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PREFACE

Over the past three decades, interest in and understanding of Sustainability, Green 
Chemistry, and Green Engineering has increased steadily beyond academia and into the 
business world and is slowly evolving toward greater consideration of sustainability. 
Industries with different sectors of the economy have made concerted efforts to embed these 
concepts to a greater or lesser degree into their operations, but progress has not been as fast 
as we think and is needed to address current and upcoming sustainability challenges. Over 
15 years ago, given our experience with green chemistry and green engineering in the phar-
maceutical industry, we were approached by the publishers to edit a book on green chemistry 
in the pharmaceutical industry. While this was a worthy proposal, we felt we had a greater 
opportunity and a worthier endeavor to produce a book that would more fully integrate Green 
and Sustainable Chemistry and Engineering into the academic curricula and that, at the 
same time, could serve as a practical reference to chemists and engineers in the workplace.

Green and Sustainable Chemistry and Engineering ideas and concepts are still not being 
sufficiently ingrained into traditional chemistry and engineering curricula to the extent that 
is necessary for a world that has continued toward exceeding critical boundary conditions 
for planetary well-being. This is especially true for chemistry, although classes and even 
majors in these topics have become increasingly common. However, most classes in green 
and sustainable chemistry are typically taught from an environmental chemistry perspective 
or a synthetic organic chemistry perspective, with neither approach addressing issues of 
manufacturing or manufacturability of products. The consequence of this is that many 
chemists have no idea how to create new substances that are anywhere close to being sus-
tainable from a systems and life cycle perspective. Green Engineering classes, on the other 
hand, tend to emphasize issues related to manufacturing, but do not have a sufficient treat-
ment of reaction and process chemistry. These disciplines therefore still seem to be discon-
nected. This lack of integration between chemistry, engineering, and other key disciplines 
has been one of the main challenges we have had within the industrial workplace and in 
previous academic experiences.
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As a consequence of these experiences, we decided to write this book as an attempt to 
bridge the great divide between bench chemistry, process design, engineering, environment, 
health, safety, systems thinking, and life cycle considerations. We felt that a systems-oriented 
and integrated approach was needed to evolve Green Chemistry and Engineering as 
disciplines in the broader context of sustainability. To achieve this, we have organized the 
book into five main sections.

•	 Part I. Green and Sustainable Chemistry and Engineering in the Movement Toward 
Sustainability. Chapters  1–5 set the broader context of sustainability, highlighting 
the key role that green and sustainable chemistry and engineering have in moving 
society toward the adoption of more sustainable practices in providing key items of 
commerce.

•	 Part II. The Beginning: Designing Greener, Safer, More Sustainable Chemical 
Syntheses. Chapters 6–9 address the key components of chemistry that will contribute 
to the achievement of more sustainable chemical reactions and reaction pathways. 
They also provide an approach to materials selection that promotes the overall sus-
tainability of a chemical synthesis without diminishing the efficiency of the chemistry 
or associated chemical process.

•	 Part III. From the Flask to the Plant: Designing Greener, Safer, More Sustainable 
Manufacturing Processes. Chapters  10–15 provide those key engineering concepts 
that support the design of more sustainable chemical processes.

•	 Part IV. Expanding the Boundaries. Looking beyond our processes, Chapters 16–20 
bring the life cycle thinking perspective by providing background and context for plac-
ing a particular chemical process in the broader chemical enterprise, including its impacts 
from raw materials extraction to recycle or reuse, or end-of-life considerations.

•	 Part V. What Lies Ahead. Beyond the chemical processing technology of today or 
delivering tomorrow’s products more sustainably. Finally, Chapters  21–23 provide 
some indication of trends in chemical processing that may lead us towards more 
sustainable practices.

To help provide a practical approach, we have included examples and exercises that will 
help the student or practitioner to understand these concepts as applied to the industrial 
setting and to use the material in direct and indirect applications. The exercises are intended 
to make the book suitable for both self-study or as a textbook, and most exercises are 
derived from our professional experiences.

This book is an outgrowth of our experience in applied and fundamental research, consult-
ing, teaching, and corporate work on the areas of green chemistry, green engineering, and 
sustainability. It is primarily intended for graduate and senior-level courses in Chemistry and 
Chemical Engineering, although we hope that chemists and engineers working in manufacturing, 
research, and development; especially the fine chemicals and pharmaceutical areas will find this 
book to be a useful reference for process design and re-engineering. We hope that this will 
provide enough balance between the academic needs and the practical industrial application of 
an integrated approach between green and sustainable chemistry and engineering.

Concepción “Conchita” Jiménez-González  
and David J. C. Constable

January 2024
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