation (Southeastern region); TRE: Texas Regional Entity; WECC: Western Electricity	
Figure 18.3	Coordination Council. Basic flow of electricity, including generation, transmission,	547
rigure 10.5	and distribution.	552
Figure 18.4	Typical mass and energy flows to produce steam.	555
Figure 18.5	Mass and energy flows for a typical cooling water cycle.	559
Figure 18.6	Mass and energy flows for a typical refrigeration cycle.	560
Figure 18.7	Mass and energy flows for a typical heat transfer fluid that is	500
Tiguic 10.7	heating a system.	561
Figure 18.8	Life cycle assessment impacts for energy requirements in	501
rigure 10.0	kg of each metric for each 1,000 MJ of heat exchanged.	563
Figure 18.9	Contributions to air, water, and solid life cycle inventory emissions	303
riguic 16.7	in the average refinery process, obtained from several life cycle	
	inventory databases.	564
Figure 18.10	Graphic representation of some potential energy paths in a	304
rigure 10.10	chemical process. Primary energy carriers are shaded.	565
	chemical process. I finally chergy carriers are shaded.	505
Chapter 19		
Figure 19.1	Model ecosystem.	570
Figure 19.2	Sample UV/visible spectrum.	576
Figure 19.3	Predictive ecological risk assessment.	587
Figure 19.4	Environmental impacts of waste treatment and recovery	
	technologies. WWTP, wastewater treatment plant.	589
Figure 19.5	Examples of inputs and outputs of a wastewater treatment Plant	
	(a) and a thermal oxidizer or incinerator (b).	590
Figure 19.6	Results of TRI modeling for incineration with no energy recovery.	594
Figure 19.7	Total waste credits estimated by recovering 1 kg of THF.	595
Figure 19.8	Results from Example 19.5.	597
Figure P19.11	Manufacturing plant alternatives.	599
Chapter 20		
Figure 20.1	Technology comparison: metrics and categories.	606
Chapter 21		
Figure 21.1	Linear production and waste.	622
Figure 21.2	Type I, II, and III, systems.	623
Figure 21.3	Idealized industrial ecology production model.	624
Figure 21.4	Visualization of the concept of circular economy.	626
Figure 21.5	R framework of circular economy.	628
Figure 21.6	XEROX equipment recovery and parts reuse/recycle process.	632

xviii LIST OF FIGURES

Chapter 22		
Figure 22.1	Bioprocesses (a) might present an opportunity to close the	
	cycle in the way that goods are produced, in some cases utilizing	
	the waste as feedstock. This is in contrast to the linear production	
	systems (b), where waste invariably has to be treated and disposed	
	of without utilization.	640
Figure 22.2	Materials that can be derived from biomass.	642
Figure 22.3	Potential products of a biorefinery from several biomass sources.	647
Figure 22.4	Some hops derivatives for brewing and nonbrewing applications.	650
Figure 22.5	Renewable energy sources.	655
Figure 22.6	Estimates of global energy generation growth 2020 through 2050.	655
Figure 22.7	Net onshore wind capacity additions by country or region,	
	2022–2024.	656
Figure 22.8	Share of cumulative power capacity by technology, 2010–2027.	659
Chapter 23		
Figure 23.1	Balancing the sustainability table.	666
Figure 23.2	Areas of influence.	669
Figure 23.3	Examples of tools to influence sustainability.	670

ABOUT THE AUTHORS

Dr. Concepción "Conchita" Jiménez-González is currently Vice President, Head of R&D Environment, Health, Safety, and Sustainability at GSK, where she has held various roles of increasing responsibility throughout 20+ years. In her current role, she is responsible for embedding a safety culture and sustainability principles into the Research and Development operations at GSK. She is an adjunct professor at North Carolina State University (NCSU) teaching a Green Chemical Engineering class. She has been an active contributor in the fields of sustainability, life cycle assessment, green engineering, material selection, green technologies, and energy optimization, much of this is a result of her GSK's work. Prior to joining GSK, she was program manager, full-time researcher, and professor at the Environmental Quality Center and the Department of Chemical Engineering of Tecnológico de Monterrey (previously ITESM, México). She was also a visiting researcher at Pfizer in Groton, CT, a visiting faculty in the Environmental Engineering graduate program at the Saltillo Institute of Technology, Mexico, and a consultant in Environmental Engineering. She received her B.S. in Chemical and Industrial Engineering from the Chihuahua Institute of Technology, Mexico; M.Sc. in Environmental Engineering from the Monterrey Institute of Technology and Superior Education (ITESM), Monterrey, Mexico; PhD in Chemical Engineering from NCSU, and MBA also from NCSU. Following the Spanish tradition, she is also known as Conchita.

Dr. David J. Chichester-Constable is currently retired. From January 2013 to December 2022, David worked for the American Chemical Society as Director and Science Director of the Green Chemistry Institute. In this role, David contributed to advancing the science and practice of Sustainable and Green Chemistry and Engineering. Prior to joining the ACS, David served as Vice President of Energy, Environment, Safety and Health at Lockheed Martin for three years. Before joining Lockheed Martin, he worked in GlaxoSmithKline for over 17 years in various positions of increasing responsibility in environmental fate and effects testing, product stewardship, green chemistry and technology, life cycle inventory/assessment, and sustainable development. He also spent 6½ years at ICI Americas, heading a laboratory that developed sampling and analytical methods for environmental and human exposure studies. David holds a B.S. in Environmental Studies, Air and Water Pollution from the Slippery Rock University, PA, and a PhD in Chemistry from the University of Connecticut. He has taught a course in Green Chemistry at Rowan University, NJ, and has published in various areas such as analytical chemistry, environmental fate and effects, material selection, and green chemistry and technology and sustainability.

PREFACE

Over the past three decades, interest in and understanding of Sustainability, Green Chemistry, and Green Engineering has increased steadily beyond academia and into the business world and is slowly evolving toward greater consideration of sustainability. Industries with different sectors of the economy have made concerted efforts to embed these concepts to a greater or lesser degree into their operations, but progress has not been as fast as we think and is needed to address current and upcoming sustainability challenges. Over 15 years ago, given our experience with green chemistry and green engineering in the pharmaceutical industry, we were approached by the publishers to edit a book on green chemistry in the pharmaceutical industry. While this was a worthy proposal, we felt we had a greater opportunity and a worthier endeavor to produce a book that would more fully integrate *Green and Sustainable Chemistry and Engineering* into the academic curricula and that, at the same time, could serve as a practical reference to chemists and engineers in the workplace.

Green and Sustainable Chemistry and Engineering ideas and concepts are still not being sufficiently ingrained into traditional chemistry and engineering curricula to the extent that is necessary for a world that has continued toward exceeding critical boundary conditions for planetary well-being. This is especially true for chemistry, although classes and even majors in these topics have become increasingly common. However, most classes in green and sustainable chemistry are typically taught from an environmental chemistry perspective or a synthetic organic chemistry perspective, with neither approach addressing issues of manufacturing or manufacturability of products. The consequence of this is that many chemists have no idea how to create new substances that are anywhere close to being sustainable from a systems and life cycle perspective. Green Engineering classes, on the other hand, tend to emphasize issues related to manufacturing, but do not have a sufficient treatment of reaction and process chemistry. These disciplines therefore still seem to be disconnected. This lack of integration between chemistry, engineering, and other key disciplines has been one of the main challenges we have had within the industrial workplace and in previous academic experiences.

As a consequence of these experiences, we decided to write this book as an attempt to bridge the great divide between bench chemistry, process design, engineering, environment, health, safety, systems thinking, and life cycle considerations. We felt that a systems-oriented and integrated approach was needed to evolve Green Chemistry and Engineering as disciplines in the broader context of sustainability. To achieve this, we have organized the book into five main sections.

- Part I. Green and Sustainable Chemistry and Engineering in the Movement Toward Sustainability. Chapters 1–5 set the broader context of sustainability, highlighting the key role that green and sustainable chemistry and engineering have in moving society toward the adoption of more sustainable practices in providing key items of commerce.
- Part II. The Beginning: Designing Greener, Safer, More Sustainable Chemical Syntheses. Chapters 6–9 address the key components of chemistry that will contribute to the achievement of more sustainable chemical reactions and reaction pathways. They also provide an approach to materials selection that promotes the overall sustainability of a chemical synthesis without diminishing the efficiency of the chemistry or associated chemical process.
- Part III. From the Flask to the Plant: Designing Greener, Safer, More Sustainable Manufacturing Processes. Chapters 10–15 provide those key engineering concepts that support the design of more sustainable chemical processes.
- Part IV. Expanding the Boundaries. Looking beyond our processes, Chapters 16–20
 bring the life cycle thinking perspective by providing background and context for placing a particular chemical process in the broader chemical enterprise, including its impacts from raw materials extraction to recycle or reuse, or end-of-life considerations.
- Part V. What Lies Ahead. Beyond the chemical processing technology of today or delivering tomorrow's products more sustainably. Finally, Chapters 21–23 provide some indication of trends in chemical processing that may lead us towards more sustainable practices.

To help provide a practical approach, we have included examples and exercises that will help the student or practitioner to understand these concepts as applied to the industrial setting and to use the material in direct and indirect applications. The exercises are intended to make the book suitable for both self-study or as a textbook, and most exercises are derived from our professional experiences.

This book is an outgrowth of our experience in applied and fundamental research, consulting, teaching, and corporate work on the areas of green chemistry, green engineering, and sustainability. It is primarily intended for graduate and senior-level courses in Chemistry and Chemical Engineering, although we hope that chemists and engineers working in manufacturing, research, and development; especially the fine chemicals and pharmaceutical areas will find this book to be a useful reference for process design and re-engineering. We hope that this will provide enough balance between the academic needs and the practical industrial application of an integrated approach between green and sustainable chemistry and engineering.

ACKNOWLEDGMENTS

We thank all our colleagues who directly or indirectly have contributed to our journey toward Sustainability and whose ideas and collaborations throughout the years have contributed to our own experience in the areas of Green Chemistry and Green Engineering. We also express our gratitude to GSK in general, and to James R. Hagan, Vice-President of Sustainability at GSK (Ret) in particular, for the support and encouragement provided for this work.

We also give special thanks to Rafiqul Gani from PSE for SPEED and Ana Carvalho from Instituto Superior Técnico, Lisbon, for their comments, reviews, and contributions for the process synthesis chapter; to Mariana Pierobon and BASF for their helpful comments and for allowing us to use one of the BASF Eco-Efficiency assessments as an example for the life cycle chapters. Finally, we thank Chemical Engineering magazine, the American Chemical Society, the Hellen McArthur Foundation, and Wiley-VCH Verlag for granting the permission to reproduce some printed material.

ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:

www.wiley.com/go/Green_and_Sustainable_Chemistry_and_Engineering/2e

The website includes:

- Solutions manual
- Figures in PPT

PART I

GREEN AND SUSTAINABLE CHEMISTRY AND ENGINEERING IN THE MOVEMENT TOWARD SUSTAINABILITY